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Introduction 

InfoStat implements a friendly interface of the R platform to estimate extended and 

mixed linear models through the gls and lme procedures of the nlme library. The 

reference bibliography for this implementation is Pinheiro & Bates (2004), and some of 

the examples used come from this book. InfoStat communicates with R by its own 

communication technology (developed by Eng. Mauricio Di Rienzo, 2016). 

Requirements 

To let InfoStat to have full access to R, it must be installed on your system and an 

updated version of R. To perform the installation process correctly, consult the online 

help in the InfoStat Help menu, submenu How to install R? and follow the instructions 

given without omitting any steps. 

Extended and mixed linear models  

In the Statistics menu, select the Extended and mixed linear models submenu, here you 

will find three options. The first option, with the heading Model estimation activates the 

dialogue window for the specification of the model structure. The second option, with 

the heading Model exploration, is activated when a model has been previously 

estimated, and it contains a group of tools for diagnostic analysis. The third option links 

to the Tutorial for mixed model analysis and estimation. 
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Specification of fixed effects  

Let us begin by indicating how to adjust a fixed effects model using the Atriplex.IDB2 

file located in InfoStat test datasets (File, open test data). Once this file is open, activate 

the Statistics menu, the Extended and mixed linear models submenu, Model estimation 

option. In the variables selection window, the dependent variables (Variables), 

classification factors (Class variables) and covariates can be specified as in an analysis 

of variance for fixed effects. For the data in the Atriplex.IDB2 file, Germination should 

be specified as a response variable, and Size and Color as classification variables. Once 

the selection is accepted, the principal window of the interface for mixed models will 

appear. This window contains five tabs (Figure 1). 

 

Figure 1: Tabs with the options for the specification of an extended and mixed linear model. 

The first tab allows the user to specify the fixed effects of the model, to select options 

for the presentation of results and the generation of predictions, to obtain residuals for 

the model, and to specify the estimation method. The default estimation method is 

restricted maximum likelihood (REML). 

To the right of the window, a list containing the classification variables and covariates 

declared in the variables selection window will appear. To include a factor 

(classification variable) or a covariate in the fixed part of the model, the user needs only 

to double click on the name of the factor o covariate that he/she wishes to include. This 

action will add a line to the fixed effects list. Additional double clicks on a factor or a 

covariate will successively add linear terms that are implicitly separated by a “+” sign 

(additive model). By selecting the main factors and activating the “*” button, the user 

may add a term that specifies an interaction between factors. For the data set in the 

Atriplex.IDB2 file, include in the fixed effects model the factors Size, Color and their 

interaction (Figure 2). Some of the fonts in this window have been increased in size to 

improve their visualization (this is done by moving the mouse roller while pressing the 

Ctrl key).  

If we accept this specification, this will generate an output in the InfoStat results 

window, shown below Figure 2. This is the simplest output because neither additional 

model characteristics nor other analysis options have been specified. The first part 

http://dl.dropbox.com/u/65302225/Data/Atriplex.idb2
http://dl.dropbox.com/u/65302225/Data/Atriplex.idb2
http://dl.dropbox.com/u/65302225/Data/Atriplex.idb2
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contains the specification of the way the estimation model was invoked in the R syntax, 

and it indicates the name of the R object containing the model and its estimation, in this 

case, model000_Germination_REML. This specification is of interest only to those users 

who are familiar with R commands.  

The second part shows measures of fit that are useful in comparing different models 

fitted to a data set. AIC refers to the Akaike’s criterion, BIC to Schwarz’ Bayesian 

information criterion, logLik to the logarithm of the likelihood, and Sigma to the 

residual standard deviation. The third part of this output presents an analysis of variance 

table and shows sequential-type hypothesis testing.  

 

 

Figure 2: Window displaying the Fixed effects tab (Atriplex.IDB2 file). 

 

Extended and mixed linear models 

 

R specification of the model 

 

model000_Germination_REML<-gls(Germination~1+Size+Color+Size:Color 

,method="REML" 

,na.action=na.omit 

,data=R.data00) 
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Results for model: model000_Germination_REML 

 

Dependent variable:Germination 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 

27 160.36 169.26 -70.18  9.07 0.92 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1 1409.95 <0.0001 

Size            2   10.49  0.0010 

Color           2   90.53 <0.0001 

Size:Color      4    2.29  0.0994 

 

 

Specification of random effects  

Random effects are associated with groups of observations. Typical examples are 

repeated measurements on the same individual or the observed responses for a group of 

homogeneous experimental units (blocks) or for the individuals in the same family 

group, etc. These random effects are “added” to the fixed effects in a selective manner. 

Because of this, in the specification of random effects it is necessary to have one or 

more grouping or stratification criteria, and to choose the fixed effects to which the 

associated random effects should be added. In the R lme procedure on which this 

implementation is based, when more than one grouping criterion is acceptable, these are 

nested or hierarchical. However, it is possible to use crossed random effects. In the 

Extended and mixed linear models submenu, Random effects tab, the symbol > is used 

to denote a nested factor (A>B indicates that B is nested within A);  the symbol + is 

used to denote crossed factors (A+B indicates that A and B are crossed factors); the 

symbol * is used to denote interactions (A*B indicates the interaction between A and 

B). These symbols can be written directly in the window, or, by clicking the mouse 

right button on two or more previously selected factors, a window with these options 

appears.  

In the second tab of the model specification dialogue, we can choose the stratification or 

grouping criteria and the way these incorporate random effects to fixed components. To 

exemplify the specification of the random effects, let us consider the Block.IDB2 data 

file. This file contains three columns: Block, Treatment and Yield. In this example, we 

http://dl.dropbox.com/u/65302225/Data/Block.idb2
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will indicate that the blocks were selected in a random manner or that they produce a 

random effect (for example, if the blocks are a set of plots, their effect  could be 

considered random, because their response will depend on environmental conditions 

that are not predictable, among other things), whereas the treatments add fixed effects. 

To specify this model, the first two columns of the data file Block.IDB2 (Block and 

Treatment) should be introduced as classification criteria and the last one (Yield) as a 

dependent variable. The Treatment factor should be included in the Fixed effects tab as 

the only component of that part of the model. To include the random effect of the 

blocks, the Random effects tab should be selected. When this tab is selected, the 

Stratification criteria list is empty. Double clicking on Block in the variables list adds 

this classification factor as a grouping criterion. The inclusion of a stratification 

criterion activates a device in the inferior panel that allows the user to specify the way in 

which the random effect enters the model. In this device, there is a list of components 

for the fixed part of the model. The first component refers to the Constant and the other 

components refer to the remaining terms, in this case Treatment (Figure 3). 

 

Figure 3: Window displaying the Random effects tab (Block.IDB2 file). 
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The previously specified stratification criteria appear in the list of fixed terms. The 

combination of both lists defines the random effects. For this, every stratification 

criterion within each fixed effect is associated with a check box. When the check box is 

checked, this indicates that there is a group of random effects associated with a 

corresponding fixed effect.  The number of random effects is equal to the number of 

levels of the fixed term of the model, or equal to 1 in the case of the constant or the 

covariates. The illustrated example includes a random effect induced by the blocks on 

the constant.  

This specification represents the following model:  

 ; 1,.., ; 1,...,ij i j ijy b i T j B          (1) 

where 
ijy  is the response to the i-th treatment in the j-th block;   is the general mean 

of yield; i  is the fixed effects of the treatments; 
jb  is the middle level change of 

ijy  

associated with the j-th block; and 
ij  is the error term associated with observation 

ijy . 

T and B are the number of levels of the classification factor that correspond to the 

Treatment fixed effect and to the number of blocks, respectively. The nature of these 

effects is different from the fixed effects: the 
jb ’s are considered identically distributed 

 20, bN   random variables whose realizations are interpreted as the effects of the 

different groups or strata (blocks in this example). In these models, the 
jb ’s are not 

estimated; instead, the 2

b  parameter that characterizes its distribution is estimated. The 

ij ’s are also interpreted as identically distributed  20,N   random variables, and they 

describe the random error associated with each observation. Moreover, the random 

variables 
jb  and 

ij  are assumed to be independent.  

The output for this example is shown below. The new part of this output, with respect to 

the example for the fixed effects linear model, is a section of parameters for the random 

effects. 

Extended and mixed linear models 
 

R specification of the model 
 

model001_Yield_REML<-lme(Yield~1+Treatment 

.random=list(Block=pdIdent(~1)) 

.method="REML" 

.na.action=na.omit 

.data=R.data01 

.keep.data=FALSE) 
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Results for model: model001_Yield_REML 

 

Dependent variable:Yield 

 

 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma  R2_0 R2_1 

20 218.77 223.73 -102.39 160.65 0.89 0.93 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1    12 2240.00 <0.0001 

Treatment       4    12   41.57 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

        (const) 

(const)    0.57 

 

In this case the estimation of 
b (the standard deviation of the 

jb ’s relative to the 

residual) is 0.57. At the beginning of the output, the estimation of 
 , the standard 

deviation of the 
ij ’s,  is presented as 160.65. Thus, the variance of the blocks can be 

calculated as: 2 2(0.57 160.65) 8385.15b     

Comparison of treatment means 

Continuing with the Comparisons tab (Figure 4), if one of the fixed terms of the model 

is checked in the panel list, a means and standard errors table is obtained, as well as a 

the Fisher’s LSD-type multiple comparison test (this is based on a Wald test) or a 

cluster-based DGC test (Di Rienzo et al. 2002). Various corrections options for multiple 

comparisons are also presented.  
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Figure 4: Window displaying the Comparisons tab (Block.IDB2 file). 

The output corresponding to the treatment means comparisons is shown below.  

Adjusted means and standard error for Treatment 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Treatment  Means  S.E.              

300       3237.75 92.47 A           

225       3093.50 92.47 A  B        

150       2973.00 92.47    B        

75        2498.50 92.47       C     

0         1972.75 92.47          D  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

 

The treatments mean comparison is shown in the classic form as a list arranged in a 

decreasing order.  

If the user wishes to control type I error for the family of all paired comparisons, he can 

opt for one of the four implemented criteria: Bonferroni (Hsu 1996), Sidak (Hsu 1996), 

Benjamini-Hochberg (Benjamini & Hochberg 1995) o Benjamini-Yekutieli (Benjamini 
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& Yekutieli 2001). If the Bonferroni option is selected for this same data set, the 

following result is obtained: 

Adjusted means and standard error for Treatment 

LSD Fisher (alpha=0.05) 

p-value correction procedure: Bonferroni 

 

Treatment  Means  S.E.        

300       3237.75 92.47 A     

225       3093.50 92.47 A  B  

150       2973.00 92.47 A  B  

75        2498.50 92.47    B  

0         1972.75 92.47    B  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

If there is more than random effect, InfoStat allows the specification of complex 

structures: hierarchical and/or crossed, with and without interaction.  Suppose that there 

is one fixed factor (A) and three random factors (B, C, y D). In order to specify nested 

random terms (the default option), the factors are listed in hierarchical order in the 

Random effects tab (Figure 5) 

 

Figure 5: Window with the Random effects tab for a hypothetical example with four classification 

factors: A, B, C, and D (A is fixed; B, C, and D are random). In this case B, C, and D are included as 

nested random effects.   

This formulation is equivalent to the following one (Figure 6) 
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Figure 6: Window with the Random effects tab for a hypothetical example with four classification 

factors: A, B, C, and D (A is fixed; B, C, and D are random). In this case B, C, and D are included as 

nested random effects (explicit form). 

The specification of crossed effects with no interaction is done by selecting all factors to 

be declared as crossed in the Variables tab, and then clicking the right mouse to add the 

crossed effects in the Stratification criteria window (Figure 7). 

 

Figure 7: Window with the Random effects tab for a hypothetical example with four classification 

factors: A, B, C, and D (A is fixed;  B, C, and D are random.) In this case D and C are included as 

crossed random effects.  

The specification of crossed effects with no interaction is done by adding the desired 

interaction term(s) to the previous specification (Figure 8) 
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Figure 8: Window with the Random effects tab for a hypothetical example with four classification 

factors: A, B, C, and D (A is fixed; B, C, and D are random.) In this case D and C are included as 

crossed random effects with interaction. 

In order to combine nested and crossed random effects, different lines can be used in the 

Stratification criteria window. For example, to specify a model with C and D crossed 

with interaction, and B nested in the C main effect we can write this as in Figure 9. 

 

Figure 9: Window with the Random effects tab for a hypothetical example with four classification 

factors: A, B, C, and D (A is fixed; B, C, and D are random.) In this case D and C are included as 

crossed random effects with interaction, and B is nested in C. 

 

In order to specify B and C effects nested within A (remember that A is fixed), we can 

write in the Stratification criteria window as shown in Figure 10. 

 

Figure 10: Window with the Random effects tab for a hypothetical example with four classification 

factors: A, B, C, and D (A is fixed; B, C, and D are random.) In this case B and C are included as 

crossed random effects, both nested within the fixed factor A.  
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In order to specify the B random effect, and the C and D crossed random effects (both 

nested within B) we can write in the Stratification criteria window as shown in Figure 

11. 

 

Figure 11: Window with the Random effects tab for a hypothetical example with four classification 

factors: A, B, C, and D (A is fixed; B, C, and D are random.) In this case C are D are included as 

crossed random effects, both nested within the random effect B.  

 

In all cases including non-nested random effects, the only covariance structure available 

is the independence among random effects and equal variances for realizations of the 

same effect. One can also specify random coefficient (regression) models, but the 

sintaxis differs. See an example of random coefficient model in Applications in linear 

regression. 

Specification of the correlation and error variance structures  

The variance and covariance structures can be modeled separately. For this, InfoStat 

presents two tabs: in the Correlation tab two options are found to specify the error 

correlation structure, and the Heteroscedasticity tab allows the user to select different 

models for the variance function. The contents of these tabs are described below. 

Specification of the correlation structure  

To exemplify the use of this tool we will use an example cited in Pinheiro & Bates 

(2004). The example corresponds to the “Ovary” file, which contains the data from a 

study by Pierson & Ginther (1987) on the number of follicles bigger than 10 mm in 

mare ovaries. These numbers were recorded through time 3 days before ovulation and 

up to 3 days after the next ovulation. The data can be downloaded from the nlme library 

using the menu item Applications>> Open R-data set. When this option is activated the 
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following dialogue window opens, which can differ in the number of libraries that are 

installed in the user’s local R configuration (Figure 12).  

 

Figure 12: Dialogue window for importing data from R libraries. 

  

In this window the nlme library is checked, and to the right is the list of data files of this 

library. Double clicking on “Ovary, nlme” will open an InfoStat data table containing 

the corresponding data. The heading of the open table is shown below (Figure 13). 
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Figure 13: Heading of the data table (Ovary file). 

 

A graph of the relation between the number of follicles and time is shown below (Figure 

14). 

 

Figure 14. Relationship between the number of follicles and time. 

Pinheiro & Bates (2004) propose to fit a model where the number of follicles depends 

linearly on sine (2*pi*Time) and cosine (2*pi*Time). This model tries to reflect the 

cyclical variations of the number of follicles through the inclusion of trigonometric 

functions. They also propose the inclusion of a random effect, Mare, on the constant of 

the model and a first-order autocorrelation of the errors within each mare. A random 
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effect was included to model the lack of independence that results from subject-

dependent effects expressed as parallel profiles of the number of follicles through time. 

The proposed model would have the following general form: 

    0 1 2 02* * 2* *it i ity sin pi Time cos pi Time b         (2) 

where the random components are  2

0 ~ 0,i bob N   and  2~ 0,it N  , and are 

supposed to be independent.  

On the other hand, the inclusion of a first-order autocorrelation within each mare allows 

the modeling of an eventual serial correlation. To specify this model in InfoStat, we will 

indicate that follicles is the dependent variable, that Mare is the classification criterion, 

and that Time is a covariate.  

Specification of the fixed part 

The fixed part of the model will be indicated as shown in Figure 15. InfoStat verifies 

that the elements in this window correspond to the factors and covariates listed on the 

right-hand side of the window.  

If this is not the case, because lowercase and uppercase letters have not been used 

consistently (R is sensitive to typography), then InfoStat substitutes those terms for the 

appropriate ones. If there are words that InfoStat cannot interpret (such as sin, cos and 

pi, in this case), then the line is marked in red when the user press <Enter>. This does 

not necessarily mean that they are incorrect, but that they could be, and warns the user 

to verify them. 



Linear Mixed Models in InfoStat 

 
16 

 

Figure 15: Window displaying the Fixed effects tab (Ovary file). 

 

Specification of the random part  

The random part is added to the model by including the Mare factor to the stratification 

criteria list in the Random tab. In this way, the Mare random factor is automatically 

associated to the constant term of the model as shown in Figure 16.  This way of 

including the ramdom factor introduces a subject-specific effect on the overall level of 

the response (follicles). Thus, the predicted profiles at subject level (Mare) of the 

number of follicles along time are parallels. There are other terms in the model: 

sin(2*pi*Time) and cos(2*pi*Time)  that have not yet been associated with any random 

effects.  
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Figure 16: Window displaying the Random effects tab (Ovary file).  

 

Specification of the correlation of errors 

 

The specification of the first-order autoregressive correlation of the errors within each 

mare is indicated in the Correlation1 tab, as illustrated in Figure 17. In R, there are two 

groups of correlation functions. The first corresponds to serial correlation functions, 

where data are assumed to be acquired in a sequence, and the second group models 

spatial correlations and the data have to be spatially referenced. In the first group we 

find the following functions: compound symmetry, without structure, first-order 

autoregressive, first-order continuous autoregressive, and ARMA (p,q), where p 

indicates the number of autoregressive terms and q indicates the number of moving 

average terms. All of these models assume that data are ordered in a sequence. By 

default, InfoStat assumes the sequence in which the data are arranged in the file, but if 

                                                 

1 If the errors are assumed to be independent (not correlated), then the first option of the correlation 

structure list should be selected (selected by default).  
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there is a variable that indexes the order of the data in a different manner, this should be 

indicated in the Variable that indicates the order of observations box (to activate this 

box, one of the correlation structures should be selected). This variable must be an 

integer for the autoregressive option. Because of this, in the sentence translated to R 

language, InfoStat adds an indication so that the variable is interpreted as an integer. In 

the illustrated example, the variable Time is a real number that encodes relative time to a 

reference point, and it is in an inappropriate scale to be used as an ordering criterion. 

However, because the data are arranged by time within each Mare, this specification 

can be omitted (Figure 17). 

 

 

Figure 17: Window displaying the Correlation tab (Ovary file). 

If the data are not organized in ascending order within the grouping criterion (Mare), a 

variable that indicates the order must be added. To add an ordering variable to the 

Variable that indicates the order of observations box, its name can be written, or 

dragged with the mouse, from the variables list. It is common for the correlation 

structure to be associated to a grouping criterion, Mare in this case. This is indicated in 

the panel labeled Grouping variables (to activate this text box one of the correlation 
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structures must to be selected). If more than one criterion is included, InfoStat 

constructs as many groups as there are combination levels in the specified classification 

factors. At the bottom of the window labeled Resulting expression, the R expression that 

is being specified for the component “corr=” of gls or lme is shown. This expression is 

only informative and cannot be edited.  

Below we present the complete output for the fitted model containing an analysis of 

variance table for the fixed effects, which in this case are sequential tests on the slopes 

associated with the covariates sin(2*pi*Time) and cos(2*pi*Time). Note that the 

standard deviation of the random component of the constant is 0.77 times the residual 

standard deviation and that the parameter phi of the autoregressive model is 0.61. 

Extended and mixed linear models 

 

R specification of the model 

 

model006_follicles_REML<-lme(follicles~1+sin(2*pi*Time)+cos(2*pi*Time) 

,random=list(Mare=pdIdent(~1)) 

,correlation=corAR1(form=~1|Mare) 

,method="REML" 

,na.action=na.omit 

,data=R.data06 

,keep.data=FALSE) 

 

Results for model: model006_follicles_REML 

 

Dependent variable:follicles 

 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

308 1562.45 1584.77 -775.22  3.67 0.21 0.56 
Smaller AIC and BIC is better 

 

 

Sequential hypothesis testing 

 

                   numDF denDF F-value p-value 

(Intercept)            1   295  163.29 <0.0001 

sin(2 * pi * Time)     1   295   34.39 <0.0001 

cos(2 * pi * Time)     1   295    2.94  0.0877 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Mare 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    0.77 
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Correlation structure 

 

Correlation model: AR(1) 

Formula: ~ 1 | Mare 

 

Model parameters 

 

Parameter Estim. 

Phi         0.61 

 

The predicted values by the fitted model versus time are shown in Figure 18. The black 

solid line represents the estimation of the population average and corresponds to the 

estimations based on the fixed part of the model. To obtain the estimates to draw this 

curve, the user must indicate in the Fixed effect tab that the Predicted values are 

requested. By default the Level of Predicted values is zero (indicated in the Levels edit-

box), which indicates that predictions are based only on the fixed part of the model.  

