Show simple item record

dc.contributor.authorQuerejeta, José Ignacio
dc.contributor.authorPrieto, Iván
dc.contributor.authorArmas, Cristina
dc.contributor.authorCasanoves, Fernando
dc.contributor.authorDiémé, Joseph S
dc.contributor.authorDiouf, Mayecor
dc.contributor.authorYossi, Harouna
dc.contributor.authorKaya, Bocary
dc.contributor.authorPugnaire, Francisco
dc.contributor.authorRusch, Graciela M
dc.date.accessioned2022-05-30T15:56:56Z
dc.date.available2022-05-30T15:56:56Z
dc.date.issued2022-05
dc.identifier.urihttps://repositorio.catie.ac.cr/handle/11554/11791
dc.description.abstractThe least-cost economic theory of photosynthesis shows that water and nitrogen are mutually substitutable resources to achieve a given carbon gain. However, vegetation in the Sahel has to cope with the dual challenge imposed by drought and nutrient-poor soils. We addressed how variation in leaf nitrogen per area (Narea) modulates leaf oxygen and carbon isotopic composition (δ18O, δ13C), as proxies of stomatal conductance and water use efficiency, across 34 Sahelian woody species. Dryland species exhibited diverging leaf δ18O and δ13C values, indicating large interspecific variation in time-integrated stomatal conductance and water use efficiency. Structural equation modelling revealed that leaf Narea is a pivotal trait linked to multiple water use traits. Leaf Narea was positively linked to both δ18O and δ13C suggesting higher carboxylation capacity and tighter stomatal regulation of transpiration in N-rich species, which allows them to achieve higher water use efficiency and more conservative water use. These adaptations represent a key physiological advantage of N-rich species, like legumes, that could contribute to their dominance across many dryland regions. This is the first report of a robust mechanistic link between leaf Narea and δ18O in dryland vegetation that is consistent with core principles of plant physiology.es_ES
dc.language.isoenes_ES
dc.publisherNew Phytologist Foundationes_ES
dc.relation.ispartofNew Phytologist Foundationes_ES
dc.relation.urihttps://doi.org/10.1111/nph.18254es_ES
dc.subjectFOTOSINTESISes_ES
dc.subjectPHOTOSYNTHESISes_ES
dc.subjectDOSIS DE RIEGOes_ES
dc.subjectIRRIGATION RATESes_ES
dc.subjectNECESIDADES DE AGUAes_ES
dc.subjectWATER REQUIREMENTSes_ES
dc.subjectFISIOLOGIA VEGETALes_ES
dc.subjectPLANT PHYSUOLOGYes_ES
dc.subjectHOJASes_ES
dc.subjectLEAVESes_ES
dc.subjectNITROGENOes_ES
dc.subjectNITROGENes_ES
dc.subjectANALISIS DE TEJIDO FOLIARes_ES
dc.subjectLEAF TISSUE ANALYSISes_ES
dc.subjectRELACIONES PLANTA AGUAes_ES
dc.subjectPLANT WATER RELATIONSes_ES
dc.subjectTRANSPIRACIONes_ES
dc.subjectTRANSPIRATIONes_ES
dc.subjectCONDUCTANCIA ESTOMATICAes_ES
dc.subjectSTOMATAL CONDUCTANCEes_ES
dc.subjectARBOLESes_ES
dc.subjectTREESes_ES
dc.subject.otherSede Centrales_ES
dc.titleHigher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland treeses_ES
dc.typeArtículoes_ES
dc.creator.idCasanoves, Fernando; 0000-0001-8765-9382es_ES
dc.identifier.statusrestrictedAccesses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

facebook twitter wiki linkedin youtube instegram