A combination of conserved and diverged responses underlies Theobroma cacao’s defense response to Phytophthora palmivora
View/ Open
Date
2024Sustainable development goals
ODS 15 - Vida de ecosistemas terrestres
Type
Artículo
Metadata
Show full item recordAbstract
Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k–900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao’s defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.
Keywords
Mejoramiento genético||genetic improvement||melhoramento genético||undefined, mejora de cultivos||crop improvement||undefined||amélioration des cultures, Diversidad genética (como recurso)||genetic diversity (as resource)||diversidade genética (como recurso)||diversité génétique (comme ressource), Germoplasma||germplasm||germoplasma||germoplasme, Theobroma cacao||Theobroma cacao||Theobroma cacao||Theobroma cacao, Phytophthora palmivora||Phytophthora palmivora||Phytophthora palmivora||Phytophthora palmivora, Antimicrobianos||antimicrobials||antimicrobiano||antimicrobien, Reacciones de defensa de plantas||plant defence reactions||reacção de defesa das plantas||réaction de défense des plantes, Evolución||evolution||evolução||évolution, Secuencia de ARN||RNA sequence||Sequência do ARN||séquence d'arn, genómica||genomics||undefined||génomique, Cacao,
Delegation
Sede Central
Publisher
BMC Biology
Is part of
BMC Biology
Status
openAccess