The dotted curves parallel to the population average curve (solid line) are the 

predictions for each mare profile derived from the inclusion of the random effect 

(subject-specific) on the constant. To obtain the predictions to draw these curves the 

user must indicate in the Fixed effect tab that the Predicted values of level 1 are also 

requested. To do this the user must type: 0;1 in the Levels edit-box.  

To check the adequacy of the model we identified the points corresponding to each 

mare in Figure 14 and draw a smooth curve for each one as shown in Figure 19. 

Comparing Figure 18 and Figure 19 it is clear that each mare has its own biological 

timing that is over-simplified by the model we have just fitted. How do we include in 

the model the subject-specific variability observed in Figure 19? The simplest way to 

include this subject-specific behavior is to add more random effects to model of 

equation (2). As result, we have the following model: 

 
   

   

0 1 2

0 1 2

sin 2* * sin 2* *

sin 2* * cos 2* *

it

i i i it

y pi Time pi Time

b b pi Time b pi Time

  



  

   
 (3) 

where the random components are  2

0 ~ 0,i bob N  ,  2

1 1~ 0,i bb N  ,  2

2 2~ 0,i bb N   and 

 2~ 0,it N 
 

and, as a first approximation they are supposed to be mutually 

independent.   
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Figure 18: Fitted functions for the population number of follicles (solid black line) and for each mare 

generated by the random effect on the constant (Ovary file).   

 

To fit model (3) we need to make some changes to the data set because of some 

restrictions in the use of formulas in the Random effects tab. Therefore, we calculated 

 sin sin 2* *T pi Time  and  cos cosT = 2* pi* Time  as new variables in the dataset. 

In the fixed part of the model, instead of specifying a list of covariables, we specify in a 

single line: sin cos1+ T + T , as shown in Figure 20. This way of specifying the fixed 

part of the model does not affct the fixed effects estimations but allows us to easily 

introduce the random effects: 0 1 2, ,i i ib b b . Then, in the Random effects tab, we especify 

the random effecs as shown in Figure 21. Note that the covariance structure assumed for 

these random has been specified as pdDiag, which means that the variances of each 

random component is different and that these components are not correlated. The results 

of fitting this model are shown in Figure 22.  
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Figure 19: Smooth functions (third order polynomial) for the number of follicles (solid black lines) for 

each mare generated by the random effect on the constant (Ovary file).   

 

 

Figure 20: Specification of the fixed part of model (3) 
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Figure 21: Specification of the random part of model (3). Different variances for each random effect. 

 

 

Figure 22: Predicted values for the number of follicles of each mare generated by the inclusion of 

random effects on all parameters of the fixed part of the model (pdDiag covariance structure) 

 (Ovary file). 

In Figure 22 we can see the effect of adjusting subject-specific curves for each mare, 

which permits more realistic representation of the mare individual profiles. 

Nevertheless, from a statistical point of view, it is not appropriate to assume 

independence among random effects on the parameters of a regression model. To 
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specify correlation among random effects, we specify the covariance structure as 

pdSymm. This is shown in Figure 23. The results of this fit are shown in Figure 24. 

 

Figure 23: Specification of the random part of model (3), with different variances of each random 

effect and random effects correlated . 

 
Figure 24: Predicted values for the number of follicles of each mare generated by the inclusion of 

random effects on all parameters of the fixed part of the model (pdSym covariance structure)  

(Ovary file). 
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Specification of the error variance structure 

This module allows the estimation of heteroscedastic models. However, 

heteroscedasticity does not have a single origin and hence it can be modeled in the same 

way that the correlation of errors can be modeled. The errors variance model can be 

specified in the following way: 
2 2var( ) ( , , )i i ig   z δ  where (.)g  is known as the 

variance function. This function can depend on the expected value ( )i of iY  (the 

response variable), a set of explanatory variables  iz , and a parameters vector  δ . 

Through R, InfoStat estimates the parameters  δ  according to the selected variance 

function. The Heteroscedasticity tab is shown in Figure 25. The following variance 

functions are permitted: (varIdent), exponential (varExp), power (varPower), power 

shifted by a constant (varConstPower), or fixed (varFixed). R allows that various 

models to be overlapped, in other words, that for certain part of the dataset the variance 

can be associated with one covariate, and for other part with another covariate. The 

simultaneous specification of various models for the variance function is obtained by 

simply marking and specifying each of the components and adding them to the variance 

functions list. InfoStat constructs the appropriate sentence for R.  

In the Heteroscedasticity tab for the follicles example, we have indicated that the errors 

variance is different for each mare, by selecting varIdent as the variance function model 

and writing Mare in Grouping variables. 
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Figure 25: Window displaying the Heteroscedasticity tab (Ovary file). 

 

Below is the output for the fitted model, including estimations of the standard deviation 

of the error for each mare. The standard deviations are also expressed relative to the 

residual standard deviation. Moreover, the first level of the specified grouping variable 

used to calculate these differential standard deviations always starts with 1, otherwise 

the model would not be identifiable. In the output you can see that, compared to the 

other females, female 5 has a larger variability in the number of follicles. 

The model considered in Equation (4) with heterogeneous residual variances would be:  

    0 1 2 02* * 2* *it i ity sin pi Time cos pi Time b         (5) 

 

where the random components are now  2

0 ~ 0,i bob N   and  2~ 0,it iN  . Note that 

the residual variance is indexed with the mare identifier.  

As usual, the random components of the model are assumed to be independent. Next, if 

we take a mare at random, the variance of the response will be the sum of the variances 

of the random part, in other words 
2 2

0var( )it b iy    , that is (3.57*0.8)2 + (3.57*gi)
2, 
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where gi is the variance function for a mare selected at random. Now then, conditional 

to a given mare (eg., 5), the individual effect ( 0ib ) is fixed, so the variance of mare 5 is 

only associated with the residual part, and furthermore the variance function is specified 

(in other words, we need to use g5) and the conditional variance would be (3.57*1.34)2.  

Extended and mixed linear models 

 

R specification of the model 

 

model012_follicles_REML<-lme(follicles~1+sin(2*pi*Time)+cos(2*pi*Time) 

,random=list(Mare=pdIdent(~1)) 

,weight=varComb(varIdent(form=~1|Mare)) 

,correlation=corAR1(form=~1|Mare) 

,method="REML" 

,na.action=na.omit 

,data=R.data12 

,keep.data=FALSE) 

 

Results for model: model012_follicles_REML 

 

Dependent variable:follicles 

 

 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

308 1569.02 1628.55 -768.51  3.57 0.21 0.56 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

                   numDF denDF F-value p-value 

(Intercept)            1   295  156.36 <0.0001 

sin(2 * pi * Time)     1   295   34.22 <0.0001 

cos(2 * pi * Time)     1   295    3.18  0.0756 

 

 

Random effects parameters 

Covariance model for random effects: pdIdent 

Formula: ~1|Mare 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    0.80 

 

 

Correlation structure 

 

Correlation model: AR(1) 

Formula: ~ 1 | Mare 

 

Model parameters 

 

Parameter Estim. 

Phi         0.61 
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Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Mare 

 

Variance-function parameters 

 

Parameter Estim. 

1   1.00 

2   1.01 

3   1.20 

4   0.82 

5   1.34 

6   1.05 

7   0.92 

8   1.06 

9   0.93 

10  0.99 

11  0.77 

 

 

  



Linear Mixed Models in InfoStat 

 
29 

Analysis of a fitted model 

When InfoStat fits an extended or mixed linear model with the Estimation menu, the 

Analysis-exploration of the estimated models menu is activated. In this dialogue, various 

tabs are shown, as seen in Figure 26. 

 

Figure 26: Model exploration window displaying the Diagnostic tab (Atriplex.IDB2 file). 

 

The example used in this case is from the Atriplex.IDB2 file, with which two fixed 

effects models where estimated: model000_PG_REML, which contains the effects Size, 

Color and their interaction, and model001_PG_REML, which only contains the main 

effects Size and Color.  

The Models tab only appears in the case that there is more than one estimated model and 

shows a list of the evaluated models in a check-list. The selected models are listed along 

with their respective summary statistics and a hypothesis test of model equality; the 

applicability of the latter should be interpreted with caution, since not all of the models 

are strictly comparable.  In any case, the AIC and BIC criteria are good indicators for 

the selection of a more parsimonious model.  

http://dl.dropbox.com/u/65302225/Data/Atriplex.idb2
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The purpose of the Linear combinations tab is to test linear combinations hypotheses. 

The null hypothesis is that the expected value of the linear combination is zero. This 

dialogue window lists the fixed parameters of the model that were selected from the list 

shown on the right-hand side of the screen (Important: the last one on the list is always 

selected by default). At the bottom of the screen, there is an edition field where the 

constants of the linear combination can be specified. As the coefficients are added, the 

corresponding parameters are colored to facilitate the specification of the constants, as 

shown in Figure 27. 

 

Figure 27: Model exploration window displaying the Linear combination tab (Atriplex.IDB2 file). 

 

Finally, the Diagnostic tab has three subtabs (Figure 26). The first, identified as 

“Residuals vs…” has devices to easy generate boxplot graphs for the standardized 

residuals vs. each of the fixed factors of the model, or scatter plots of the standardized 

residuals and the covariates of the model, and scatter plots of the standardized residuals 

vs. the fitted values. In the same way, it is possible to obtain the normal Q-Q plot. The 

second tab, identified as “ACF-SV”, allows the user to generate a graph of the 
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autocorrelation function (useful for the diagnosis of serial correlations), and the third 

one, identified as LevelPlot, allows the user to generate residuals vs. spatial correlations 

graphs to construct a map of the directions and intensity of the residuals. This tool is 

useful in spatial correlation diagnostics.  

To exemplify the use of the ACF-FV tab, let us consider the follicles example (Ovary 

file). In this example it is argued that the purpose of including the first-order 

autoregressive term was to correct a lack of independence generated by the 

discrepancies between the individual cycles of every mare with respect to the individual 

cycles that only differed from the average population by a constant. The serial 

autocorrelation graph of the residuals that corresponds to a model without the inclusion 

of the first-order autocorrelation shows a clear autoregressive pattern (Figure 28). On 

the other hand, the residual autocorrelation graph for the model that includes the 

autocorrelation through a first-order autoregressive term corrects the lack of 

independence (Figure 29).  

 

 

Figure 28: Residual autocorrelation function of the model shown in Equation, excluding serial 

autocorrelation.  
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Figure 29: Residual autocorrelation function of the model presented in Equation (2), including serial 

autocorrelation.  

 

The devices on the Diagnostic tab allow the researcher to quickly diagnose any eventual 

problem with the fit of the fixed part as well as for the random part of the model. The 

next section provides examples illustrating the use of these tools more extensively.  
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Examples of Applications of Extended 
and Mixed Linear Models  

 

 





 

Estimation of variance components  

In research areas such as animal or plant breeding, the estimation of the variance 

components it is of particular interest. These are used to obtain heritability, response to 

the selection, additive genetic variance, genetic differentiation coefficients, etc. The 

mixed linear models can be used to estimate the variance components using restricted 

maximum likelihood (REML) estimators.  

In many genetic studies, several populations are used which are represented by one or 

more individuals of different families. In this case we have two factors in the model: the 

populations and the families within each population. To exemplify the use of variance 

components, the data file VarCom.IDB2 (Navarro et al. 2005) is used. These data come 

from a trial with seven cedar populations (Cedrela odorata L.) with a total of 115 

families. Some families have repetitions available while others do not. Moreover, the 

number of families within each population is not the same. The registered variables are 

average seed length (length), stem diameter (diameter), stem length, and number of 

leaves in cedar seedlings. 

In addition to estimating the variance components, the researchers are also interested in 

comparing the population means. We can study various inference spaces, according to 

the design and the interests of the researchers. If the populations are a random sample of 

a large set of populations, then the inference will be aimed at this large set of 

populations. The effect of the studied populations is random, and the interest will be the 

estimation of the variance components due to the variance among populations and 

among the families within the populations. Another point of interest will be the BLUP 

predictors of the random effects (especially those of the population effects).  

If the inference is oriented only toward the studied populations, the population effect is 

fixed, and the main interest is to estimate and compare the population means. If the 

population mean is interpreted as an average throughout all possible families of that 

particular population (not only those studied), then the family effect is random. In this 

case, it would be of interest to estimate the variance component due to variance among 

families within the populations, and to predict the effects of the studied families 

(BLUP). 

http://dl.dropbox.com/u/65302225/Data/VarCom.IDB2
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A third inference space is when the interest resides only in the studied populations and 

families. In this case both effects are fixed. This kind of model has several limitations, 

both in its interpretation and in its implementation. Due to this, we do not study this 

model in this tutorial.   

For the analysis of the VarCom.IDB2 data file, the first two discussed cases will be 

fitted: 

Model 1: Random populations and random families 

Model 2: Fixed populations and random families  

First, we select the Statistics menu; then the Extended and mixed linear models 

submenu, and then Model estimation. When the selection is done, the variables selection 

window will show, where we specify Length, Diameter, Stem length and number of 

leaves as dependent variables, and Population and Family as classification variables 

(Figure 30).  

 
Figure 30: Variables selection window for extended and mixed linear models (VarCom.IDB2 file). 

 

Model 1: For the estimation of the variance components, the variables should be 

specified as in Figure 30. Afterwards, in the Random effects tab, indicate first 

Population and then Family, since R assumes that the different random components that 

http://dl.dropbox.com/u/65302225/Data/VarCom.IDB2
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are being sequentially added are nested in the previously declared factors. In the Show 

sub-window, the options shown in Figure 31 are checked and the default option for the 

Standard deviations relative to residual standard deviation is unchecked. 

 

Figure 31: Window displaying the Random effects tab for Model 1(VarCom.IDB2 file). 

In the Fixed effects tab no effect should appear, and the estimation method should be 

that of restricted maximum likelihood (REML), which is the default option. Note that 

the default option Standard deviations relative to residual standard deviation is 

deactivated, therefore the estimations shown will be the absolute standard deviations. 

The output obtained with these specifications only for the length variable is shown 

below. 
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Extended and mixed linear models 

 

R specification of the model 

model006_length_REML<-lme(length~1 

,random=list(Population=pdIdent(~1) 

,Family=pdIdent(~1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data06 

,keep.data=FALSE) 

 

Results for model: model006_length_REML 

 

Dependent variable:length 

 

Fit measurements 

 

N     AIC     BIC    logLik  Sigma R2_0 R2_1 R2_2 

214 2016.47 2029.91 -1004.23 21.53      0.51 0.76 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   108   22.68 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Population 

 

Standard deviations and correlations 

 

        (const) 

(const)   27.16 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Family in Population 

 

Standard deviations and correlations 

 

        (const) 

(const)   14.80 

 

Confidece intervals (95%) for the random effects parameters 

 

Formula: ~1|Population 

 

          LB(95%) Est.  UB(95%) 

sd(const)   15.09 27.16   48.89 

 

Formula: ~1|Family in Population 

 

          LB(95%) Est.  UB(95%) 

sd(const)   10.72 14.80   20.43 

 

Confidece interval (95%) for sigma 

      lower est.  upper 

sigma 18.77 21.53 24.70 
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From the standard deviation estimates and confidence intervals, the variance 

components and their confidence intervals are obtained (Table 1). 

Table 1. Estimated variance components (VarCom.IDB2 file) 

Component Estimated variance CI for the 

variance  

Relative 

variability with 

respect to the 

total (%) 

Population 2 227.16 737.66pob    2 2(15.09 ,48.88 )  52.0 

Family within 

population  

2 2

( ) 14.80 219.04fam pob    2 2(10.72 ,20.43 )  15.4 

Residual 2 221.53 463.54res    2 2(18.77 ,24.70 )  32.6 

 

According to the results shown in Table 1, it is interesting to note that the variability of 

the families within populations is lower than the residual variability, which implies that 

there is no differentiation among families within a population. Meanwhile, the higher 

variation is attributable to differences among populations.  

Now we will see the diagnostics for Model 1, with random effects for both family and 

population. To do so, we go to the Model exploration submenu and request the 

diagnostic graphs (Figure 32). The diagnostic analysis of this model shows that there is 

a strong lack of homogeneity of residual variances (Figure 33).  
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Figure 32: Model exploration window displaying the Diagnostic tab for Model 1 (VarCom.IDB2 file). 

 

 
Figure 33: Diagnostic graphs obtained for the variable Length, Model 1 (VarCom.IDB2 file). 

 

In Figure 33, the standardized Pearson residuals are approximations of the errors, and 

because of this, the heteroscedasticity observed should be modeled at this level.  
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To correct the lack of homogeneity at this level, fit Model 1 (Population and Family as 

random factors) with heterogeneous residual variances. . To incorporate the residual 

variances that are eventually different for each Population level, the population factor 

should be specified in the Heteroscedasticity tab, as shown Figure 34.  

 

Figure 34: Window displaying the Heteroscedasticity tab for the specification of heterogeneous 

variables for populations (VarCom.IDB2 file). 

 

Below is the output for Model 1 with heterogeneous residual variances for Population 

and the Random effects matrix option selected in the Random effects tab, in order to 

obtain the BLUP estimators.  

 

Extended and mixed linear models 

 

R specification of the model 

 

model002_length_REML<-lme(length~1 
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,random=list(Population=pdIdent(~1) 

,Family=pdIdent(~1)) 

,weight=varComb(varIdent(form=~1|Population)) 

,method="REML" 

,na.action=na.omit 

,data=R.data02 

,keep.data=FALSE) 

 

Results for model: model002_length_REML 

 

Dependent variable:length 

 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 R2_2 

214 1872.14 1905.75 -926.07  2.32      0.51 0.51 
Smaller AIC and BIC is better 

 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   108   21.59 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Population 

 

Standard deviations and correlations 

 

        (const) 

(const)   27.72 

 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Family in Population 

 

Standard deviations and correlations 

 

        (const) 

(const)    1.56 

 

Confidece intervals (95%) for the random effects parameters 

 

Formula: ~1|Population 

 

          LB(95%) Est.  UB(95%) 

sd(const)   15.61 27.72   49.24 

 

Formula: ~1|Family in Population 

 

          LB(95%) Est. UB(95%) 

sd(const)    0.47 1.56    5.14 

 

 

Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Population 

 

Variance-function parameters 
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 Parameter   Estim. 

