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This special issue in Crop Science provides a diverse cross

section of views from prior and current efforts to enable

prediction in agriculture. The contributions discuss and

demonstrate how current advances in phenomics, genomics,

and artificial intelligence are being combined to explore new

modeling paradigms and prediction frameworks to advance

crop science and improve decision making in agriculture.

The synthesis of these views can motivate a transdisciplinary

dialogue to define predictive agriculture as a discipline

and guide future research efforts for the integration of

data-driven and science-based methodologies. Collectively,

these methods can provide the needed foundation for design

in agricultural and food systems (National Academies of

Sciences, Engineering, and Medicine, 2019).

Why focus on prediction in agriculture? In general, when-

ever it is possible, taking steps to avoid problems is preferable

to solving the problems once they exist. There are many

issues in agriculture where avoiding problems –e.g., through

agricultural systems design, breeding, or developing adequate

crop management solutions- is a far preferable approach than

solving problems once they have occurred. In the last half

century there were substantial efforts to encode concepts

in crop and soil science, genetics and breeding, and agron-

omy in the form of quantitative models. Integrating these

models and their associated scientific knowledge with socio-

economic models enables ex-ante and strategic foresight

studies to evaluate research investments, technologies, and

interventions in agricultural systems (Kruseman et al., 2020).

Significant developments in crop sciences have enabled

application of models in agriculture within the CGIAR

(formerly Consultative Group for International Agricultural

Research) system (Kruseman et al., 2020; Ramirez-Villegas
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et al., 2020), other public institutions (Hammer et al., 2020;

Jones et al., 2017; Sinclair, Soltani, Marrou, Ghanem, &

Vadez, 2020), and industry (Cooper et al., 2014; Cooper

et al., 2020). Outcomes from these long-term research efforts

have contributed to many aspects of the target agricultural

systems (e.g., small holder agriculture) and agricultural

research, leading to improvements in the sustainability and

productivity of diverse production systems. The complexities

associated with encoding biological mechanisms for the

simulation of credible genotype responses to management

and environmental variation (Hammer et al., 2020; Hammer,

Messina, Wu, & Cooper, 2019; Messina et al., 2019), acquir-

ing the right and accurate information to exercise prediction

models (Archontoulis et al., 2020; Kruseman et al., 2020;

Ramirez-Villegas et al., 2020) and the need for transdisci-

plinary research to connect biological with socio-economic

models (Cooper et al., 2020; Kruseman et al., 2020) remain

significant barriers to adoption of prediction methods. While

it is being advocated that using simple mechanistic models

for prediction (Messina et al., 2018; Sinclair et al., 2020)

and modern frameworks for collaboration and data exchange

(Ramirez-Villegas et al., 2020) can accelerate realizing soci-

etal value facilitated by prediction technologies, achieving

the right balance between parsimony and biological reality

adequate to enable the intended application remains elusive

and a fertile area of future research (Hammer et al., 2019).

To accelerate the development of prediction methods

for agriculture, there are many opportunities to learn from

other disciplines such as economics and climatology that

have a long history of applying them in research and

decision-making. In this special issue, Casadebaig, Debaeke,

and Wallach (2020) explore the opportunity to leverage

concepts from meteorology and climatology, known as post-

processing, to improve prediction skill to levels adequate
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for target applications. Washburn, Burch, and Valdez Franco

(2020) review methods for integrating statistical prediction

with mechanistic biological models as a means to accel-

erate genetic gain in plant breeding. Recent advances in

information technologies, statistical learning algorithms,

and the availability of large datasets for analysis motivated

studies to replace science-based models with data-driven

models to enable prediction and classification in breeding

(Ersoz, Martin, & Stapleton, 2020; Washburn et al., 2020)

and agronomy (Schwalbert et al., 2020). While these studies

have produced useful solutions in agriculture, it is opportune

to ask how this encapsulated knowledge will contribute

to advancing plant science, and in turn to improving the

robustness of prediction methodologies (Mitchell, 2019).