Charagre       1.00 

Escarcega     13.09 

Esclavos      11.64 

La Paz        15.94 

Pacífico Sur   2.81 

Xpujil        13.38 

Yucatán       12.54 

 

 

Random effects coefficients (BLUP) (~1|Population) 

 

             const  

Charagre     -41.20 

Escarcega     15.42 

Esclavos      16.12 

La Paz        19.80 

Pacífico Sur -36.51 

Xpujil        23.29 

Yucatán        3.08 

 

 

Random effects coefficients (BLUP) (~1|Family in Population) 

 

                      const   

Charagre/Ch_71          -1.07 

Charagre/Ch_710          0.59 

Charagre/Ch_711          1.31 

Charagre/Ch_712          1.42 

Charagre/Ch_713         -0.95 

Charagre/Ch_714         -1.07 

Charagre/Ch_715         -0.70 

Charagre/Ch_72           0.70 

Charagre/Ch_73          -0.83 

Charagre/Ch_74          -0.35 

Charagre/Ch_75          -0.59 

Charagre/Ch_76          -0.08 

Charagre/Ch_77          -0.47 

Charagre/Ch_78           0.48 

Charagre/Ch_79           1.48 

Escarcega/Es_1126     7.2E-04 

Escarcega/Es_1127        0.18 

Escarcega/Es_1128        0.14 

Escarcega/Es_1129        0.07 

Escarcega/Es_1130     3.6E-04 

Escarcega/Es_1131       -0.06 

Escarcega/Es_1132        0.21 

Escarcega/Es_1133        0.01 

Escarcega/Es_1134       -0.11 

Escarcega/Es_1135       -0.09 

Escarcega/Es_1136       -0.08 

Escarcega/Es_1137       -0.17 

Escarcega/Es_1138        0.16 

Escarcega/Es_1139       -0.08 

Escarcega/Es_1142        0.08 

Escarcega/Es_1148       -0.20 

Esclavos/Ec_31          -0.08 

Esclavos/Ec_310          0.08 

Esclavos/Ec_311         -0.07 

Esclavos/Ec_312         -0.03 
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Esclavos/Ec_313         -0.22 

Esclavos/Ec_314          0.28 

Esclavos/Ec_315         -0.34 

Esclavos/Ec_316          0.15 

Esclavos/Ec_317          0.04 

Esclavos/Ec_318         -0.08 

Esclavos/Ec_319          0.04 

Esclavos/Ec_32          -0.07 

Esclavos/Ec_320          0.18 

Esclavos/Ec_33       -3.7E-03 

Esclavos/Ec_34          -0.11 

Esclavos/Ec_35           0.15 

Esclavos/Ec_36          -0.17 

Esclavos/Ec_37           0.18 

Esclavos/Ec_38           0.08 

Esclavos/Ec_39           0.05 

La Paz/LP_41            -0.13 

La Paz/LP_410            0.14 

La Paz/LP_411            0.11 

La Paz/LP_412            0.16 

La Paz/LP_413           -0.08 

La Paz/LP_414           -0.01 

La Paz/LP_415           -0.13 

La Paz/LP_42             0.01 

La Paz/LP_43            -0.01 

La Paz/LP_44            -0.01 

La Paz/LP_45             0.02 

La Paz/LP_46            -0.07 

La Paz/LP_48            -0.01 

La Paz/LP_49             0.07 

Pacífico Sur/PS_6204    -0.46 

Pacífico Sur/PS_6206    -0.58 

Pacífico Sur/PS_6207     0.52 

Pacífico Sur/PS_6208    -0.33 

Pacífico Sur/PS_6209    -0.15 

Pacífico Sur/PS_6210     0.31 

Pacífico Sur/PS_6211    -0.22 

Pacífico Sur/PS_6212    -0.43 

Pacífico Sur/PS_6213     0.03 

Pacífico Sur/PS_6214    -0.56 

Pacífico Sur/PS_6215    -0.07 

Pacífico Sur/PS_6216     1.80 

Pacífico Sur/PS_6217    -0.12 

Pacífico Sur/PS_6218     0.88 

Pacífico Sur/PS_6219    -0.35 

Pacífico Sur/PS_6220    -0.51 

Pacífico Sur/PS_6221    -0.12 

Pacífico Sur/PS_6222    -0.48 

Pacífico Sur/PS_660      0.72 

Xpujil/Xp_11            -0.12 

Xpujil/Xp_110            0.02 

Xpujil/Xp_112         3.8E-03 

Xpujil/Xp_113           -0.07 

Xpujil/Xp_114            0.02 

Xpujil/Xp_115           -0.12 

Xpujil/Xp_116            0.17 

Xpujil/Xp_117            0.11 

Xpujil/Xp_118            0.08 

Xpujil/Xp_119            0.18 

Xpujil/Xp_12            -0.01 

Xpujil/Xp_120            0.19 
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Xpujil/Xp_122           -0.21 

Xpujil/Xp_123           -0.27 

Xpujil/Xp_15             0.02 

Xpujil/Xp_16             0.03 

Xpujil/Xp_17             0.03 

Xpujil/Xp_18            -0.05 

Xpujil/Xp_19             0.07 

Yucatán/Yu_1111         -0.17 

Yucatán/Yu_1114         -0.19 

Yucatán/Yu_1115         -0.04 

Yucatán/Yu_1116          0.02 

Yucatán/Yu_1117          0.05 

Yucatán/Yu_1118          0.03 

Yucatán/Yu_1119          0.10 

Yucatán/Yu_1121         -0.06 

Yucatán/Yu_1122          0.20 

Yucatán/Yu_1123         -0.09 

Yucatán/Yu_1124         -0.05 

Yucatán/Yu_1125          0.20 

 

Confidence interval (95%) for sigma 

 

      lower est. upper 

sigma  1.59 2.32  3.38 

 

 

This model shows lower AIC and BIC values than the model without heterogeneous 

variances for Population and Family within Population. Note that the population 

variances are very different: the La Paz population has the highest estimated variance, 

(15.94*2.32)2 = 1367.57, while the population with the lowest variance has a variance 

of (1*2.32)2 = 5.38. When we compare the models with heterogeneous and 

homogeneous variances by means of a likelihood ratio test, we confirm that the model 

with heterogeneous variances is best (p<0.0001), as shown in the following output.  

Comparison of models 

 

                    Call Model df   AIC   BIC     logLik     Test   L.Ratio   p-value 

Model000_Long_REML 1    1   4  2016.47 2029.91 -1004.23                        

Model001_Long_REML 2    2  10  1872.14 1905.75  -926.07    1 vs 2  156.33  <0.0001 

 

 

The residuals obtained for Model 1 with different residual variances in each population 

do not show heteroscedasticity problems, and they show an improvement in the 

distributional assumptions (Q-Q plot) with respect to Model 1 with homogeneous 

variances (Figure 35). 
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Figure 35: Diagnostic graphs obtained for the variable Length, Model 1 with heterogeneous residual 

variables for populations (VarCom.IDB2 file). 

 

Model 2: For this model, Population should be declared in the Fixed effects tab. Note 

that Fixed effects coefficients has also been selected in this tab (Figure 36). In the 

Random effects tab, Family has been declared as random, the default option of Family 

as an effect on the Constant (intercept) has been deselected, and Family as affecting the 

parameters of the Population effect has been selected. The covariance matrix of random 

effects assigned to populations is assumed independent (pdIdent). The Random effects 

matrix (BLUP’s), Confidence intervals for random parameters and Confidence interval 

for sigma options (Figure 37) have also been selected. In the Comparisons tab the DGC 

option is selected for Population (Figure 38).  
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Figure 36: Window displaying the Fixed effects tab, Model 2 (VarCom.IDB2 file). 

 

Figure 37: Window displaying the Random effects tab, Model 2 (VarCom.IDB2 file). 
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Figure 38: Window displaying the Comparisons tab, Model 2 (VarCom.IDB2 file).. 

The output corresponding to these specifications is shown below: 

Extended and mixed linear models 

 

R specification of the model 

 

model001_length_REML<-lme(length~1+Population 

,random=list(Family=pdIdent(~Population-1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model001_length_REML 

 

Dependent variable:length 

 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

214 1967.65 1997.64 -974.82 21.54 0.51 0.75 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   108  601.79 <0.0001 

Population      6   108   27.23 <0.0001 
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Fixed effects   

                 Value Std.Error DF  t-value p-value 

(Intercept)             8.23      5.75 108    1.43  0.1551 

PopulationEscarcega    56.89      8.03 108    7.08 <0.0001 

PopulationEsclavos     57.72      7.46 108    7.74 <0.0001 

PopulationLa Paz       62.24      8.13 108    7.66 <0.0001 

PopulationPacífico Sur  4.65      7.53 108    0.62  0.5382 

PopulationXpujil       65.45      7.72 108    8.48 <0.0001 

PopulationYucatán      44.44      8.40 108    5.29 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~Population - 1|Family 

 

Standard deviations and correlations 

 

  Charagre Escarcega Esclavos La Paz Pacífico Sur XpujilYucatán 

Charagre   14.79  0.00  0.00  0.00  0.00  0.00  0.00 

Escarcega   0.00  14.79  0.00  0.00  0.00  0.00  0.00 

Esclavos   0.00  0.00  14.79  0.00  0.00  0.00  0.00 

La Paz   0.00  0.00  0.00  14.79  0.00  0.00  0.00 

Pacífico Sur  0.00  0.00  0.00  0.00  14.79  0.00  0.00 

Xpujil   0.00  0.00  0.00  0.00  0.00  14.79  0.00 

Yucatán   0.00  0.00  0.00  0.00  0.00  0.00  14.79 

 

Confidece intervals (95%) for the random effects parameters 

 

Formula: ~Population - 1|Family 

 

         LB(95%) Est.  UB(95%) 

sd( - 1)   10.71 14.79   20.42 

 

Random effects coefficients (BLUP) (~Population - 1|Family) 

            LI(95%) est.   LS(95%) 

sd( - 1) 10.71       14.79  20.42  

 

Random effects coefficients (BLUP) (~Population - 1|Family) 

 
        Charagre Escarcega Esclavos La Paz Pacífico Sur Xpujil Yucatán 

Ch_71      -1.08      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_710      0.62      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_711      1.34      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_712      1.47      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_713     -0.96      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_714     -1.08      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_715     -0.71      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_72       0.73      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_73      -0.84      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_74      -0.35      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_75      -0.60      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_76      -0.07      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_77      -0.48      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_78       0.50      0.00     0.00   0.00         0.00   0.00    0.00 

Ch_79       1.53      0.00     0.00   0.00         0.00   0.00    0.00 

Ec_31       0.00      0.00    -6.04   0.00         0.00   0.00    0.00 

Ec_310      0.00      0.00     5.36   0.00         0.00   0.00    0.00 

Ec_311      0.00      0.00    -5.56   0.00         0.00   0.00    0.00 

Ec_312      0.00      0.00    -2.65   0.00         0.00   0.00    0.00 

Ec_313      0.00      0.00   -16.00   0.00         0.00   0.00    0.00 

Ec_314      0.00      0.00    20.66   0.00         0.00   0.00    0.00 

Ec_315      0.00      0.00   -25.46   0.00         0.00   0.00    0.00 

Ec_316      0.00      0.00    10.95   0.00         0.00   0.00    0.00 

Ec_317      0.00      0.00     2.69   0.00         0.00   0.00    0.00 

Ec_318      0.00      0.00    -5.80   0.00         0.00   0.00    0.00 

Ec_319      0.00      0.00     2.94   0.00         0.00   0.00    0.00 

Ec_32       0.00      0.00    -5.56   0.00         0.00   0.00    0.00 

Ec_320      0.00      0.00    12.89   0.00         0.00   0.00    0.00 
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Ec_33       0.00      0.00    -0.46   0.00         0.00   0.00    0.00 

Ec_34       0.00      0.00    -7.99   0.00         0.00   0.00    0.00 

Ec_35       0.00      0.00    10.95   0.00         0.00   0.00    0.00 

Ec_36       0.00      0.00   -12.84   0.00         0.00   0.00    0.00 

Ec_37       0.00      0.00    12.89   0.00         0.00   0.00    0.00 

Ec_38       0.00      0.00     5.36   0.00         0.00   0.00    0.00 

Ec_39       0.00      0.00     3.67   0.00         0.00   0.00    0.00 

Es_1126     0.00     -0.06     0.00   0.00         0.00   0.00    0.00 

Es_1127     0.00     16.20     0.00   0.00         0.00   0.00    0.00 

Es_1128     0.00     16.63     0.00   0.00         0.00   0.00    0.00 

Es_1129     0.00      6.49     0.00   0.00         0.00   0.00    0.00 

Es_1130     0.00     -0.04     0.00   0.00         0.00   0.00    0.00 

Es_1131     0.00     -7.09     0.00   0.00         0.00   0.00    0.00 

Es_1132     0.00     19.12     0.00   0.00         0.00   0.00    0.00 

Es_1133     0.00      1.15     0.00   0.00         0.00   0.00    0.00 

Es_1134     0.00    -10.25     0.00   0.00         0.00   0.00    0.00 

Es_1135     0.00    -10.94     0.00   0.00         0.00   0.00    0.00 

Es_1136     0.00     -7.58     0.00   0.00         0.00   0.00    0.00 

Es_1137     0.00    -16.32     0.00   0.00         0.00   0.00    0.00 

Es_1138     0.00     14.26     0.00   0.00         0.00   0.00    0.00 

Es_1139     0.00    -10.30     0.00   0.00         0.00   0.00    0.00 

Es_1142     0.00      7.71     0.00   0.00         0.00   0.00    0.00 

Es_1148     0.00    -18.99     0.00   0.00         0.00   0.00    0.00 

LP_41       0.00      0.00     0.00 -18.43         0.00   0.00    0.00 

LP_410      0.00      0.00     0.00  18.95         0.00   0.00    0.00 

LP_411      0.00      0.00     0.00  14.82         0.00   0.00    0.00 

LP_412      0.00      0.00     0.00  20.89         0.00   0.00    0.00 

LP_413      0.00      0.00     0.00 -12.12         0.00   0.00    0.00 

LP_414      0.00      0.00     0.00  -2.41         0.00   0.00    0.00 

LP_415      0.00      0.00     0.00 -18.67         0.00   0.00    0.00 

LP_42       0.00      0.00     0.00   1.23         0.00   0.00    0.00 

LP_43       0.00      0.00     0.00  -1.93         0.00   0.00    0.00 

LP_44       0.00      0.00     0.00  -1.68         0.00   0.00    0.00 

LP_45       0.00      0.00     0.00   1.96         0.00   0.00    0.00 

LP_46       0.00      0.00     0.00  -9.69         0.00   0.00    0.00 

LP_48       0.00      0.00     0.00  -2.39         0.00   0.00    0.00 

LP_49       0.00      0.00     0.00   9.48         0.00   0.00    0.00 

PS_6204     0.00      0.00     0.00   0.00        -2.13   0.00    0.00 

PS_6206     0.00      0.00     0.00   0.00        -2.73   0.00    0.00 

PS_6207     0.00      0.00     0.00   0.00         2.48   0.00    0.00 

PS_6208     0.00      0.00     0.00   0.00        -1.52   0.00    0.00 

PS_6209     0.00      0.00     0.00   0.00        -0.67   0.00    0.00 

PS_6210     0.00      0.00     0.00   0.00         1.51   0.00    0.00 

PS_6211     0.00      0.00     0.00   0.00        -1.03   0.00    0.00 

PS_6212     0.00      0.00     0.00   0.00        -2.01   0.00    0.00 

PS_6213     0.00      0.00     0.00   0.00         0.18   0.00    0.00 

PS_6214     0.00      0.00     0.00   0.00        -2.61   0.00    0.00 

PS_6215     0.00      0.00     0.00   0.00        -0.31   0.00    0.00 

PS_6216     0.00      0.00     0.00   0.00         8.55   0.00    0.00 

PS_6217     0.00      0.00     0.00   0.00        -0.55   0.00    0.00 

PS_6218     0.00      0.00     0.00   0.00         4.18   0.00    0.00 

PS_6219     0.00      0.00     0.00   0.00        -1.64   0.00    0.00 

PS_6220     0.00      0.00     0.00   0.00        -2.37   0.00    0.00 

PS_6221     0.00      0.00     0.00   0.00        -0.55   0.00    0.00 

PS_6222     0.00      0.00     0.00   0.00        -2.25   0.00    0.00 

PS_660      0.00      0.00     0.00   0.00         3.46   0.00    0.00 

Xp_11       0.00      0.00     0.00   0.00         0.00 -14.96    0.00 

Xp_110      0.00      0.00     0.00   0.00         0.00   2.35    0.00 

Xp_112      0.00      0.00     0.00   0.00         0.00  -0.09    0.00 

Xp_113      0.00      0.00     0.00   0.00         0.00  -7.12    0.00 

Xp_114      0.00      0.00     0.00   0.00         0.00   1.61    0.00 

Xp_115      0.00      0.00     0.00   0.00         0.00 -12.46    0.00 

Xp_116      0.00      0.00     0.00   0.00         0.00  15.93    0.00 

Xp_117      0.00      0.00     0.00   0.00         0.00  10.11    0.00 

Xp_118      0.00      0.00     0.00   0.00         0.00   6.95    0.00 

Xp_119      0.00      0.00     0.00   0.00         0.00  16.91    0.00 

Xp_12       0.00      0.00     0.00   0.00         0.00  -2.14    0.00 

Xp_120      0.00      0.00     0.00   0.00         0.00  18.36    0.00 

Xp_122      0.00      0.00     0.00   0.00         0.00 -20.72    0.00 

Xp_123      0.00      0.00     0.00   0.00         0.00 -27.03    0.00 

Xp_15       0.00      0.00     0.00   0.00         0.00   1.86    0.00 

Xp_16       0.00      0.00     0.00   0.00         0.00   2.99    0.00 

Xp_17       0.00      0.00     0.00   0.00         0.00   3.95    0.00 

Xp_18       0.00      0.00     0.00   0.00         0.00  -4.94    0.00 

Xp_19       0.00      0.00     0.00   0.00         0.00   8.44    0.00 

Yu_1111     0.00      0.00     0.00   0.00         0.00   0.00  -14.89 



Linear Mixed Models in InfoStat 

 
51 

Yu_1114     0.00      0.00     0.00   0.00         0.00   0.00  -16.59 

 

Yu_1115     0.00      0.00     0.00   0.00         0.00   0.00   -3.24 

Yu_1116     0.00      0.00     0.00   0.00         0.00   0.00    1.86 

Yu_1117     0.00      0.00     0.00   0.00         0.00   0.00    4.53 

Yu_1118     0.00      0.00     0.00   0.00         0.00   0.00    2.83 

Yu_1119     0.00      0.00     0.00   0.00         0.00   0.00    8.66 

Yu_1121     0.00      0.00     0.00   0.00         0.00   0.00   -5.18 

Yu_1122     0.00      0.00     0.00   0.00         0.00   0.00   17.15 

Yu_1123     0.00      0.00     0.00   0.00         0.00   0.00   -7.85 

Yu_1124     0.00      0.00     0.00   0.00         0.00   0.00   -4.45 

Yu_1125     0.00      0.00     0.00   0.00         0.00   0.00   17.15 

 

Confidece interval (95%) for sigma 

 

      lower est.  upper 

sigma 18.77 21.54 24.71 

 

Adjusted means and standard error for Population 

DGC (alpha=0.05) 

 

 Population  Means S.E.       

Xpujil       73.68 5.16 A     

La Paz       70.47 5.74 A     

Esclavos     65.95 4.75 A     

Escarcega    65.12 5.61 A     

Yucatán      52.67 6.13 A     

Pacífico Sur 12.88 4.87    B  

Charagre      8.23 5.75    B  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

The following example is an estimation of the BLUP for some families of the 

population Charagre: 

,71 71( )

,72 72( )

,73 73( )

,74 74( )

ˆˆ ˆˆ 8.2296 0 ( 1.0823) 7.1473

ˆˆ ˆˆ 8.2296 0 0.7277 8.9573

ˆˆ ˆˆ 8.2296 0 ( 0.8396) 7.3900

ˆˆ ˆˆ 8.2296 0 ( 0.354

cha cha cha

cha cha cha

cha cha cha

cha cha cha

Y

Y

Y

Y

  

  

  

  

       

      

       

       2) 7.8754

 

The BLUP for family 42 of La Paz population is: 

,42 42( )
ˆˆ ˆˆ 8.2296 62.2374 1.2297 71.6967lpaz lpaz lpazY            

 

Now we will conduct the fitness analysis for Model 2. In the Model exploration 

submenu the diagnostic graphs are requested (Figure 39).  
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Figure 39: Model exploration window displaying the Diagnostic tab, Model 2 (VarCom.IDB2 file). 

 

The Pearson’s standardized conditional residuals vs. fitted values graph (Figure 40) 

shows heterogeneous residual variances for the Length variable.  
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Figure 40: Diagnostic graphs obtained for the variable Length, Model 2 (VarCom.IDB2 file). 

 

With respect to the distributional assumptions, it is important to emphasize that, when 

heteroscedasticity exists, the Q-Q plot should not be interpreted until this problem is 

solved. To incorporate heterogeneous variables of the Population effect, the Population 

factor should be specified in the Heterogeneity tab, as shown in Figure 34. 

This model has lower AIC and BIC values than does the model without heterogeneous 

variances for Population. Note that the variances of the populations are very different: 

The population La Paz has a highest estimated variance, (15.94*2.32)2 = 1367.57, while 

the lowest variance, for Charagre, is (1*2.32)2 = 5.38. 
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Extended and mixed linear models 

 

R specification of the model 

 

model001_length_REML<-lme(length~1+Population 

,random=list(Family=pdIdent(~Population-1)) 

,weight=varComb(varIdent(form=~1|Population)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model001_length_REML 

 

Dependent variable:length 

 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

214 1823.20 1873.20 -896.60  2.32 0.51 0.51 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   108  509.60 <0.0001 

Population      6   108   86.55 <0.0001 

 

Fixed effects 

 

                      Value Std.Error DF  t-value p-value 

(Intercept)            8.23      0.61 108   13.42 <0.0001 

PoblacionEscarcega    57.32      5.90 108    9.72 <0.0001 

PoblacionEsclavos     57.72      4.33 108   13.33 <0.0001 

PoblacionLa Paz       62.33      7.16 108    8.70 <0.0001 

PoblacionPacífico Sur  4.65      1.28 108    3.65  0.0004 

PoblacionXpujil       65.43      5.54 108   11.81 <0.0001 

PoblacionYucatán      44.44      6.00 108    7.41 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~Population - 1|Family 

 

Standard deviations relative to residual standard deviation and 

correlation 

 
             Charagre Escarcega Esclavos La Paz Pacífico Sur Xpujil Yucatán 

Charagre         1.56      0.00     0.00   0.00         0.00   0.00    0.00 

Escarcega        0.00      1.56     0.00   0.00         0.00   0.00    0.00 

Esclavos         0.00      0.00     1.56   0.00         0.00   0.00    0.00 

La Paz           0.00      0.00     0.00   1.56         0.00   0.00    0.00 

Pacífico Sur     0.00      0.00     0.00   0.00         1.56   0.00    0.00 

Xpujil           0.00      0.00     0.00   0.00         0.00   1.56    0.00 

Yucatán          0.00      0.00     0.00   0.00         0.00   0.00    1.56 

 

Confidece intervals (95%) for the random effects parameters 

 

Formula: ~Population - 1|Family 

 

         LB(95%) Est. UB(95%) 

sd( - 1)    0.45 1.56    5.38 
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Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Population 

 

Variance-function parameters 

 

 Parameter   Estim. 

Charagre       1.00 

Esclavos      11.64 

Escarcega     13.09 

La Paz        15.94 

Pacífico Sur   2.81 

Xpujil        13.38 

Yucatán       12.55 

 

 

To prove that this less parsimonious model is the one with the better fit, we conducted a 

likelihood ratio test, and the output is shown below.  

Comparison of models 

 
Model df   AIC     BIC   logLik   Test  L.Ratio p-value 

001  9 1967.65 1997.64 -974.82                        

002 15 1823.20 1873.20 -896.60 1 vs 2  156.44 <0.0001 

 

 

The model with heterogeneous variances for the different populations is better than the 

one with homogeneous variances (p<0.0001). Note that with the inclusion of the 

heterogeneous variances for the different populations, the fit has improved with respect 

to the previous fits ( 

Figure 41). In the box-plot of Pearson Studentized Conditional residuals and in the 

scatter plot of the Pearson Studentized Conditional residuals versus fitted values, lack of 

homogeneity of the variances is no longer a serious problem. The Q-Q plot shows an 

improvement in the distributional assumption.  
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Figure 41: Diagnostic graphs obtained for the variable Length once the different residual variances 

for each population were declared, Model 2 (VarCom.IDB2 file). 
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Crossed random effects with interaction 

There are many situations in which the interest lies in estimating variance components 

associated with two crossed factors and their interaction. Milliken and Johnson (1992, p. 

265) present an example of efficiency in three production lines (randomly chosen in a 

factory). Four operators were randomly chosen, and these operators worked in each of 

the production lines. Originally each operator was supposed to work on each production 

line five times, but for different reasons there are combinations which were repeated 

fewer times (there are between one and five efficiency data for each operator-production 

line combination).  

Since both the production line and the operator are random, and we are also interested in 

the additional variability generated by each specific combination, we are going to use a 

model with two random effects and their interaction: 

    

   

2 2

2 2

~ 0, , ~ 0,

~ 0, , ~ 0,

ijk i j ij ijk

i a j b

ij ab ijk e

Y a b ab e

a N b N

ab N e N



 

 

    

 (6) 

where all the random effects are mutually independent.   

In order to fit this model we will use the dataset Production.IDB2 (Milliken and 

Johnson, 1992). Efficiency is indicated in the Variables window, Production Line and 

Operator are selected in the Class variables window. Since there is no fixed effect 

(except the general mean), nothing is selected in the Fixed effects tab. In the Random 

effects tab we select Production Line and Operator, and the option Crossed random 

factors and interactions appears after clicking the right mouse with both variables 

selected. In order to simplify the interpretation of the output (remember that the main 

goal in this type of models is the estimation of variance components), we have 

unchecked the option Standard deviations relative to residual standard deviation Figure 

42.  

http://dl.dropbox.com/u/65302225/Data/Production.IDB2
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Figure 42: Window displaying the Random effects tab with Line and Operator effects crossed and their 

interaction, file Production.IDB2. 

 

Extended and mixed linear models 

 

R specification of the model 

 

model.000_Efficiency_REML<-lme(Efficiency~1 

,random=list(.U.=pdBlocked(list(pdIdent(~Production.line-1) 

,pdIdent(~Operator-1) 

,pdIdent(~Production.line:Operator-1)))) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model.000_Efficiency_REML 

 

Dependent variable: Efficiency 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

47 249.64 258.78 -119.82  1.99      0.95 
Smaller AIC and BIC is better 
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Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1    46  478.29 <0.0001 

 

 

Fixed effects 

 

            Value Std.Error DF t-value p-value 

(Intercept) 83.38      3.81 46   21.87 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdBlocked 

Formula: ~Production.line + Operator + Production.line:Operator - 1 

 

Standard deviations and correlations 

 

                             S.D. 

Production.line1             5.67 

Production.line2             5.67 

Production.line3             5.67 

Operator1                    1.74 

Operator2                    1.74 

Operator3                    1.74 

Operator4                    1.74 

Production.line1:Operator1.. 5.96 

Production.line2:Operator1.. 5.96 

Production.line3:Operator1.. 5.96 

Production.line1:Operator2.. 5.96 

Production.line2:Operator2.. 5.96 

Production.line3:Operator2.. 5.96 

Production.line1:Operator3.. 5.96 

Production.line2:Operator3.. 5.96 

Production.line3:Operator3.. 5.96 

Production.line1:Operator4.. 5.96 

Production.line2:Operator4.. 5.96 

Production.line3:Operator4.. 5.96  

 

 

From this output we note that the standard deviation estimates for each random effect 

are:  

ˆ ˆ ˆ ˆ5.6672, 1.7353, 5.9618, 1.9947a b ab e        

This information can be used, for example, to estimate different types of intraclass 

correlations. For example, the correlation between two observations from the same 

production line and operator is: 
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 
 
 

2 2 2
'

' 2 2 2 2

2 2 2

2 2 2 2

cov , ˆ ˆ ˆ
corr ,

ˆ ˆ ˆ ˆvar

5.6672 1.7353 5.9618
0.9467
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a b ab eijk

Y Y
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Y

  

   

 
 

  

 
 

  

 

On the other hand, the correlation between two observations from the same operator but 

in different production lines is much smaller: 

 
 
 

' '

' '

2 2

2 2 2 2 2 2 2 2

cov ,
corr ,

var

ˆ 1.7353
0.0403.

ˆ ˆ ˆ ˆ 5.6672 1.7353 5.9618 1.9947

ijk i jk

ijk i jk

ijk

b

a b ab e

Y Y
Y Y

Y



   



  
     
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Application of mixed models for hierarchical data  

Split plots  

Let us suppose a two-factor experiment is performed, in which it is not possible to 

randomly assign the combinations of both factors to the experimental plots (EP). In 

some cases, groups of EP randomly receive the different levels of one of the 

classification factors, and within these plot groups, the levels of the second factors are 

randomly assigned.  

The experiment previously described differs from a conventional two-factor experiment 

in that, although the levels of the factors are randomly assigned to the EP, the treatments 

(i.e., the combinations of the factors levels) are not the assigned in this way. 

This particular way of assigning the different levels of the factors to the plots represents 

a restriction to the randomization, and it induces correlation structures that should be 

taken into account in the analysis. This is known as the split plot design. 

The name emerges from the idea that the main PLOTS receive the levels of a factor 

(sometimes also called main factor) and that these plots are SPLIT into SUBPLOTS, 

which receive the levels of the second classification factor.   

Although in the split plots the factors of a level are assigned within the levels of another 

factor, this is NOT a nested design. It consists of a typical factorial experiment in which 

the factors are crossed. It is only the randomization that has been done in a sequential 

way. 

Depending on the arrangement of the main plots, the design can be of:  

• Split plots arranged in a randomized complete block design (RCBD). 

• Split plots in a completely randomized design 

• Split plots arranged in other designs  

 

Split plots arranged in a RCBD  

The classical analysis of a split plots design with the main plots arranged in complete 

blocks includes the following terms in the model: 
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Factor associated with the main plot (MPF) 

Block 

Block*MPF (main plot error) 

Factor associated with the subplot (SPF) 

MPF*SPF 

Error (error for the subplot) 

 

The key point to perform the analysis of this model is to understand that the 

experimental error for MPF is different from the terms of the model that include the 

SPF. The experimental error of the main plots is generally larger than that of the 

subplots.   

The experimental error variance of the main plots in a split-plot design with main plots 

arranged in a randomized  complete block design, is estimated as the mean square (MS) 

of the interaction Block*MPF (assuming that there is no interaction Block*MPF, and 

consequently this MS estimates the error between main plots treated in the same way). 

The MS of this “interaction” is used as a reference point to calculate the F statistic of 

the hypothesis test for the main factor. For the rest of the tests, the residual MS is used 

to construct the F statistic. 

The analysis of this design by means of a linear mixed model is based on the 

identification of two grouping levels for the response variable. The first level is given 

by the blocks, and the second level is given by the main plots within the blocks. Each 

one of these grouping levels generates a correlation, known as intra-class correlation, 

among the observations it contains.   

The mixed linear model for this design is the following:  

 ; 1,.., ; 1,..., ; 1,...,ijk i j ij k ik ijky b p i T j G k B               (7) 

where ijky represents the response variable in the k-th block, in the i-th level of the 

principal factor, and in the j-th level of the factor associated with the sub-plots;   

represents the general mean of the response; i  represents the effect of the i-th level of 

the factor associated with the main plot; j  represents the effect of the  j-th level of the 
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factor associated with the subplots; and ij  represents the effect of the interaction of the 

ij-th treatment. On the other hand kb , ikp  and ijk correspond to the random effects of 

the blocks, the plots within the blocks and the experimental errors, respectively. The 

assumptions for these random components are as follows:  2~ 0,k bb N  , 

 2~ 0,ik pp N  ,  2~ 0,ijk N   , and that these three random components are 

independent. Below we exemplify the analysis of a split plot design with blocks through 

the use of a mixed linear model.  

In this example (Di Rienzo 2007), four varieties of wheat are evaluated: BUCK-Charrua 

(BC), Las Rosas-INTA (LI), Pigué (Pe), and Pro-INTA Puntal (PP), irrigated and rain-

fed with the field design shown in Figure 43. 

Block 1 BC Pe PP LI 
 

LI BC Pe PP 

          

Block 2 PP BC Pe LI 
 

PP Pe LI BC 

          

Block 3 Pe LI BC PP 
 

BC PP Pe LI 

 

Figure 43: Scheme of the split plots design for the example (Wheat.IDB2 file, light gray =irrigation, 

dark gray=rainfed). 

 

The data in this example can be found in the Wheat.IDB2 file. The following is the 

heading for the data table (Figure 44). 

 

Figure 44: Heading of the data table (Wheat.IDB2 file). 

http://dl.dropbox.com/u/65302225/Data/Wheat.IDB2
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The factor in the main plot is Water, the factor associated with the subplots is Variety, 

and the response variable is Yield. The blocks are clearly identified, but the main plots 

are not shown explicitly. This is so because in a split-plot design, the main plots within 

a block are confounded with the main factor. Thus, the observations under Irrigation in 

block 1 represent the observations of one of the main plots of this block.  

To analyze this example we request the estimation of a mixed linear model. This 

generates the variables selection window. Figure 45 shows the appropriate selection of 

response variables and factors 

 

 

Figure 45: Variables selection window for Extended and mixed linear models (Wheat.IDB2 file). 

 

Upon accepting this specification, the dialogue to specify the model appears. The tab for 

the fixed part, which has already been specified, is shown in Figure 46. Here the main 

effects Water, Variety and the interaction Water*Variety appear. 
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Figure 46: Window displaying the Fixed effects tab (Wheat.IDB2 file). 

 

For the specification of the random part, first the random factor Block and then the 

factor Water are incorporated into the Random effects tab. This is how to indicate that 

Water is within Block. The specification of the random part should be as shown in 

Figure 47. 
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Figure 47: Window displaying the Random effects tab, with Block and Water as stratification criteria 

(Wheat.IDB2 file).  

 

The following output corresponds to this estimation:  

Extended and mixed linear models 

 

R specification of the model 

 

model000_Performance_REML<-

lme(Performance~1+Water+Variety+Water:Variety 

,random=list(Block=pdIdent(~1) 

,Water=pdIdent(~1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model000_Performance_REML 

 

Dependent variable:Performance 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 R2_1 R2_2 

24 206.59 215.09 -92.30 51.65 0.84 0.89 0.91 
Smaller AIC and BIC is better 
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Sequential hypothesis testing 

 

              numDF denDF F-value p-value 

(Intercept)       1    12  363.93 <0.0001 

Water             1     2   55.24  0.0176 

Variety           3    12    6.38  0.0078 

Water:Variety     3    12    2.36  0.1223 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    0.55 

 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Water in Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    0.47 

 

 

In this problem, sequential hypothesis tests are equivalent to marginal tests because the 

data are balanced.  

Before continuing with our analysis, we will validate some of the assumptions of the 

models by reviewing standardized residuals vs. predicted values and other classification 

criteria as well as the normal Q-Q plot for standardized residuals. These residuals are 

conditional on the random effects (in other words, they approximate the errors). To do 

so, we will select the Model exploration submenu. In the dialogue window, we will 

select the Diagnostic tab, and then select the Residuals vs. subtab (Figure 48).  
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Figure 48: Model exploration window for the comparison of extended and mixed models displaying the 

Diagnostic tab (Wheat.IDB2 file). 

 

If the items are selected from the available list, as shown in Figure 48, the graph shown 

below will be obtained (Figure 49). This is shown in a new window that R generates, 

and its content can be copied by right clicking on the image. In the displayed menu, the 

options “Copy as metafile” or “Copy as bitmap” are available.  
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Figure 49: Diagnostic graphs (Wheat.IDB2 file). 

 

A quick overview of the figure suggests that there may be heterogeneity of variances 

among varieties. In order to test if the inclusion of the different residual variance 

estimations for each variety is necessary, a heteroscedastic model should be fit and 

compared to a homoscedastic model, using some criterion such as AIC or BIC (or a 

likelihood ratio test, since the homoscedastic model is a particular case of the 

heteroscedastic one).   

To fit the heteroscedastic model we again select the estimation module for the mixed 

models, and in the Heteroscedasticity tab we select the varIdent model; once selected, 

we double click on Variety (in the list on the right-hand side of the window) to specify 

this variable as the grouping variable (Figure 50). Then we activate the Add button to 
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make the incorporation of this model specification effective. If for some reason the 

specification is not wanted, the user can erase it by double clicking on it. 

 

Figure 50: Window displaying the Heteroscedasticity tab, with the varIdent function with Variety 

selected as a grouping variable (Wheat.IDB2 file). 

 

The fitted measures for the specified model are as follows  

Measures of model fit 

 

N   AIC    BIC   logLik Sigma R2_0 R2_1 R2_2 

24 209.47 220.28 -90.73 24.49 0.84 0.89 0.90 
AIC and BIC smaller means better 

 

 

Compared to the fitted measures for the homoscedastic model an improvement is not 

observed; on the other hand, both AIC and BIC increased. Therefore, the 

heteroscedastic model is rejected.  
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Returning to the homoscedastic model, we will make multiple comparisons of Fisher’s 

LSD in order to evaluate the differences between the varieties. To do so, in the 

Comparisons tab, in the Means subtab, we check the Variety option, as shown in Figure 

51. 

 

Figure 51: Window displaying the Comparisons tab, and the selection of the Means subtab 

(Wheat.IDB2 file). 

At the end of the output there is a means comparison. Note that only BUCK-Charrua 

had the lowest yields, and this occurred independently of whether it had irrigation. 

Meanwhile, other varieties had statistically indistinguishable yields.  

Adjusted means and standard error for Variety 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

    Variety     Means  S.E.        

Pro-INTA Puntal 469.50 46.28 A     

Pigue           430.98 28.77 A     

LasRosas-INTA   423.98 33.74 A     

BUCK-Charrua    342.73 29.38    B  
Means with a common letter are not significantly different (p<= 0.05) 
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Split plots in a completely randomized design  

The following example comes from an experiment whose objective was to evaluate the 

effect of an adjuvant on the drops coverage and on the 

uniformity of application on different locations of the 

leaves in the canopy of a soy crop (Di Rienzo 2007). 

Sixteen sites where selected, in each of which 4 hydro-

sensitive cards where located at two heights of the 

canopy (upper and lower), with their sensitive face 

pointing in one of two directions (abaxial and axial).  

The hydro-sensitive cards show a spot on the location 

where a drop of water falls. The stained surface of 

these cards is a measure of how much water penetrates 

and disperses in a given zone of the canopy. In 8 of the 

16 sites, an adjuvant was added to the pulverized water 

(to diminish the surface water tension and improve the dispersion of the drops), and in 

the remaining 8 no adjuvant was added. Thus, at each pulverization site 4 records are 

obtained that correspond to the combination of heights (upper and lower) and the 

direction of the sensitive face of the cards (abaxial and axial). Then at each site there is 

a complete repetition of an experiment with 4 treatments (upper-abaxial, lower-abaxial, 

upper-axial and lower-axial), combined with the presence or absence of the adjuvant in 

the sprayed solution.   

The resulting experiment is tri-factorial, with a main factor (adjuvant) associated with 

the main plots (sites where the spraying is done), and two factors (height and direction 

of the sensitive side of the card) associated with the subplots (cards within the site). The 

file containing the data is called Coverage drops.IDB2 and the heading of the data table 

is shown in Figure 52. 

http://dl.dropbox.com/u/65302225/Data/Coverage%20drops.IDB2
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Figure 52: Heading of the data table (Coverage drops.IDB2 file). 

 

In the data table there is a column that identifies the plot; it is numbered from 1 to 16. 

This is going to be the only random effect in our model (besides the error term, which is 

always present).  

The linear model for the observations of this experiment is as follows:  

 
;

1,.., 2; 1,..., 2; 1,..., 2; 1,...,16

ijkl i j k ij ik jk ijk l ijkly p

i j k l

                 

   
 (8) 

 where 
ijkly represents the response variable (Coverage) in the i-th level of the Adjuvant 

factor, in the j-th level of the Height factor, in the k-th level of the Face factor, and in 

the l-th Plot;   represents the general mean of the response; i  represents the effect of 

the i-th level of the factor associated with the main plots (Adyuvant); 
j  represents the 

effect of the j-th level of the Height factor; and k  represents the k-th level of the Face 

factor, both of which are associated with the subplots; and 
ij , ik ,

jk  y 
ijk  are the 

interactions of the second and third order corresponding to the Adjuvant, Height and 

Face factors. Furthermore, lb  and ijkl  represent the random effect of the plots and 

experimental errors, respectively. The assumptions about these random components are 

that  2~ 0,l bb N  , that  2~ 0,ijkl N   , and that these two random components are 

independent. Next we show how the previous model is specified in InfoStat, the output, 

an interpretation and some complementary actions for the validation of the model. For 

this, we select the Extended and mixed linear models >>Model estimation menu. The 

variable selection dialogue for this case is shown in Figure 53. 
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Figure 53: Variables selection window for Extended and mixed linear models (Coverage drops.IDB2 

file). 

The specification of the fixed part of the model in this example contains the three 

factors and the double and triple interactions (Figure 54). 

 

Figure 54: Window displaying the Fixed effects tab (Coverage drops.IDB2 file). 
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The random effect considered in this example is Plot (Figure 55). 

 

Figure 55: Window displaying the Random effects tab, with Plot as the stratification criterion 

(Coverage drops.IDB2 file). 

After accepting the previous specifications, we obtain the following output:  

Extended and mixed linear models 

 

R specification of the model 

 

model000_Coverage_REML<-

lme(Coverage~1+Adjuvant+Height+Face+Adjuvant:Height+Adjuvant:Face+Heig

ht:Face+Adjuvant:Height:Face 

,random=list(Plot=pdIdent(~1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model000_Coverage_REML 

 

Dependent variable:Coverage 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

64 670.38 690.63 -325.19 65.17 0.76 0.82 
Smaller AIC and BIC is better 
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Sequential hypothesis testing 

 

                     numDF denDF F-value p-value 

(Intercept)              1    42  233.37 <0.0001 

Adjuvant                 1    14    1.89  0.1909 

Height                   1    42   72.86 <0.0001 

Face                     1    42   95.32 <0.0001 

Adjuvant:Height          1    42    1.58  0.2152 

Adjuvant:Face            1    42    0.01  0.9271 

Height:Face              1    42   34.77 <0.0001 

Adjuvant:Height:Face     1    42    0.21  0.6476 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Plot 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    0.40 

 

 

 

A revision of the standardized residuals of this model using the diagnostic tools in the 

Extended and mixed linear models >> Model exploration menu shows that 

heterogeneity of variances may exist when we compare the residuals for both faces 

(abaxial and axial) of the hydro-sensitive card (Figure 56). 
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Figure 56: Box plots for the Pearson standardized residuals for the levels of the factor Face. 

In order to take into account the heterogeneity of variances, we will again select the 

model estimation menu. All of the previous specifications have been kept, which is why 

we need only concentrate on the specification of the variance model. To do so, we use 

the Heteroscedasticity tab as shown in Figure 57.  
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Figure 57: Window displaying the Heteroscedasticity tab, with Face as a grouping variable (Coverage 

drops.IDB2 file). 

 

The resulting output is as follows: 

Extended and mixed linear models 

 

R specification of the model 

 

model002_Coverage_REML<-

lme(Coverage~1+Adjuvant+Height+Face+Adjuvant:Height+Adjuvant:Face+Heig

ht:Face+Adjuvant:Height:Face 

,random=list(Plot=pdIdent(~1)) 

,weight=varComb(varIdent(form=~1|Face)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

 

Results for model: model002_Coverage_REML 

 

Dependent variable:Coverage 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

64 636.54 658.82 -307.27 21.26 0.76 0.81 
Smaller AIC and BIC is better 
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Sequential hypothesis testing 

 

                     numDF denDF F-value p-value 

(Intercept)              1    42  176.66 <0.0001 

Adjuvant                 1    14    4.19  0.0599 

Height                   1    42   53.72 <0.0001 

Face                     1    42   98.43 <0.0001 

Adjuvant:Height          1    42   13.83  0.0006 

Adjuvant:Face            1    42    0.01  0.9259 

Height:Face              1    42   35.90 <0.0001 

Adjuvant:Height:Face     1    42    0.22  0.6423 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Plot 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    1.06 

 

 

Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Face 

 

Variance-function parameters 

 

Parameter Estim. 