The mathematical framework applied by Ersoz et al. (2020)

to demonstrate prediction methodologies illustrates the pos-

sibility of advancing understanding of the genetic and phe-

notypic architecture of integrated traits (e.g., kernel num-

bers). In turn, this knowledge can help inform efforts to

improve prediction based on advanced genomic prediction

approaches (Amadeu et al., 2020; Ferrão, Marinho, Muñoz, &

Resende Jr, 2020). Although progress has been made towards

incorporating environmental features to model genotype-by-

environment (GxE) interactions (Ferrão et al., 2020; Ramirez-

Villegas et al., 2020) the ability to predict with accuracy new

genotype-by-environment-by-management (GxExM) combi-

nations that are outside the domain used to train the genomic

prediction models remains to be demonstrated. Approaches

that integrate concepts of prediction established in economics,

climatology, and crop science can expand the inference space.

For example, Hammer et al. (2020) proposes a generalizable

design methodology based on (a) use of scientific understand-

ing of how sorghum responds to variation in E and M condi-

tioned to G, and (b) consideration of economic and decision-

making theory. By structuring the design method on scientific

principles and considering risk, uncertainty, and stochastic-

ity in inputs, the method proposed by Hammer et al. (2020)

helps overcome, at least in part, the limitations of data-driven

approaches to prediction of adaptation of crops to future cli-

mates and environments for which there are no data avail-

able today for model training purposes. This knowledge-based

methodology illustrates how encoding scientific knowledge

enabled broader consideration of opportunities to explore

GxExM solutions to the significant problem of adapting to

climate change.

Predicting performance of biocomplex systems such as

crops is challenging due to the emergence of consequential

phenotypes, and rugged and evolving performance land-

scapes (Hammer et al., 2006; Messina, Podlich, Dong,

Samples, & Cooper, 2011) that can set biophysical, compu-

tational, and complexity limits on the predictability of the

system (Cooper et al., 2020). However, using suitable crop

models (Archontoulis et al., 2020; Hammer et al., 2020) it is

feasible to predict important, fundamental properties of the

performance landscapes (Cooper et al., 2020; Messina et al.,

2019). In combination with statistical learning methods, this

enables applications to advance predictive breeding (Bogard

et al., 2020; Washburn et al., 2020), predictive breeding

and agronomy (Cooper et al., 2020; Messina et al., 2018),

forecasting (Archontoulis et al., 2020), and crop design

(Cooper et al., 2020; Hammer et al., 2020) for a wide range

of agricultural production systems. These principles have

the potential to move the problem from that of attempting

to independently predict genetic (breeding) and management

(agronomy) solutions to poorly defined GxExM problem

spaces, to that of predicting integrated genetic-management

(GxM) solutions for the challenges inherent in both current

and future target populations of environments (TPEs) of

agricultural systems. Thus, the foundations of predictive

agriculture explored in this special issue have the potential to

help us evolve our teaching curricula, research programs and

methods, and extension approaches from interdisciplinary

to transdisciplinary efforts seeking novel GxM solutions for

the immediate TPE challenges we face today, balanced with

an assessment of how our research strategies and trajectories

will prepare us to adapt to the future TPEs. Thus, we propose

that effective transdisciplinary efforts that adopt a (GxM)xE

focus, enabled through predictive agriculture, can move us

from our current paradigm of describing the problems of

GxExM interactions from individual discipline domains to

predicting testable (GxM) technology solutions for more

clearly defined TPE targets of agricultural systems. Hence, we

move from a descriptive GxExM experimental paradigm to a

predictive (GxM)xE research solution paradigm with greater

options to manage the complexities of agricultural systems.

Plant science in general, and crop science in particular,

underpins technological developments that are instrumental

to improving the life of the world’s poor and society in

general. Crop growth models are cognitive constructs that

synthesize our current scientific understanding of plant

growth and development. Reviews presented in this special

issue show how these models can be instruments of trans-

lational plant biology (Bogard et al., 2020; Cooper et al.,

2020; Hammer et al., 2020; Ramirez-Villegas et al., 2020;

Washburn et al., 2020). When combined with breeding, field,

farm and socio-economic models, they can help breeders,

agronomists, farmers and policymakers utilize foundational

concepts in crop science to improve realized genetic gain

and the sustainability of agroecosystems (Kruseman et al.,

2020). The body of scientific contributions to this special

issue in Crop Science suggests that integrating science-based

and data-driven approaches could be a productive path

towards enabling (GxM)xE prediction in agriculture at scale.

Perhaps an initial concept of predictive agriculture is of a

transdisciplinary domain that enables quantitative forecast-

ing, emergent engineering, and crop design for agriculture,
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grounded in disciplinary principles from statistical learning,

plant biology, breeding, agronomy, and socioeconomics.
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