Abaxial     1.00 

Axial       4.15 

 

 

 

The model for this data would be ijkl i jk l ijkly p    , where 
i jk  represents the fixed 

effect of the i-th Adjuvant, j-th Height and k-th Face (Axial or Abaxial), lb is the random 

effect of l-th experimental plot experimental that is assumed  20, pN  , and

 2~ 0,ijkl kN  . The variance of an observation taken from a randomly selected plot 

will depend on whether the observation is taken from a card facing the Axial or Abaxial 

direction. Thus, if we take an observation from an Abaxial face, the variance is 

(21.26*1.06)2 + (21.26*1)2, and if we take the observation from an Axial face it is 

(21.26*1.06)2 + (21.26*4.15)2.  

The summary statistics for the homoscedastic and heteroscedastic models are shown 

below.   
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Measures for homoscedastic model fits 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

64 670.38 690.63 -325.19 65.17 0.76 0.82 

AIC and BIC smaller means better 

 

Measures heteroscedastic model fits 
 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

64 636.54 658.82 -307.27 21.26 0.76 0.81 

AIC and BIC smaller means better 
 

 

Upon comparing the AIC and BIC we can see that the last fitted model is better, and 

therefore the interpretation of the hypothesis tests should be based on the second model.  

Note that in the variance structure, the residual standard deviation of the observations 

taken from the cards facing in the Axial direction is 4.15 times higher than that of the 

observations taken from the cards facing in the Abaxial direction. 

In studying the results of the hypothesis tests it turns out that the 

Adjuvant:Height:Face interaction is not significant, which is why double interactions 

can be studied (Figure 58). Among these, Adjuvant:Height and Height:Face are 

significant. These interactions are analyzed by using the Comparisons tab of the 

Extended and mixed linear models window and by selecting the corresponding 

interactions in the list of model terms shown in this window. This procedure will create 

a table with the means of all the resulting combinations of the factor levels involved in 

the interaction. The result, shown at the end of the output, displays the following tables. 

Adjusted means and standard error for Adjuvant*Height 

LSD Fisher (alpha=0.05)  

p-value correction procedure: No 

 

Adjuvant Height Means  S.E.        

Yes      Upper  253.94 17.89 A     

No       Upper  204.69 17.89 A     

Yes      Lower   94.38 17.89    B  

No       Lower   86.13 17.89    B  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

Adjusted means and standard error for Height*Face 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Height  Face   Means  S.E.           

Upper  Axial   356.88 22.74 A        

Lower  Axial   121.75 22.74    B     

Upper  Abaxial 101.75  7.73    B     

Lower  Abaxial  58.75  7.73       C  
Means with a common letter are not significantly different (p<= 0.05) 
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 a) b) 

  

Figure 58: Dot plot for the study of the interaction between Adjuvant and Height (a) and between Face 

and Height (b). 

 

Split-split plot 

This design is based on the same principle as the split plots, but it expands it a step 

further. The principle can be arbitrarily extended to deeper levels of division. The linear 

model for this design, assuming that the main plots are grouped in randomized complete 

blocks, is the following:  

ijkl i j k ij ik jk ijk l il jil ijkly b p sp                     (9) 

In the previous expression   represents the general mean; i  represents the i-th level 

of the factor associated with the main plots; 
j  represents the j-th level of the factor 

associated with the subplots within the main plots; k  represents the k-th level of the 

factor associated with the subplots (within the subplots); and ij , ik , jk y ijk  represents 

the corresponding interactions. The random terms of this model correspond to the 

effects of the blocks,  2~ 0,l bb N  , the effects of the plots,  2~ 0,il pp N  , the effects 

of the sub-plots,  2~ 0,jil spsp N  , and the experimental error,  2~ 0,ijkl N   . All of 

them, as usual, are assumed to be independent.  

Let us now consider an example. The data are in the Starch quality.IDB2 file (Di Rienzo 

2007). In this experiment, we evaluate the water absorption index (WAI) of cooked and 

raw starch of two genotypes of Quinoa (Chenopodium quinoa) cultivated under 4 levels 
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http://dl.dropbox.com/u/65302225/Data/Starch%20quality.IDB2
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of nitrogen fertilization. The varieties are Faro and UDEC10. These are assigned to 

main plots divided into 3 blocks. The plots where the varieties were sown were split 

into 4 plots, to which 4 doses of fertilization were assigned: 0, 75, 150 y 225 kg/ha. The 

subplots were split again in two to assign the Cooked or Raw treatment. The diagram 

for this experimental design is shown in Figure 59. 

 

 

Figure 59: Diagram of the split-split plot design for the example (Starch quality.IDB2 file). 

For the analysis of this design with a mixed model, in addition to the tri-factorial 

specification of the fixed part (as is the case for a classical three-factor experiment), we 

need only to specify the random part to include the random effect of the Blocks, of the 

Main Plots within the Blocks and of the Subplots within the Plots. The heading of the 

Starch quality.IDB2 file is shown in the Figure 60. 

 

Figure 60: Heading of the data table (Starch quality.IDB2). 

Block 1 

Block 2 

Block 3 

Sub-sub Plot 

Sub-Plot 

 
Main Plot 

http://dl.dropbox.com/u/65302225/Data/Starch%20quality.IDB2
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The variables selection window for this example must contain the information shown in 

Figure 61. 

 

Figure 61: Variables selection window for the Extended and mixed linear models (Starch quality.IDB2 

file). 

The specification of the fixed part should contain the factors and interactions as shown 

in  

Figure 62. 



Linear Mixed Models in InfoStat 

 
84 

 

 

Figure 62: Window with the tab Fixed effects displayed for the data in the file Starch quality.IDB2. 

 

The random part should have the blocks (Block), the main plots within the Blocks 

(Genotype), and the subplots within the main plots (Nitrogen) declared (Figure 63). 
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Figure 63: Window displaying the Random effects tab (Starch quality.IDB2 file). 

  

The corresponding output is as follows: 

 

Extended and mixed linear models 

 

R specification of the model 

 

model000_WAI_REML<-

lme(WAI~1+Genotype+Nitrogen+Cooking+Genotype:Nitrogen+Genotype:Cooking

+Nitrogen:Cooking+Genotype:Nitrogen:Cooking 

,random=list(Block=pdIdent(~1) 

,Genotype=pdIdent(~1) 

,Nitrogen=pdIdent(~1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model000_WAI_REML 

 

Dependent variable:WAI 
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Fit measurements 

N   AIC    BIC   logLik Sigma R2_0 R2_1 R2_2 R2_3 

48 116.45 145.76 -38.22  0.61 0.75 0.75 0.75 0.75 
Smaller AIC and BIC is better 

Sequential hypothesis testing 

 

                          numDF denDF F-value p-value 

(Intercept)                   1    16 1389.20 <0.0001 

Genotype                      1     2   14.49  0.0626 

Nitrogen                      3    12    0.78  0.5287 

Cooking                       1    16   32.90 <0.0001 

Genotype:Nitrogen             3    12    0.88  0.4769 

Genotype:Cooking              1    16   37.67 <0.0001 

Nitrogen:Cooking              3    16    1.74  0.1998 

Genotype:Nitrogen:Cooking     3    16    0.46  0.7108 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const) 1.3E-05 

 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Genotype in Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const) 5.0E-06 

 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Nitrogen in Genotype in Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const) 1.8E-05 

 

 

We could continue to conduct diagnostic tests, but we will assume that the model is 

correct. The interpretation of the hypothesis tests indicates that only the 

Genotype:Cooking interaction is significant. The multiple comparisons for the means of 

the corresponding treatments for this interaction are shown below. In these tests, note 

that only the cooked starch of the UDEC10 genotype shows a WAI significantly higher 

than that of the rest of the combinations of Genotype and Cooking. 
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Adjusted means and standard error for Genotype*Cooking 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Genotype Cooking Means S.E.       

UDEC10   Cooked   4.64 0.18 A     

Faro     Raw      2.97 0.18    B  

Faro     Cooked   2.90 0.18    B  

UDEC10   Raw      2.56 0.18    B  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

An alternative way to formulate the previous model consists of leaving the fixed effects as shown in  

Figure 62 and specifying the random effects as shown in Figure 64. The results are 

exactly the same as before, except for the calculation of the degrees of freedom of the 

denominator; therefore, the probability values are not the same. This approximation is 

also valid, although the previous version is in line with the traditional analysis for 

balanced data based on fixed effects. Note that the variance estimations are presented 

differently. 

 

Figure 64: Window displaying the Random effects tab that shows another way to specify the random 

part (Starch quality.IDB2 file). 
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Extended and mixed linear models 

 

R specification of the model 

 

model003_WAI_REML<-

lme(WAI~1+Genotype+Nitrogen+Cooking+Genotype:Nitrogen+Genotype:Cooking

+Nitrogen:Cooking+Genotype:Nitrogen:Cooking 

,random=list(Block=pdIdent(~1) 

,Block=pdIdent(~Genotype-1) 

,Block=pdIdent(~Genotype:Nitrogen-1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model003_WAI_REML 

 

Dependent variable:WAI 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 R2_1 R2_2 R2_3 

48 116.45 145.76 -38.22  0.61 0.75 0.75 0.75 0.75 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

                          numDF denDF F-value p-value 

(Intercept)                   1    30 1389.20 <0.0001 

Genotype                      1    30   14.49  0.0006 

Nitrogen                      3    30    0.78  0.5157 

Cooking                       1    30   32.90 <0.0001 

Genotype:Nitrogen             3    30    0.88  0.4605 

Genotype:Cooking              1    30   37.67 <0.0001 

Nitrogen:Cooking              3    30    1.74  0.1807 

Genotype:Nitrogen:Cooking     3    30    0.46  0.7089 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const) 1.3E-05 

 

Covariance model for random effects: pdIdent 

Formula: ~Genotype - 1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        Faro   UDEC10  

Faro   5.0E-06    0.00 

UDEC10    0.00 5.0E-06 

 

Covariance model for random effects: pdIdent 

Formula: ~Genotype:Nitrogen - 1|Block 
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Standard deviations relative to residual standard deviation and 

correlation 

 
 Faro:0 UDEC10:0 Faro:75 UDEC10:75 Faro:150 UDEC10:150 Faro:225 UDEC10:225 

Faro:0 1.8E-05 0 0 0 0 0 0 0 

UDEC10:0 0 1.8E-05 0 0 0 0 0 0 

Faro:75 0 0 1.8E-05 0 0 0 0  

UDEC10:75 0 0 0 1.8E-05 0 0 0 0 

Faro:150 0 0 0 0 1.8E-05 0 0 0 

UDEC10:150 0 0 0 0 0 1.8E-05 0 0 

Faro:225 0 0 0 0 0 0 1.8E-05 0 

UDEC10:225 0 0 0 0 0 0 0 1.8E-05 
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Application of mixed models for repeated measures in time 

Longitudinal data 

When modeling longitudinal data, the most important aspect to consider is the structure 

of the residual covariance matrix, which can be modeled by specifying the correlation 

matrix. In some cases, the variances can also be different for some grouping criterion 

and heteroscedasticity should be modeled. Let us recall that there is a residual 

correlation between observations that share the same value of the stratification criterion, 

also known as subject (for example, observations taken over the same person, same 

plot, same animal, same tree, etc.). Thus, the residual covariance matrix for all the 

observations will be a block diagonal matrix by blocks, and in each block the desired 

structure will be reflected, i.e. compound symmetry, first-order autoregressive, etc.  

 

To specify this, InfoStat has two tabs. In the Correlation tab, options that allow the 

specification of the error correlation structure can be found, and in the 

Heteroscedasticity tab different variance models can be selected. Thus, the different 

possible structures of the residual covariance matrix that can be fitted result from the 

combination of the different correlation structures with potential heteroscedasticity in 

time. If the researcher also wishes to specify a random effect, it is also possible to do so 

by using the corresponding tab. In this case much caution should be taken to avoid 

combining random effects, correlation structures and heteroscedasticity such that the 

final model is not identifiable. This occurs when there is an infinite set of values for the 

parameters for which the model is indistinguishable, and therefore the solutions to the 

likelihood equations are not unique.  

Examples of these situations occur when the user specifies both a compound symmetry 

correlation structure with a stratification criterion (for example, the plot) and a random 

effect of the same stratification criterion on the constant. In this case the covariance 

structure of the observations will be a diagonal matrix by blocks, and each block will 

have a compound symmetry structure. Therefore, this structure intrinsically has two 

parameters. However, because of the way in which we have specified the structure, 

three parameters are shown (random effect variance, intra-class correlation of the 

residual correlation structure, and residual variance). This overparameterization creates 

infinite solutions, and consequently the estimators cannot be interpreted (and in many 

cases the numerical algorithm does not converge). Another common phenomenon is a 
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correlation without structure (corSymm) with a given stratification criterion (for 

example, plot) and a random effect of that same stratification criteria on the constant 

(intercept). 

Analysis of a forage establishment experiment 

Next is an example of a model for repeated measures in time. The data come from a trial 

for forage establishment that compares five tilling methods (minimal tilling, minimal 

tilling with herbicide, minimal tilling with herbicide and disc plow on day 45, no tilling, 

and conventional tilling, here after T1, T2, T3, T4 and T5, respectively) in the humid 

central region of Puerto Rico. The species used was Brachiaria decumbens cv. Basilik. 

The experimental was conducted under a randomized complete blocks design with three 

repetitions; here we analyzed the coverage measurements (estimated percent coverage 

in each plot). There are 5 repeated measurements, taken at one-month intervals between 

August and December 2001 (Moser & Macchiavelli 2002). The data can be found in the 

Forage Coverage.IDB2 file in InfoStat test datasets. Figure 65 shows the average 

profile of the coverage observed during the 5 measurements for each treatment. 

 

Figure 65: Relationship between Coverage and Time for five treatments (Forage Coverage.IDB2 file). 

As a general strategy to analyze this data, models with different covariance structures 

will be adjusted first, appropriately combining residual correlation structures, residual 

heteroscedasticity, and random effects. The model that best describes the data will be 

selected using penalized likelihood criteria (AIC and BIC), and inferences regarding the 
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means (comparing treatments, studying the effect of time, analyzing whether the 

average profiles vary in time, whether they are parallel, etc.) will be based on this 

model. 

To choose the best model we will start by proposing a simple model with few 

parameters to estimate (i.e., parsimonious), and then we will add parameters until 

finally considering the model without structure, which is the least parsimonious.  

The following covariance structures will be used for the data (marginal covariance): 

1. Random block effects and independent homoscedastic errors.  

2. Random block and plot effects, and independent homoscedastic errors.  

3. Random block effects and independent heteroscedastic errors.  

4. Random block and plot effects, and independent heteroscedastic errors.  

5. Random block effects, constant correlation within plots, and homoscedastic errors 
(equivalent to model 2). 

6. Random block effects, constant correlation within plots, and heteroscedastic errors.  

7. Random block effects, first-order autoregressive structure between errors of the same 
plot and homoscedastic errors.  

8. Random block and plot effects, first-order autoregressive structure between errors of 
the same plot and homoscedastic errors.  

9. Random block effects, first-order autoregressive structure between errors of the same 
plot and heteroscedastic errors.  

10. Random block and plot effects, first-order autoregressive structure between errors of 
the same plot and heteroscedastic errors.  

11. Random block effects, unstructured correlations between errors from the same plot and 
time-varying residual variances.  

 

To fit these models, the variables should be specified as shown in Figure 66. 
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Figure 66: Variables selection window for Extended and mixed linear models (Forage Coverage.IDB2 

file). 

The same means model was used in every case, because the fixed part of the model did 

not change (this is essential in order to compare covariance structures using REML, and 

thus AIC and BIC criteria) (Figure 67). A way to declare each one of the models to be 

evaluated is shown below, followed by the InfoStat output with the corresponding 

fitness measures. 
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Figure 67: Window displaying the Fixed effects tab (Forage Coverage.IDB2 file). 

 

Model 1: Random block effects and independent homoscedastic errors. 

Select Block in the Random effects tab (Figure 68). In the Correlation tab the 

Independent errors should be declared (Figure 69), which is the default option, and 

nothing should be declared in the Heteroscedasticity tab. 
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Figure 68: Window displaying the Random effect tab for model 1(Forage Coverage.IDB2 file).  
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Figure 69: Window displaying the Correlation tab and the selection of Independent errors (Model 1) 

(Forage Coverage.IDB2 file).  

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma  R2_0 R2_1 

75 476.39 528.01 -211.19 12.19  0.56 0.63 
Smaller AIC and BIC is better 

 

 

Model 2: Random block and plot effects, and independent homoscedastic errors. 

Select Block and Plot in the Random effects tab (Figure 70). In the Correlation tab the 

Independent errors should be declared (Figure 69), which is the default option, and 

nothing should be declared in the Heteroscedasticity tab. 
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Figure 70: Window displaying the Random Effect tab, with Block and Plot selected (Model 2) (Forage 

Coverage.IDB2 file). 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 R2_2 

75 470.00 523.54 -207.00  9.95 0.56 0.61 0.78 
Smaller AIC and BIC is better 

 

 

Model 3: Random block effects and independent heteroscedastic errors  

The Random effect and Correlation tabs are specified as in model 1 (Figure 68 y Figure 

69); in the Heteroscedasticity tab varIdent is specified; and Time is dragged in the 

Grouping variables window (Figure 71). 
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Figure 71: Window displaying the Heteroscedasticity tab, with the varIdent function selected and Time 

as the grouping variable (Model 2) (Forage Coverage.IDB2 file). 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 475.13 534.40 -206.57  6.50 0.56 0.59 
Smaller AIC and BIC is better 

 

 

Model 4: Random block and plot effects, and independent heteroscedastic errors  

Select Block and Plot in the Random effects tab (Figure 70). In the Correlation tab the 

Independent errors should be declared (Figure 69), which is the default option; in the 

Heteroscedasticity tab varIdent is selected; and Time is declared in the Grouping 

variables window (Figure 71). 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 R2_2 

75 470.54 531.73 -203.27  4.20 0.56 0.56 0.70 
Smaller AIC and BIC is better 
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Model 5: Random block effects, constant correlation within plots, and homoscedastic 

errors 

In the Random effects tab Block is declared; in the Correlation tab the Compound 

symmetry option is selected. In the Grouping variables window we should also specify 

Block and Plot, so that it is explicitly stated the correlation of data coming from the 

same plot and block is being modeled (Figure 72). In the Heteroscedasticity tab the 

default option was kept, in other words, no criteria were selected (to do this, go to the 

Heteroscedasticity tab and erase the previous selection by deactivating all the options 

and erasing varIdent(form=~1) with a double click).   

 

Figure 72: Window displaying the Correlation tab, and selection of Compound symmetry for data 

grouped block and plot (Forage Coverage.IDB2 file). 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 470.00 523.54 -207.00 12.59 0.56 0.61 
Smaller AIC and BIC is better 
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Notice that this model yields the same value of –loglik, AIC, and BIC, because it is 

essentially the same model (except in the case in which the constant correlation is 

negative). Model 2 incorporates the correlation of observations in the same plot through 

the random plot effect, while model 5 does this through the compound symmetry 

structure. Due to this fact, it is not possible to fit a model including both random plot 

effect and compound symmetry correlation at the same grouping level. This model 

would be unidentifiable, and its estimates not valid (although the program may show an 

output, this is not correct). 

 

Model 6: Random block effects, constant correlation within plots, and heteroscedastic 

errors.  

In the Random effects tab Block is declared; in the Correlation tab the Compound 

symmetry option is selected as in Figure 72. In the Heteroscedasticity tab varIdent is 

declared; and Time is declared in the Grouping variables window (Figure 71). 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 466.67 527.85 -201.33  6.77 0.56 0.56 
Smaller AIC and BIC is better 

 

 

Model 7: Random block effects, first-order autoregressive structure between errors of 

the same plot and homoscedastic errors 

In the Correlation tab the Autoregressive of order 1 option was selected (Figure 73), 

and in the Heteroscedasticity tab the default option was kept. In other words, no 

criterion was selected and the previously made selections were erased. In the Random 

effects tab, Block was declared as Stratification criteria. Since this model takes into 

account the order in which observations are taken, a variable indicating this ordering 

should be declared in the corresponding window (Variable indexing the order of 

observations). To select this variable (Time in this example) pick drag it to the window. 

If the times are not equidistant, the structure corAR1 is not applicable, and its 

continuous analogue should be used (corCAR1). In this example both structures are 

equivalent because the times are equidistant.   
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Figure 73: Window displaying the Correlation tab, and selection of the Autoregressive of order 1. Data 

grouped by Block and Plot, and the order of the observations indicated by the variable Time (Forage 

Coverage.IDB2 file). 

  

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 460.93 514.47 -202.47 12.36 0.56 0.62 
Smaller AIC and BIC is better 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 460.93 514.47 -202.47 12.36 0.56 0.62 
Smaller AIC and BIC is better 

 

Model 8: Random block and plot effects, first-order autoregressive structure between 

errors of the same plot and homoscedastic errors.  

This model is like model 7 but in the Random effects tab, Block and Plot were declared 

in Stratification criteria. The results are very similar, although some differences can be 

appreciated if we increased the number of decimal positions.  
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Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 R2_2 

75 462.93 518.38 -202.47 12.36 0.56 0.62 0.62 

Smaller AIC and BIC is better 

 

Model 9: Random block effects, first-order autoregressive structure between errors of 

the same plot and heteroscedastic errors 

This model is specified as model 7. In the Heteroscedasticity tab the varIdent option is 

selected, and Time declared in the Grouping variables window. 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 462.70 523.89 -199.35  7.49 0.56 0.58 
Smaller AIC and BIC is better 

 

 

Model 10: Random block and plot effects, first-order autoregressive structure between 

errors of the same plot and heteroscedastic errors 

This model is specified as model 8. In the Heteroscedasticity tab the varIdent option is 

selected, and Time declared in the Grouping variables window. 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 R2_2 

75 464.70 527.80 -199.35  7.49 0.56 0.58 0.58 
Smaller AIC and BIC is better 

 

 

Model 11: Random block effects, unstructured correlations between errors from the 

same plot and time-varying residual variances. 

In the Correlation tab the General positive symmetric matrix option was selected 

(Figure 74) and in the Heteroscedasticity tab the varIdent option was kept (as in Figure 

71). In the Random effects tab, only Block was declared in Stratification criteria (it is 

not possible to fit a model including both random plot effect and general correlation at 

the same grouping level. This model would be unidentifiable, and its estimates not 

valid. Although the program may show an output, this is not correct). 
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Figure 74: Window displaying the Correlation tab, and the selection of the General positive symmetric 

matrix Model for the data grouped by plot, and the order of the observations indicated by the variable 

Time (Forage Coverage.IDB2 file). 

 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1  

75 434.74 513.14 -176.37  6.48 0.56 0.59  
Smaller AIC and BIC is better 

 

 

Selection of the covariance structure 

Upon comparing the values of AIC (or BIC) for the structures that we have fitted, note 

that that Model 11 (AIC = 434.74, BIC = 513.14) produces the lowest value. Because of 

this, we select the unstructured covariance matrix (General positive symmetric matrix). 

The following are the parameters estimated by this model:  
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Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 434.74 513.14 -176.37  6.48 0.56 0.59 
Smaller AIC and BIC is better 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block 

 

Standard deviations and correlations 

 

        (const) 

(const)    2.55 

 

 

Correlation structure 

 

Correlation model: General correlation 

Formula: ~ (as.integer(Time)) | Block/Plot 

 

 

 0    1    2    3    4   

1.00 0.29 0.70 0.12 0.10 

0.29 1.00 0.25 0.15 0.18 

0.70 0.25 1.00 0.48 0.47 

0.12 0.15 0.48 1.00 1.00 

0.10 0.18 0.47 1.00 1.00 

 

Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Time 

 

Variance-function parameters 

 

Parameter Estim. 

1           1.00 

2           1.24 

3           2.03 

4           2.58 

5           2.46 

 

 

The estimated residual variances for each of the five times are calculated in the 

following way:  

 

 

 

 

2 2

1

22

2

22

3

22

4

22

5

ˆ 6.4813 42.0072

ˆ 1.2400 6.4813 64.5903

ˆ 2.0278 6.4813 172.7327

ˆ 2.5759 6.4813 278.7291

ˆ 2.4614 6.4813 254.5005











 

  

  

  

  
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The 10 estimated correlations appear directly as a matrix in the Correlation Structure. 

To obtain the variance of an observation, we need to add the block variance to the 

residual variance shown above:  

 
22ˆ 0.3942 6.4813 6.5277bloque     

Inference regarding the means 

Once the covariance structure of the data is chosen (in this case the model with no 

structure), we can proceed to make inferences about the means. The average observed 

profiles for every treatment are shown in Figure 65. 

In a factorial experiment such as this one, where we have a treatment factor and a time 

factor, the first thing we should do is verify whether an interaction between the 

treatments and time exists. To do so, we can conduct a Wald test, which in InfoStat 

appears directly as Treatment:Time in the marginal tests. Another option would be to 

conduct a likelihood ratio test (LRT). For this test we cannot use REML, since we are 

testing models with different fixed effects, and therefore the REML estimators are not 

comparable. Instead, the maximum likelihood (ML) estimator is used.   

 

Marginal hypothesis testing (Type III SS) 

 

               numDF denDF F-value p-value 

(Intercept)        1    48   82.60 <0.0001 

Treatment          4    48    4.05  0.0065 

Time               4    48   16.77 <0.0001 

Treatment:Time    16    48    1.49  0.1417 

 

 

To carry out a likelihood ratio test we can fit (with ML) two models with the same 

covariance structure (in this example the model without structure) but that differ in their 

fixed part: one contains the interaction term (complete model) and the other one does 

not (reduced model): 

Complete model: 

Fit measurements 

 

N   AIC    BIC   logLik  Sigma R2_0 R2_1 

75 539.51 634.52 -228.75  5.29 0.56 0.59 
Smaller AIC and BIC is better 
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Reduced Model: 

Fit measurements 

 

N   AIC   BIC   logLik  Sigma R2_0  R2 1 

75  531.19 589.12 -240.59  5.52 0.33  0.35 
Smaller AIC and BIC is better 

 

 

Although the LRT can be obtained directly from the Model tab of the Model exploration 

menu, another calculation method is shown below. In the first place, the statistic for the 

LRT test is obtained: 

2log lik 2log lik 2( 240.59) 2( 228.75) 23.68completo reducidoG        .  

This has 42-26=16 degrees of freedom, and generates a p-value = 0.0967, which is why 

we can say that there is no interaction, with a 5% significance level. This probability 

value is obtained from a chi-square distribution with 16 degrees of freedom, and it can 

be calculated with the Probability and quantile calculator tool available in InfoStat’s 

Statistics menu (Figure 75). 

 

Figure 75: InfoStat Probability and quantile calculator window. 
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Both tests (Wald and LRT) indicate that the interaction is not significant (even though 

the p-values are not too high, p=0.1417 and p=0.0967, respectively), which is why we 

can (with precaution) conduct tests of treatments effects and time separately.  

Contrasting successive times 

To compare the successive times, in other words time 1 with time 2, time 2 with time 3, 

and so on, the Comparisons tab should be activated and within this tab the Contrasts 

subtab; and the effect Time should be selected (Figure 76). The rest of the windows 

should be kept as in Model 9, which was chosen as the model with the best correlation 

structure to explain the behavior of these data through time.  

 

Figure 76: Window displaying the Comparisons tab, with the Contrasts subtab selected (Forage 

Coverage.IDB2 file). 

Hypothesis testing for contrasts 

 

Time  Contrast S.E.  F    df(num) df(den) p-value 

Ct.1     -9.80 1.84 28.41       1      48 <0.0001 

Ct.2     -5.77 2.87  4.05       1      48  0.0499 

Ct.3      1.76 3.28  0.29       1      48  0.5949 

Ct.4      0.26 0.37  0.51       1      48  0.4807 

Total               25.15       4      48 <0.0001 
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The outputs shown here correspond to the REML estimations. It is clear from these 

results that, on average for the four treatments, a significant change is observed between 

times 1 and 2, but in subsequent times the average coverage does not change 

significantly. The same conclusions are obtained by conducting a means comparison for 

each time (LSD): 

Adjusted means and standard error for Time 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Time        Means S.E.       

3       30.29 3.70 A     

4       28.53 4.56 A     

5       28.27 4.38 A     

2       24.53 2.55 A     

1       14.73 2.23    B  
Different letters indicate significant difference between location parameters (p<= 0,05) 

 

Comparison of treatments 

Adjusted means and standard error for Treatment 

 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Treatment  Means S.E.           

5       39.60 5.47 A        

1       31.27 5.47 A  B     

4       24.96 5.47 A  B  C  

3       17.33 5.47    B  C  

2       13.19 5.47       C  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

Based on this adjusted means comparison we conclude that treatments 5, 1 and 4 

provide the highest coverage and are not significantly different among each other.  
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Analysis of a trial for asthma drugs  

A pharmaceutical company has examined the effects of two drugs (A and B) on the 

breathing capacity of asthma patients (Littell et al. 2002, 2006). Both drugs and a 

placebo (P) were randomly administered to a group of patients. Each of the three 

treatments had 24 patients. The basal respiratory capacity (Bas _Resp _Cap) of each 

patient was measured immediately before the treatment was applied and once an hour 

during the 8 hours following treatment application (Res_ Cap). The data are in the 

Respiratory capacity.IDB2 file.  

Using the strategy defined in the previous examples, first models with different 

covariance structures will be fitted by appropriately combining residual correlation 

structures, residual heteroscedasticity, and random effects. The model that best 

describes the data will be selected by using penalized likelihood criteria (AIC and BIC) 

and likelihood ratio tests. Once the adequate variance structure coefficient is selected, 

inferences will be made about the means (compare drugs means, study the effect of 

time, analyze whether the average profiles vary through time, whether they are parallel, 

etc.). It is important to emphasize that all the inferences regarding the means will be 

based on the model with the selected covariance structure.   

Since the variable that identifies the patient (Patient) in the database takes on equal 

values for each drug, in order to identify the 72 patients in this study a new variable had 

to be created (Patient_drugs) that completely identifies the patient. To do so, use the 

Data menu, select the Make a new column by merging categorical variables submenu 

(selecting Patient and Drugs in the variables selector window). This is a two-factor 

experiment, and the model used takes into account the factors Drugs, Hours and their 

interaction, and the covariate Basal _Resp _Cap (all fixed effects). To conduct the 

analysis for this model, the variables need to be declared in the following way (Figure 

77).  

http://dl.dropbox.com/u/65302225/Data/Respiratory%20capacity.IDB2
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Figure 77: Variable selector window (Respiratory capacity.IDB2 file). 

 

First, a group of models will be evaluated to determine which one has the better fit. The 

following models are evaluated: 

1. Independent errors and homoscedastic residual variances.  

2. Compound symmetry and homoscedastic residual variances.  

3. First-order autoregressive and homoscedastic residual variances.  

4. First-order autoregressive and heteroscedastic residual variances.  

5. First-order autoregressive, homoscedastic residual variances, and random patient 
effect.  

6. First-order autoregressive, heteroscedastic residual variances, and random patient 
effect.  

7. Variances matrix and covariance without structure and heteroscedastic residual 
variances.  

 

The specification of the fixed part is the same for the seven evaluated models (Figure 

78). To fit Model 1, simply activate the Go button with the fixed effects model 

presented below: button with fixed effects model present below:  
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Figure 78: Window displaying the Fixed effects tab (Respiratory capacity.IDB2 file). 

 

To fit Model 2, the windows should be specified as in Figure 78 and Figure 79. Model 3 

is specified as in Figure 78 and Figure 80. Model 4 is specified as in the preceding 

model but including heterogenious residual variances, as shown in Figure 81. Model 5 

is specified with the windows as shown in Figure 78, Figure 80 and Figure 82. Model 6 

is like Model 5 but incldues the specification of the heterogeneous residual variances 

(Figure 81). Model 7 is specified as shown in Figure 78, Figure 81 and Figure 83). 
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Figure 79: Window displaying the Correlation tab, with the Compound symmetry option selected 

(Respiratory capacity.IDB2 file). 
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Figure 80: Window displaying the Correlation tab, with the Autoregressive of order 1 option selected 

(Respiratory capacity.IDB2 file). 

 

Figure 81: Window displaying the Heteroscedasticity tab (Respiratory capacity.IDB2 file). 
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Figure 82: Window displaying the Random effects tab (Respiratory capacity.IDB2 file). 

 

 

Figure 83: Window displaying the Correlation tab, with the General positive symmetric matrix option 

selected (Respiratory capacity.IDB2 file). 
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After fitting the following models these are the results:  

Table 2. Characteristics and fitted measures of the evaluated model (Respiratory 

capacity.IDB2 file). 

Model 

Patient 

random 

effect 

Residual 

correlation 

Heterogeneous 

residual 

variances in 

Time  

AIC BIC log lik 

1 Yes No No 968.94 1081.04 -458.47 

2 No 
Compound 

Simmetry  
No 401.29 517.71 -173.65 

3 No AR1 No 329.04 445.45 -137.52 

4 No AR1 Yes 324.57 471.17 -128.28 

5 Yes AR1 No 303.03 423.76 -123.52 

6 Yes AR1 Yes 287.80 438.71 -108.90 

7 No 

General positive 

symmetric 

matrix 

Yes 270.27 533.29 -74.14 

 

From Table 2 we can observe that models 6 and 7 have the lowest AIC values, while 

models 5 and 6 have the lowest BIC values. A formal likelihood ratio test used to 

compare models 5 and 6 can be obtained by means of the following equation: 

                     𝑋2 = −2(𝑙𝑜𝑔𝑙𝑖𝑛𝑘 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 − 𝑙𝑜𝑔𝑙𝑖𝑛𝑘 𝑓𝑢𝑙𝑙 𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙 )

= −2(−123.52 + 108.90) = 29.24 

Because both models differ in 7 parameters (Model 5 has a single residual variance and 

Model 6 has 8 residual variances), the likelihood ratio test statistic is compared to a 

critical value of a chi-square distribution with 7 degrees of freedom. When this is done 

with InfoStat’s Probabilities and quantiles calculator we obtain a p-value of 0.0001, 

which leads us to choose the complete model (Model 6).  

The same test can be done with the Statistics>> Extended and mixed linear models >> 

Model exploration menu. To compare both models we select the Models tab and obtain 

the following results:  

Comparison of models 

 

Model df  AIC    BIC   logLik   Test  L.Ratio p-value 

    5 28 303.03 423.76 -123.52                        

    6 35 287.80 438.71 -108.90 1 vs 2   29.23  0.0001 
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The results from the likelihood ratio test indicate that Model 6 is the better model of the 

two. Now, we only need to compare Model 6 to Model 7. In this case the reduced model 

is 6 and the complete model is 7. The results for this comparison are following: 

Comparison of models 

 

Model df  AIC    BIC   logLik   Test  L.Ratio p-value 

    7 61 270.27 533.29  -74.14                        

    6 35 287.80 438.71 -108.90 1 vs 2   69.53 <0.0001 

 

 

 

The complete output for this model indicates that Model 7 is the best one. Therefore the 

selected model has a residual correlation without structure and heterogeneous residual 

variances in time. The complete output for this model is shown below:  

Extended and mixed linear models 

R specification of the model 

 

model001_Res_Cap_REML<-

gls(Res_Cap~1+Drugs+Hours+Drugs:Hours+Basal_Resp_Cap 

,weight=varComb(varIdent(form=~1|Hours)) 

,correlation=corSymm(form=~as.integer(as.character(Hours))|Patient_.Dr

ugs) 

,method="REML" 

,na.action=na.omit 

,data=R.data00) 

 

Results for model: model001_Res_Cap_REML 

 

Dependent variable:Res_Cap 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

576 270.27 533.29 -74.14  0.48 0.55 
Smaller AIC and BIC is better 

 

Marginal hypothesis testing(Type III SS) 

 

               numDF F-value p-value 

(Intercept)        1    6.49  0.0111 

Drugs              2    7.25  0.0008 

Hours              7   13.72 <0.0001 

Basal_Resp_Cap     1   92.57 <0.0001 

Drugs:Hours       14    4.06 <0.0001 

 

Sequential hypothesis testing 

 

               numDF F-value p-value 

(Intercept)        1 3936.01 <0.0001 

Drugs              2   13.87 <0.0001 

Hours              7   13.72 <0.0001 

Basal_Resp_Cap     1   92.57 <0.0001 

Drugs:Hours       14    4.06 <0.0001 
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Correlation structure 

 

Correlation model: General correlation 

Formula: ~ as.integer(as.character(Hours)) | Patient_.Drugs 

 

Common correlation matrix 

 

    1    2    3    4    5    6    7    8   

1  1.00 0.89 0.88 0.78 0.69 0.67 0.52 0.65 

2  0.89 1.00 0.91 0.87 0.81 0.70 0.59 0.70 

3  0.88 0.91 1.00 0.91 0.81 0.75 0.64 0.74 

4  0.78 0.87 0.91 1.00 0.82 0.73 0.67 0.75 

5  0.69 0.81 0.81 0.82 1.00 0.85 0.73 0.84 

6  0.67 0.70 0.75 0.73 0.85 1.00 0.81 0.88 

7  0.52 0.59 0.64 0.67 0.73 0.81 1.00 0.82 

8  0.65 0.70 0.74 0.75 0.84 0.88 0.82 1.00 

 

Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Hours 

 

Variance-function parameters 

 

Parameter Estim. 

1           1.00 

2           1.07 

3           1.06 

4           1.15 

5           1.12 

6           1.07 

7           1.09 

8           1.15 

 

 

Adjusted means and standard error for Drugs 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

 Drugs  Means S.E.       

B        3.33 0.09 A     

A        3.11 0.09 A     

Placebo  2.82 0.09    B  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

Adjusted means and standard error for Hours 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Hours Means S.E.                

1      3.33 0.06 A              

2      3.30 0.06 A              

3      3.22 0.06    B           

4      3.12 0.06       C        

5      3.02 0.06          D     

6      2.96 0.06          D     

7      2.88 0.06             E  

8      2.87 0.06             E  
Means with a common letter are not significantly different (p<= 0.05) 
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Adjusted means and standard error for Drugs*Hours 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Drug  Hours   Means  S.E.                   

B     1      3.69 0.10 A                          

B     2      3.63 0.10 A  B                       

B     3      3.58 0.10 A  B                       

A     1      3.47 0.10 A  B  C                    

B     4      3.44 0.11    B  C  D                 

A     2      3.39 0.10    B  C  D                 

B     5      3.25 0.11       C  D  E              

A     3      3.18 0.10          D  E  F           

B     6      3.08 0.10             E  F  G      

A     5      3.05 0.11             E  F  G  H     

A     4      3.04 0.11             E  F  G  H     

B     8      3.01 0.11             E  F  G  H  I  

A     6      2.98 0.10             E  F  G  H  I  

B     7      2.98 0.11                F  G  H  I  

P     3      2.90 0.10                F  G  H  I  

P     2      2.89 0.10                   G  H  I  

P     4      2.87 0.11                   G  H  I  

A     7      2.87 0.11                   G  H  I  

A     8      2.86 0.11                   G  H  I  

P     1      2.83 0.10                   G  H  I  

P     6      2.82 0.10                   G  H  I  

P     7      2.79 0.11                      H  I  

P     5      2.77 0.11                      H  I  

P     8      2.73 0.11                         I  
Means with a common letter are not significantly different (p<= 0.05) 

 

Note that there is a significant interaction between the drug and time (p<0.0001), so we 

proceed to carry out an interaction graph. To make this graph, first the Adjusted means 

and standard errors for Drugs*Hours were copied and pasted in a new InfoStat table. 

This table was saved as Respiratory capacity average.IDB2. Then in the Graphs>>Dot 

plot menu the variables were declared as shown below (Figure 84 and Figure 85): 

http://dl.dropbox.com/u/65302225/Data/Respiratory%20capacity%20average.IDB2
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Figure 84: Variables selector window (Respiratory capacity average.IDB2 file). 

 

  

Figure 85: Variables selector window displaying the activated Partitions tab (Respiratory capacity 

average.IDB2 file). 
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It is important to emphasize that because the standard errors of each of the combinations 

of treatments and hours are different, these should be taken into account when 

requesting the graph. This is achieved by declaring the error measure in the Error sub-

window. With these specifications a graph is obtained to the study of the interaction 

(Figure 86).  

 

 

Figure 86: Box plot to study the interactions between treatments and time with the data from the 

Respiratory capacity.IDB2 file. 

 

We can observe that while the placebo has a practically constant response, drugs A and 

B increase the respiratory capacity after their application. This capacity is going to 

decrease with time, and the mean value of drug B is always greater than that of drug A. 

In order to find significant differences between the treatments, contrasts can be 

conducted within each hour. In this case, at each hour we can test hypotheses regarding 

the equality of means between the drugs and the placebo, and between the two drugs. 

To obtain the contrasts (in this case orthogonal) these should be declared in the 

Comparisons tab, in the Contrasts subtab, as shown in Figure 87. 
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Figure 87: Window displaying the Comparisons tab, Contrasts subtab (Respiratory capacity.IDB2 file). 

 

The p-values for the requested contrasts are shown below:   
 

hypothesis testing for contrasts 

 

Drugs*Hours   F    df(num) df(den) p-value 

Ct.1        40.08       1     551 <0.0001 

Ct.2         2.54       1     551  0.1119 

Ct.3        23.46       1     551 <0.0001 

Ct.4         2.46       1     551  0.1170 

Ct.5        14.55       1     551  0.0002 

Ct.6          7.36       1     551  0.0069 

Ct.7         7.39       1     551  0.0068 

Ct.8         6.37       1     551  0.0119 

Ct.9         8.11       1     551  0.0046 

Ct.10        1.63       1     551  0.2022 

Ct.11        2.86       1     551  0.0914 

Ct.12        0.53       1     551  0.4651 

Ct.13        1.09       1     551  0.2965 

Ct.14        0.53       1     551  0.4656 

Ct.15        2.13       1     551  0.1446 

Ct.16        0.94       1     551  0.3319 

Total        5.19      16     551 <0.0001 
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Contrasts 1, 3, 5, 7 and 9 compare the placebo to the average of the drugs for hours 1, 2, 

3, 4 and 5 respectively. Seeing that all of these are significant (p<0.05) we can say that 

at hour 6 after the drugs were administered, the drugs lose their effect, since contrasts 

11, 13 and 15 are not significant. Regarding the drug comparisons among each other, 

the superiority of B over A is manifested (p<0.05) only in hours 3 and 4 (contrasts 6 and 

8 respectively). 
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Analysis of litter decomposition bags 

In the leaf litter decomposition trials the remnant dry matter at each time is generally 

analyzed through ANCOVA, using time as a covariate and a logarithmic transformation 

of the response, or ANOVA for a split-plot design, when the evaluation periods are 

equidistant. The experimental units consist of bags containing the vegetative material. 

Usually, these bags are grouped to form a repetition that can be evaluated through time, 

and the contents of each bag are evaluated at different times. Even though each time the 

evaluated bags are different, often the correlation structure that assumes independence 

or compound symmetry (induced by grouping of bags that represent a repetition) is not 

enough to explain the observed correlations. Observations closer in time tend to be 

more correlated than those distant in time, or correlations between observations from 

earlier times are different from correlations between observations from later times. The 

use of mixed models allows us not only to manage more complex correlation structures 

but also makes it possible to model heterogeneous variances. In these models, the 

treatments can be included as classification factors and time can be model as a covariate 

or as a factor. This last case produces models that are less parsimonious but more 

flexible in terms of their ability to model different trends through time. On the other 

hand, the introduction of random effects on the parameters that involve time can be used 

to correct the lack of fit.  

In the example shown below, a data set generated by a decomposition trial conducted in 

a tropical aquatic environment is analyzed (Martinez 2006). The compared treatments 

consist of the following: two Species (Guadua sp. and Ficus sp.) of which vegetative 

material is obtained, and two types of Bag in which the material is placed (Fine and 

Coarse). The four treatments had 5 repetitions (with 7 bags each), and they were 

evaluated at 7 times. The purpose of this trial was to establish the effect of Species, Bag 

and Time on the rate of decomposition. The data can be found in the 

Decomposition.IDB2 file.  

The original data (remnant dry matter) were transformed to logarithms. The graph 

showing the logarithm of the remnant dry matter (from here on, the response) as a 

function of time and for each treatment (Figure 88) shows a decrease of the remnant dry 

weight as a function of time. The graph also suggests the existence of heteroscedasticity 

that is a function of time, which depends on the species and the type of bag. An initial 

http://dl.dropbox.com/u/65302225/Data/Decomposition.IDB2
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approximation to model these data could be to fit a regression model with different 

intercept and slopes. To perform this fit we select the mixed models module, indicating 

LnDryWeight as the dependent variable, Species and Bag as classification factors, and 

Time as a covariate. Then, in the tab for the fixed part of the model, terms are indicated 

as shown in  

Figure 89. The graph for the adjusted model is shown in Figure 90. 

 

Figure 88: Dot plot for the logarithm of remnant dry weight as a function of Time for the four 

treatments (Species-Bag) (Decomposition.IDB2 file). 
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Figure 89: Specification of the linear regression model with different intercepts and slopes for the 

logarithm of remnant dry matter as a function of Time for the four treatments determined by the 

combination of species and bag type (Species-Bag) (Decomposition.IDB2 file). 

 

Figure 90: Dot plot for the Predicted value (logarithm of remnant dry weight) as a function of Time for 

the four treatments (Species-Bag) (Decomposition.IDB2 file). 
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Figure 90 shows that the fit of different straight lines by treatment is an approximation 

that, although plausible, does not account for some of the particularities of the loss of 

dry weight. This is reflected by the presence of curvatures in the residuals (Figure 91). 

A way to resolve the problem of the presence of curvature is the specification of a 

model that includes quadratic terms for time. For this, we must extend the model 

proposed in  

Figure 89 to include all the terms that correspond to squared time. To simplify the 

notation, we have created three variables, T1 and T2 represent time and time squared, 

respectively. T1 is time centered with respect to the value 30 (days) and T2 is the square 

of T1.The covariates are centered in order to eliminate the colinearity that results from 

using a regressor and its square, and hence to improve the condition of the X’X matrix. 

The variables T1 and T2 as well as Species_Bag are included in the 

Decomposition.IDB2 file. In the specification of the mixed model, Species_Bag should 

be included as a classification factor and T1 and T2 should be included as covariates. 

The Fixed effects tab should look as shown in Figure 92. 

 

Figure 91: Graph of Pearson studentized residuals vs. Time for a regression model of remnant dry 

matter as a function of Time for the four treatments (Species-Bag) with different intercepts and slopes, 

(Decomposition.IDB2 file). 
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Figure 92: Specification of the linear regression model with different intercepts and slopes for the 

logarithm of remnant dry matter as a function of Time for the four Species-Bag treatments 

(Descomposition.IDB file2). 

 

Figure 93: Fits for the second-order polynomial regression model with different intercepts and slopes 

for the logarithm of remnant dry matter as a function of Time^2 (centered) for four Species-Bag 

treatments (Decomposition.IDB2 file). 
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The residuals of the fitted model according to Figure 92, show two problems: 

heteroscedasticity (that depends on time and treatments) and lack of fit, seeing that for 

some treatments and times, the Pearson residuals appear on top or under the zero line 

(enveloped by a circle, Figure 94).  

At this point, we will opt to model first the problem of heteroscedasticity using an 

identity variance function. For this, we will leave the fixed part of the specification 

window of the model just as indicated in Figure 92, but in the Heteroscedasticity tab we 

will indicate that the variance should be estimated in a different way for the 

combination of time and treatment as shown in Figure 95. Pearson’s studentized 

residuals vs. time for this model are shown in Figure 96. Even if the problem of 

heteroscedasticity seems mostly solved, problems of lack of fit continue to exist, and 

these are visualized in groups of residuals of a single treatment in a given time that are 

either all positive or all negative.   

 

 

Figure 94: Studentized residuals (Pearson) vs. Time for the second-order polynomial regression model 

with different intercept and slopes for the logarithm of remnant dry weight as a function of Time and 

Time^2 (centered) for four Species-Bag treatments (Decomposition.IDB2 file). 
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Figure 95: Specification of the heteroscedastic part of the second-order  polynomial regression model 

with different intercepts and slopes for the logarithm of remnant dry weight as a function of Time and 

Time^2 (centered) for four Species-Bag treatments (Decomposition.IDB2 file). 

 

A way to resolve this lack of fit is to add random effects to the average level of each 

combination of time and treatment. If in the Random effects tab we add 

Time_Species_Bag and keep the box that corresponds to the Constant checked, we are 

indicating that we are dealing with a random displacement that affects the expected 

value for the combination of Time Species and Bag under the fitted model (Figure 97). 

Finally, the studentized residuals graph for this model shows an image in which there is 

no evidence of lack of fit or presence of heteroscedasticity (Figure 98). 
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Figure 96: Studentized residuals (Pearson) vs. Time for the heteroscedastic regression model with 

different intercepts and slopes by treatment for the logarithm of Remnant dry weight as a function of 

Time and Time^2 (centered) for the four treatments (Species-Bag) (Decomposition.IDB2 file). 

 

 

 

Figure 97: Specification of the random part of the second-order heteroscedastic regression model with 

different intercepts and slopes for the logarithm of Remnant dry weight as a function of Time and 

Time^2 (centered) for the four treatments (Species-Bag) (Decomposition.IDB2 file). 
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Figure 98: Studentized residuals (Pearson) vs. Time for the heteroscedastic regression model with 

different intercept and slopes by treatment and the addition of a random effect on the constant that is 

particular for each combination of Time and Treatment, for the logarithm of remnant dry weight as a 

function of Time and Time^2 (centered) for the four treatments (Species-Bag) (Decomposition.IDB2 

file). 

 

Finally, since the purpose of this trial was to calculate the decomposition rate, and we 

have fitted a linear model for the logarithm of the remnant dry matter weight, we can 

estimate the decomposition rate as the derivative of -exp(fitted model). We will use the 

interface with R to obtain these derivatives. Pressing F9 the interpreter window of R is 

called (Figure 99). To the right of the window a list will appear. It contains the R 

objects that have been created during the work session. In this list, the fitted models 

using extended and mixed linear models should appear as a string composed of the 

word “model”+ correlative number _name of the dependent variable_ Estimation 

method. In our example they should appear as follows: model#_LnDryWeight _REML 

(in position # there should be a number dependent on the number of times that the 

model was fit for the same dependent variable). The example shows the model 

modelOO1_LnDryWeight _REML. 
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Figure 99: R interface with four panels: Script contains the R programs to be executed, Output shows 

the executed script, Objects shows the list of objects retained in R’s memory, and the bottom panel 

shows messages and error reports sent by R to the console.  

 

To calculate the decomposition rates, we must first understand what we have fitted with 

the estimated linear model. The fixed part of the proposed model is as follows: 

Species_Bag 

T1 

T2 

Species_Bag*T1 

Sspecies_Bag*T2 

Este modelo es equivalente a: 

Species_Bag-1 

Species_Bag*T1 

Species_Bag*T2 

The advantage of the previous specification is that the coefficients of the fixed part of 

the model correspond with those in (10). This model specifies a second-order 

polynomial regression in time (centered around 30 days) for each of the combinations of 

Species and Bag. Thus, we are estimating a function of the following form: 
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𝐿𝑛𝐷𝑟𝑦𝑊𝑒𝑖𝑔ℎ𝑡 = 𝛽𝑖0 + 𝛽𝑖1(𝑇 − 30) + 𝛽𝑖2(𝑇 − 30)2 (10) 

where the i index indicates the treatment (in this case i identifies the four combinations 

of Species and Bag). This means that we have an equation like (7) specific for each 

condition. The estimated coefficients for the fixed part can be obtained during the model 

estimation by checking the Fixed effects coefficients option in the Fixed effects tab. 

 

Since we will use R to calculate the derivatives of equation (7), we will review these 

coefficients from R. If we write Model004_LnDryWeight _REML$coefficients$fixed 

in the Script window, and then at the end of the line press Shift Enter, the following 

output will appear: 

      Species_BagFicus_Fine     Species_BagFicus_Coarse  

                 -0.7738921650                  -1.3680878569  

     Species_BagGuadua_Fine    Species_BagGuadua_Coarse  

                  0.8162357629                   0.7630705376  

   Species_BagFicus_Fine:T1  Species_BagFicus_Coarse:T1  

                 -0.0326126598                  -0.0508364778  

  Species_BagGuadua_Fine:T1 Species_BagGuadua_Coarse:T1  

                 -0.0086055613                  -0.0192635993  

   Species_BagFicus_Fine:T2  Species_BagFicus_Coarse:T2  

                  0.0002938702                   0.0004422140  

  Species_BagGuadua_Fine:T2 Species_BagGuadua_Coarse:T2  

                  0.0000571603                  -0.0002451274  

 

The first four coefficients (from left to right), correspond to the constants  0i  of the 

following variables: Ficus_Fine, Ficus_Coarse, Guadua_Fine and Guadua_Coarse. The 

Ficus_Fine constant does not appear explicitly, because it is confounded with the 

intercept (Intercept), which is assumed present by default. 

The second group of four coefficients (0.0326126598, ... ,-0.0192635993) are the 

coefficients  1i  of the linear term of (10), and the last group of four (0.0002938702, 

… , -0.0002451274) are the coefficients  2i  of the quadratic term in (10). The 

equation for dry remnant weight for Species Ficus with Fine Bag is as follows: 

2ln 0.7738921651 0.0326126598 ( 30) 0.0002938702( 30)DryWeight T T       



Linear Mixed Models in InfoStat 

 
134 

Since function (7) represents remnant dry weight, decomposed dry weight should be 

calculated as follows: 

𝐷𝑟𝑦𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 − exp(𝛽𝑖0 + 𝛽𝑖1 (𝑇 − 30) + 𝛽𝑖2 (𝑇 − 30)2
) 

With respect to the rate of decomposition, this would be the derivative of the function, 

namely: 

𝑅𝑎𝑡𝑒𝐷𝑒𝑐𝑜𝑚𝑝 = − exp(𝛽
𝑖0

+  𝛽
𝑖1

 (𝑇 − 30) + 𝛽
𝑖2

 (𝑇 − 30)2)(𝛽
𝑖1

+ 2𝛽
𝑖2

 (𝑇 − 30)) 

The following script generates a table whose first column is Time, and the subsequent 

columns are the rates of decomposition for each of the treatments. Note that the model 

with the best fit should be specified (in our case, model004): 

a=model004_LnDry Weight_REML$coefficients$fixed 

T=seq(0,90,1) 

dFF = -exp(a[1]+(T-30)*a[5]+(T-30)*(T-30)*a[9]) *(a[5]+2*(a[9] *(T-30))) 

dFC = -exp(a[2]+(T-30)*a[6]+(T-30)*(T-30)*a[10])*(a[6]+2*(a[10]*(T-30))) 

dGF = -exp(a[3]+(T-30)*a[7]+(T-30)*(T-30)*a[11])*(a[7]+2*(a[11]*(T-30))) 

dGC = -exp(a[4]+(T-30)*a[8]+(T-30)*(T-30)*a[12])*(a[8]+2*(a[12]*(T-30))) 

Tasas=as.data.frame=cbind(T,dFF,dFC,dGF,dGC) 

The following objects will appear in the list of 

objects: a, T, dFF, dFC, dGF, dGC and Rates. 

Right clicking on Rates will make the Action 

menu appear, which includes the following 

options: Convert matrix, dataframe or vector to 

InfoStat table. By selecting this option, we will 

obtain a new table in InfoStat like the one shown 

to the right of this paragraph. 

Using the Scatterplot diagram submenu in the 

Graphics menu, we can obtain the following 

representation of the decomposition rates (Figure 

100). In the emerging dialogue window of the 

Scatter plot diagram, the following variables 

were assigned for this purpose: dFF, dFC, dGF 

and dGC on the y-axis and T on the x-axis. 
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Figure 100: Decomposition curves, by species and bag type. 
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Use of mixed models to control spatial variability in agricultural 

experiments 

Spatial correlation 

Stratification, or blocking, is a technique used to control the effects of variation in 

experimental units.  Blocks are groups of experimental units formed in such a way that 

plots within blocks are as homogenous as possible. Designs with plot stratification, such 

as randomized complete block designs (RCBD), incomplete block designs and lattices, 

are more efficient than a completely randomized design when differences between 

experimental units that make up a single stratum (block) are minimal and differences 

between strata are large. When this condition is not met, the error term can be 

overestimated, and if the data are unbalanced, treatment effect estimations can also be 

biased. When many treatment plots are evaluated in the field, the size of the blocks 

needed to obtain a repetition of the experiment is large, and consequently it is difficult 

to ensure homogeneity of the plots that make up the block: plots that are closer to each 

other can be more similar than plots that are farther away from each other, which 

generates spatial variation (Casanoves et al. 2005). Spatial variability refers to variation 

between observations obtained from plots with spatial arrangements on the field. Due to 

the existence of spatial variation within blocks, standard analysis of variance for designs 

that involve blocks of experimental unit does not always eliminate bias in the 

comparison of treatment effects. Variation from plot to plot within a single block can be 

caused by competition, heterogeneity in soil fertility, insect dispersion, weeds, crop 

illness, or cultivation practices, among others. For this reason, statistical procedures that 

account for spatial variation among plots and that adjust treatment means as a function 

of the observations in close neighboring plots have been proposed (Papadakis 1937); as 

well as models that account for spatial correlation in the error term and that also adjust 

treatment means (Mead 1971, Besag 1974, 1977, Ripley 1981). Gilmour et al. (1997) 

partition spatial variability among plots from an experiment in local and global spatial 

variability. Local spatial variability refers to small-scale difference between plots, where 

intra-block variations are considered. Local spatial trends and residual heterogeneity are 

modeled with the variance and covariance residual matrix. A bi-dimensional coordinate 

system allows the definition of plot location in the field. The modeling of plot spatial 

structure based on distance functions can be done in the context of linear mixed models 
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(Zimmerman & Harville 1991, Gilmour et al. 1997, Cullis et al. 1998), where in 

addition to accounting for the correlation structure among observations from different 

plots, it is possible to model heterogeneity of residual variance. This is very useful in 

comparative production experiments, since these are conducted in different 

environments. If the correlation depends only on the distance (magnitude and/or 

direction of the distance), models that estimate covariance among observations are 

called stationary. Correlation functions for stationary models can be isotropic or 

anisotropic. The former are identical in any direction (they only depend on the 

magnitude of the distances) while the latter allow different parameter values in different 

directions (i.e., they also depend on the direction in which the distance is calculated).  

 

Analysis of a comparative yield trials for peanuts 

 

To provide examples of the alternative analyses, we use data from the Peanut 

MET.IDB2 file, which come from a comparative yield trial  (CYT) for one agricultural 

year for experimental lines (genotypes) of peanuts (Arachis hypogaea L.) from the 

EEA-Manfredi, INTA,  Peanut Improvement Program in Argentina. In each year, CYTs 

were conducted in three locations of the cultivation area in the province of Córdoba: 

Manfredi, General Cabrera and Río Tercero. The group of genotypes evaluated was the 

same for each location. At each of the three locations, the experiments were conducted 

according to a RCBD with four repetitions, and grain yield values were recorded 

(kg/plot).  

Yield data were analyzed using different modifications of the following model: 

 ; 1,..,16; 1,..., 4; 1,...,3ijk i j k jk ik ijky i j k                 (11) 

where ijky  represents the observed response in the i-th level of the Genotype factor, in 

the j-th level of the Block factor, and in the k-th level of the Location factor;   

represents the general mean of the response; i  represents the effect of the i-th level of 

the Genotype factor; j  represents the effect of the j-th level of the Block factor; k  is 

the k-th level of the Location factor; ik is the interaction between Genotype and 

Location; ik  is the effect of the Block within the Location; and ijkl  represents the 

experimental error. The usual assumption is that  2~ 0,ijkl N   . 

http://dl.dropbox.com/u/65302225/Data/Peanut%20MET.IDB2
http://dl.dropbox.com/u/65302225/Data/Peanut%20MET.IDB2
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In most cases, all factors in the model are considered fixed, except for ijk and block 

effects (the latter are in some cases considered random). This has the effect of 

restricting the comparison of models to their own plot structure. Different plot structures 

induce a correlation structure between observations that can be understood within the 

framework of mixed models, including analytical techniques for the control of spatial 

variability. 

The following covariance structures are used for the data (marginal covariance): 

1. FB Model: Fixed block effect, independent errors, constant variance between locations. 

2. RB Model: Random block effect, independent errors, constant variance between 
locations. 

3. FBE Model: Fixed block effect, independent errors, different variances between 
locations.  

4. RBE Model: Random block effect, independent errors, different variances between 
locations. 

5. Exp Model: Exponential spatial correlation, no block effect, constant variance between 
locations. 

6. FBExp Model: Exponential spatial correlation, fixed block effect, constant variance 
between locations. 

7. ExpH Model: Exponential spatial correlation,  no block effect, different variances 
between locations. 

8. Gau Model: Guassian spatial correlation, no block effect, constant variance between 
locations. 

9. Sph Model: Spherical spatial correlation, no block effect, constant variance between 
locations.  

 

In the first two models, ijk is assumed to be independent with constant variance, 2, i.e., 

the assumption is that spatial variation does not exist (intra-block) and, furthermore, that 

homogeneity of residual variance exists between locations. The effects of the block are 

considered fixed or random, denoted as FB Model or RB Model, respectively.   

The procedures denoted as FBE Model and RBE Model are also based on a RCBD 

model, but they consider possible heterogeneous residual variances depending on the 

different levels of the location factor.  

The fifth procedure consists in adjusting an isotropic spatial correlation model with a 

correlation power function (Exp Model) for each location, without specifying a block 

effect. This model assumes that an exponential function accounts for intra-block 

variation as well as variation among blocks. 

The sixth procedure is the same as the previous one, but with a fixed block effect 

(FBExp Model). 
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The seventh model consists of a model similar to the Exp Model, but allows for the 

possibility of different variances (and correlations) for each location. 

The last two procedures consist in adjusting an isotropic spatial correlation model with a 

function for Gaussian correlation (Gau Model) and a spherical correlation function, 

without specifying a fixed block effect. 

REML estimation is used in all cases. In the variables selector, Yield is indicated as a 

dependent variable and Block, Location and Geno are indicated as classification 

variables.  

To adjust the FB Model, effects should be specified in the fixed effects tab as shown in 

Figure 101. 

To adjust the RB Model, factors should be specified in the fixed effects and random 

effects tabs, as shown in Figure 102 andFigure 103 respectively. Nothing should be 

specified in the remaining tabs. 

 

  

Figure 101: Window displaying the Fixed effects tab, FB Model (Peanut MET.IDB2 file). 
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Figure 102: Window displaying the Fixed effects tab, RB Model (Peanut MET.IDB2 file). 

  

Figure 103: Window displaying the Random effects tab, RB Model (Peanut MET.IDB2 file). 
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The FBE and RBE models consider independent errors and different variance between 

locations. To specify these models, proceed in the same way as in the two previous 

cases (i.e., FB and RB), but add a varIdent function in the Heteroscedasticity tab and 

indicate Location as the grouping variable. Once the function and grouping criteria are 

specified, click on Add (Figure 104).  

 

  

Figure 104: Window displaying the Heteroscedasticity tab, with Location as the grouping variable, 

FBE and RBE models (Peanut MET.IDB2 file). 

 

The fifth model does not include block effects, and it models variability within and 

between blocks by means of an exponential isotropic function (Exp Model) with 

constant variance between locations. To use the exponential function, we should add 

variables that denote spatial coordinates to the model. To do so, we should add the 

variables la and lon in Covariates. In the fixed effects tab, we keep geno, location and 

geno*location, and in the random effects tab no factor is specified. In the 

Hetersdedasticity tab, no function should be specified. To specify exponential spatial 

correlation, the corresponding function should be selected in the Correlations tab, the X 
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and Y coordinates should be declared as well as the grouping variables (in this case is 

Location), because there is a coordinate system within each site (Figure 105).  

 

  

Figure 105: Window displaying the Correlation tab using the la and lon variables as X and Y 

coordinates, respectively, and Site as the grouping variable, Exp and FBExp Models (Peanut 

MET.IDB2 file). 

The sixth model (FBExp Model) is the same as the previous one, but it specifies fixed 

block effects within each location (as shown in Figure 101). The inclusion of fixed 

blocks restricts the modeling of spatial variation to variation within the block. The 

variation among blocks is considered, in the classical sense, through the inclusion of 

blocks in the fixed part. Thus, specifying la and lon as coordinates of the spatial 

coordinate model is redundant, since it would be sufficient to declare only lon (the 

coordinate that varies within the block). Nevertheless, in order to omit the la coordinate, 

it would be necessary to declare a new stratification criterion that is consistent in the 

combination of the levels of location and block. This procedure generates identical 

results to those generated by the FBExp Model. 
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The seventh model (ExpH Model) is similar the Exp Model, but it allows for 

heterogeneous variances between locations (as shown in Figure 104). The Gau and Sph 

models are fitted just like the Exp Model without a block effect, as shown in Figure 105, 

but the Guassian and Spherical spatial correlation functions are selected, respectively. In 

the Heteroscedasticity tab, nothing should be specified.  

The results of the different fits for the different models are shown below. 

FB Model 
 

Extended and mixed linear models 

 

R specification of the model 

 

model000_Yield_REML<-

gls(Yield~1+Site+Genotype+Site:Genotype+Site:Block 

,method="REML" 

,na.action=na.omit 

,data=R.data00) 

 

Results for model: model000_Yield_REML 

 

Dependent variable:Yield 

 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 299.71 468.22 -91.86  0.35 0.86 
Smaller AIC and BIC is better 

 

 

 

Sequential hypothesis testing 

 

              numDF F-value p-value 

(Intercept)       1 8372.75 <0.0001 

Site              2  280.56 <0.0001 

Genotype         15    6.02 <0.0001 

Site:Genotype    30    4.32 <0.0001 

Site:Block        9    4.77 <0.0001 

 

 

 

RB Model 
 

Extended and mixed linear models 

 

R specification of the model 

 

model002_Yield_REML<-lme(Yield~1+Site+Genotype+Site:Genotype 

,random=list(Block_Site=pdIdent(~1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 
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Results for model: model002_Yield_REML 

 

Dependent variable:Yield 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 R2_1 

192 283.41 431.90 -91.71  0.35 0.81 0.86 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   135 1754.21 <0.0001 

Site           2     9   58.78 <0.0001 

Genotype       15   135    6.02 <0.0001 

Site:Genotype  30   135    4.32 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block_Site 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    0.49 

 

 

FBE Model  
 

Extended and mixed linear models 

 

R specification of the model 

 

model011_Yield_REML<-

gls(Yield~1+Site+Genotype+Site:Genotype+Site:Block 

,weight=varComb(varIdent(form=~1|Site)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00) 

 

Results for model: model011_Yield_REML 

 

Dependent variable:Yield 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 303.44 477.75 -91.72  0.36 0.86 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

             numDF F-value p-value 

(Intercept)      1 8547.37 <0.0001 

Site                  2  292.67 <0.0001 

Genotype            15    6.02 <0.0001 

Site:Genotype      30    4.36 <0.0001 

Site:Block           9    4.76 <0.0001 

 

Variance structure 
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Variance model: varIdent 

Formula: ~ 1 | Site 

 

Variance-function parameters 

 

Parámeter Estim 

gralcabr   1.00 

manf       0.92 

rio3       0.96 

 

 

RBE Model 
Extended and mixed linear models 

 

R specification of the model 

 

model013_Yield_REML<-

lme(Yield~1+Site+Genotype+Site:Genotype+Site:Block 

,random=list(Block_Site=pdIdent(~1)) 

,weight=varComb(varIdent(form=~1|Site)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model013_Yield_REML 

 

Dependent variable:Yield 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 R2_1 

192 287.12 441.55 -91.56  0.36 0.81 0.86 
Smaller AIC and BIC is better 

 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   135 1765.74 <0.0001 

Site           2     9   59.53 <0.0001 

Genotype       15   135    6.01 <0.0001 

Site:Genotype  30   135    4.36 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block_Site 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

 

        (const) 

(const)    0.46 

 

Variance structure 
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Variance model: varIdent 

Formula: ~ 1 | Site 

 

Variance-function parameters 

 

Parameter Estim. 

gralcabr   1.00 

manf       0.92 

rio3       0.95 

 

 

 

Exp Model  
 

Extended and mixed linear models 

 

R specification of the model 

 

model002_Yield_REML<-gls(Yield~1+Genotype+Site+Site:Genotype 

,correlation=corExp(form=~as.numeric(as.character(Lat))+as.numeric(as.

character(Long))|Site 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data00) 

 

Results for model: model002_Yield_REML 

 

Dependent variable:Yield 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 273.43 421.92 -86.72  0.39 0.81 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1 1687.54 <0.0001 

Genotype       15    7.27 <0.0001 

Site           2   56.18 <0.0001 

Genotype:Site  30    5.33 <0.0001 

 

Correlation structure 

 

Correlation model: Exponential spatial correlation 

Formula: ~ as.numeric(as.character(Lat)) + 

as.numeric(as.character(Long)) | Site 

Metric: euclidean 

 

Model parameters 

Parameter Estim 

range      0.96 

 

FBExp Model  

 
Extended and mixed linear models 
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R specification of the model 

 

model001_Yield_REML<-

gls(Yield~1+Genotype+Site+Site:Genotype+Site/Block 

,correlation=corExp(form=~as.numeric(as.character(Lat))+as.numeric(as.

character(Long))|Site 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data00) 

 

Results for model: model001_Yield_REML 

 

Dependent variable:Yield 

 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 284.85 456.26 -83.42  0.35 0.86 
Smaller AIC and BIC is better 

 

 

Sequential hypothesis testing 

             numDF F-value p-value 

(Intercept)       1 2785.57 <0.0001 

Genotype             15    7.86 <0.0001 

Site                   2   92.79 <0.0001 

Genotype:Site      30    5.74 <0.0001 

Site:Block            9    3.46  0.0007 

 

Correlation structure 

 

Correlation model: Exponential spatial correlation 

Formula: ~ as.numeric(as.character(Lat)) + 

as.numeric(as.character(Long)) | Site 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim 

range      0.78 
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ExpH Model  
 

 

Extended and mixed linear models 

 

R specification of the model 

 

model002_Yield_REML<-gls(Yield~1+Genotype+Site+Site:Genotype 

,weight=varComb(varIdent(form=~1|Site)) 

,correlation=corExp(form=~as.numeric(as.character(Lat))+as.numeric(as.

character(Long))|Site 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data02) 

 

Results for model: model002_Yield_REML 

 

Dependent variable:Yield 

 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 275.01 429.44 -85.50  0.43 0.81 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1 1633.46 <0.0001 

Genotype       15    7.15 <0.0001 

Site           2   61.51 <0.0001 

Genotype:Sit   30    5.53 <0.0001 

 

Correlation structure 

 

Correlation model: Exponential spatial correlation 

Formula: ~ as.numeric(as.character(Lat)) + 

as.numeric(as.character(Long)) | Site 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim 

range      0.99 

 

Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Site 

 

Variance-function parameters 

 

Parameter Estim 

gralcabr   1.00 

manf       0.85 

rio3       0.81 
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Gau Model  
 

 

Extended and mixed linear models 

 

 

R specification of the model 

 

model004_Yield_REML<-gls(Yield~1+Genotype+Site+Site:Genotype 

,correlation=corGaus(form=~as.numeric(as.character(Lat))+as.numeric(as

.character(Long))|Site 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data04) 

 

Results for model: model004_Yield_REML 

 

Dependent variable:Yield 

 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 277.81 426.30 -88.90  0.37 0.81 
Smaller AIC and BIC is better 

 

 

 

Sequential hypothesis testing 

 

 

            numDF F-value p-value 

(Intercept)     1 3399.06 <0.0001 

Genotype       15    7.36 <0.0001 

Site           2  113.57 <0.0001 

Genotype:Site  30    4.97 <0.0001 

 

Correlation structure 

 

Correlation model: Gaussian spatial correlation 

Formula: ~ as.numeric(as.character(Lat)) + 

as.numeric(as.character(Long)) | Site 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim 

range      0.87 
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Sph Model 
 

 

Extended and mixed linear models 

 

 

R specification of the model 

 

model005_Yield_REML<-gls(Yield~1+Genotype+Site+Site:Genotype 

,correlation=corSpher(form=~as.numeric(as.character(Lat))+as.numeric(a

s.character(Long))|Site 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data05) 

 

Results for model: model005_Yield_REML 

 

Dependent variable:Yield 

 

 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 277.72 426.21 -88.86  0.38 0.81 
Smaller AIC and BIC is better 

 

 

 

Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1 3170.04 <0.0001 

Genotype       15    7.61 <0.0001 

Site           2  105.96 <0.0001 

Genotype:Site  30    5.15 <0.0001 

 

Correlation structure 

 

Correlation model: Spherical spatial correlation 

Formula: ~ as.numeric(as.character(Lat)) + 

as.numeric(as.character(Long)) | Site 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim 

range      1.91 

 

 

Comparison of fitted models 

Due to the fact that the fitted models have different components in their fixed part, those 

that share the same fixed effects are compared by means of their AIC and BIC criteria. 

First, the FB, FBE and FBExp models (Table 3) are compared.  
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Table 3. Goodness of fit criteria for the adjusted models with a fixed block effect 

(Peanut MET.IDB2 file). 

Model AIC BIC 

FB 299.72 468.22 

FBE 303.44 477.75 

FBExp 284.85 456.26 

 

For this group of models that consider the fixed block effect, we can observe that the 

fixed block model plus an exponential correlation function provides the best fit. This 

implies that intra-block correlation exists, and it is removed by the exponential 

correlation function. Note also that there is no improvement in the models when 

heterogeneous variances between locations are allowed (FB with respect to FBE). If the 

variances are calculated from the coefficients of the different locations, we can also 

observe that these are very similar:  

Variance of gralcabr = (1*0.36)2 = 0.129 

Variance of manf = (0.92*0.36)2 = 0.109 

Variance of rio3 = (0.96*0.36)2 = 0.119 

The remaining 6 models can be compared among each other, given that they all share 

the same fixed effects, i.e., Geno, Location and Geno*Location (Table 4). 

Table 4. Goodness of fit criteria for the adjusted models without a fixed block effect 

(Peanut MET.IDB2 file). 

Model AIC BIC 

RB 283.41 431.90 

RBE 287.12 441.55 

Exp 273.43 421.92 

ExpH 275.01 429.44 

Gau 277.81 426.30 
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Sph 277.72 426.21 

Among the models that consider random block effects, we can observe that allowing for 

heterogenous variances between locations does not improve the model, since AIC and 

BIC are smaller in RB than in RBE. The same occurs when spatial variability is modeled 

only through an exponential correlation function, because allowing for heterogeneous 

variances (ExpH) does not improve the Exp Model.  

Compared to different spatial correlation models, no important differences were found 

for AIC and BIC between the Gau and Sph models, however these criteria had lower 

values for the exponential spatial correlation function. This last model had the best fit 

among the models without a fixed block effect. 

Even if the first group of models (FB, FBH and FBExp) are not comparable through 

AIC and BIC with this last group, the researcher should be able to determine if the 

blocks should be considered fixed or random. The selection of the model group will 

have an effect on the inferences that can be made. This is easily visualized by observing 

that the standard errors used for the comparison of means change depending on the 

model. A more detailed discussion on the selection of fixed or random blocks is 

provided by Casanoves et al. (2007). 

In this example, the best models within each group (i.e., FBExp and Exp for the first and 

second group of models, respectively) have the same covariance structure but differ in 

their fixed part: some have a block effect and others do not. In order to decide which of 

the two models is best, a likelihood ratio test using ML estimations for the models with 

and without block effect should be conducted (remember that ML should be used to 

compare models with different fixed effects).  

Model with blocks (complete FBExp): 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 163.82 356.01 -22.91  0.29 0.86 
Smaller AIC and BIC is better 

Model without blocks (reduced Exp): 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 182.85 345.73 -41.43  0.34 0.81 
Smaller AIC and BIC is better 
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Thus, the statistic 2log lik 2log lik 2( 22.91 41.43) 37.04completo reducidoG        with 9 

degrees of freedom and a p-value < 0.0001. Thus we can say with a 5% confidence 

level that it is best to keep the fixed block effect and the exponential correlation 

function. The comparison can be done manually, or by using the module for 

Exploratory analysis of an estimated model. The following result is obtained by 

selecting the Models tab and checking the estimated models that correspond to FBExp 

and Exp.  

Comparison of models 

 

                    Model df logLik Test  L.Ratio p-value 

model009_rendim_ML     1 59 -22.91                  

model010_rendim_ML     2 50 -41.43 1 vs 2   37.04 <0.0001 
 

 

The complete result corresponding to the FBExp Model is shown below. The hypothesis 

tests for the interaction between Genotype and Location are significant (p<0.0001), thus 

the recommended Genotype can change depending on location. Note that due to the fit 

of the the spatial correlation function, the standard errors of the Genotypes are not 

constant. The multiple comparisons shown are generated through the application of the 

DGC procedure (Di Rienzo et al. 2002). This procedure was adapted to account for the 

particularities of the correlation structure among estimates in mixed models. The 

application of this procedure is recommended because of the large number of means to 

be compared, since it ensures a simpler interpretation than that which can be given by 

an LSD or Fisher’s test. One can use the means of the combinations of locations and 

Genotypes as well as the interaction graph (Figure 106) to make recommendations. 

Extended and mixed linear models 

 

 

R specification of the model 

 

model007_Yield_REML<-

gls(Yield~1+Genotype+Site+Site:Genotype+Site/Block 

,correlation=corExp(form=~as.numeric(as.character(Lat))+as.numeric(as.

character(Long))|Site 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data07 
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Results for model: model007_Yield_REML 

 

Dependent variable:Yield 

Fit measurements 

 

N    AIC    BIC   logLik Sigma R2_0 

192 284.85 456.26 -83.42  0.35 0.86 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

             numDF F-value p-value 

(Intercept)      1 2785.57 <0.0001 

Site                  2   92.79 <0.0001 

Genotype            15    7.86 <0.0001 

Site:Genotype      30    5.74 <0.0001 

Site:Block           9    3.46  0.0007 

 

Correlation structure 

 

Correlation model: Exponential spatial correlation 

Formula: ~ as.numeric(as.character(Lat)) + 

as.numeric(as.character(Long)) | Site 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim 

range      0.78 

 

Adjusted means and standard error for Site 

DGC (alpha=0.05) 

 

 Site    Means  E.E.          

manf       3.00 0.08 A        

gralcabr   2.27 0.08    B     

rio3       1.56 0.08       C  
Different letters indicate significant difference between location parameters (p<= 0,05) 

 

Adjusted means and standard error for Genotype 

DGC (alpha=0.05) 

 

Genotype  Means S.E.          

mf435      2.73 0.10 A        

mf407      2.59 0.10 A        

mf429      2.51 0.10 A        

mf415      2.49 0.10 A        

mf420      2.38 0.10    B     

mf421      2.36 0.10    B     

mf431      2.34 0.10    B     

mf405      2.31 0.10    B     

manf68     2.24 0.10    B     

mf408      2.22 0.10    B     

manf393    2.22 0.10    B     

colirrad   2.21 0.10    B     

mf404      2.14 0.10    B     

mf433      1.96 0.10       C  

mf432      1.96 0.10       C  

mf410      1.78 0.10       C  
Different letters indicate significant difference between location parameters (p<= 0,05) 
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Adjusted means and standard error for Site*Genotype 

DGC (alpha=0.05) 

 

 Site    Genotype   Means       E.E.                

manf     mf407      3.67 0.17 A              

manf     mf421      3.54 0.17 A              

manf     mf405      3.38 0.17    B           

manf     mf431      3.28 0.17    B           

manf     mf435      3.24 0.17    B           

manf     manf68     3.23 0.17    B           

manf     mf420      3.17 0.17    B           

manf     mf429      3.08 0.17    B           

manf     colirrad   3.05 0.17    B           

manf     manf393    3.02 0.17    B           

gralcabr mf435      2.96 0.17    B           

manf     mf408      2.90 0.17    B           

manf     mf415      2.90 0.17    B           

gralcabr mf420      2.82 0.17    B           

gralcabr mf404      2.71 0.17       C        

manf     mf433      2.64 0.17       C        

gralcabr mf415      2.61 0.17       C        

manf     mf410      2.53 0.17       C        

gralcabr mf429      2.52 0.17       C        

manf     mf432      2.48 0.17       C        

gralcabr mf421      2.42 0.17       C        

gralcabr mf408      2.32 0.17       C        

gralcabr manf393    2.30 0.17       C        

gralcabr mf407      2.30 0.17       C        

gralcabr mf405      2.25 0.17       C        

gralcabr mf431      2.05 0.17          D     

gralcabr manf68     2.04 0.17          D     

rio3     mf435      1.99 0.17          D     

rio3     mf415      1.98 0.17          D     

manf     mf404      1.97 0.17          D     

rio3     mf429      1.93 0.17          D     

gralcabr colirrad   1.92 0.17          D     

rio3     mf432      1.89 0.17          D     

rio3     mf407      1.81 0.17          D     

gralcabr mf410      1.79 0.17          D     

gralcabr mf433      1.77 0.17          D     

rio3     mf404      1.74 0.17          D     

rio3     mf431      1.70 0.17          D     

rio3     colirrad   1.64 0.17          D     

gralcabr mf432      1.50 0.17             E  

rio3     mf433      1.47 0.17             E  

rio3     manf68     1.45 0.17             E  

rio3     mf408      1.44 0.17             E  

rio3     manf393    1.33 0.17             E  

rio3     mf405      1.32 0.17             E  

rio3     mf420      1.16 0.17             E  

rio3     mf421      1.14 0.17             E  

rio3     mf410      1.02 0.17             E  
Means with a common letter are not significantly different (p<= 0.05) 
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Figure 106: Dot plot used to study the interaction between Location and Genotype for the variable 

Yield (Peanut MET.IDB). 
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Applications of mixed models to other experimental designs 

Strip-plot design 

The strip-plot design is the result of restrictions in the randomization. Like the split-plot 

design, the strip-plot design results from an experiment that involves two or more 

factors. These factors (or their combinations) are applied to different levels, usually 2, 

and the randomization restrictions produce experimental units of different sizes and thus 

produce different error terms for each of the factors or combinations thereof (Milliken 

and Johnson 1992). 

Consider an example in which we wish to evaluate three levels of fertilization with N 

(0, 50 and 100 kg N/ha) and two irrigation levels (low and high) on corn yields (data in 

Strip-plot.IDB2). The experiment was conducted under a randomized complete block 

design with four blocks.  

Due to restrictions in the application of treatments, in the first stage, the three levels of 

nitrogen are randomized within each block; in the second stage, the irrigation levels are 

randomized, within each block and transversely with respect to the application of 

nitrogen.  

Although in the following diagram (Figure 107) the randomization is shown within a 

specific block, the experiment was repeated in various blocks, as needed in order to 

obtain different error terms and for the resulting model to make sense. If each stage of 

the design has more than one factor, and these do interact with each other, one could use 

the interactions of highest order as error terms and thus obtain F tests without the need 

for repetitions.  

 

 

  

http://dl.dropbox.com/u/65302225/Data/Peanut%20MET.IDB2
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 Stage 1  

 

 

100 kg N/ha 

 

0 kg N/ha 

 

50 kg N/ha 

 Stage 2  

 

 

 

 High irrigation Low irrigation  

Figure 107: Outline of an experiment conducted under a strip-plot design, repeated in completely 

randomized blocks with the randomization of the factors Nitrogen and Amount of irrigation for a 

particular block (StripPlot.IDB2 file). 

 

Yield data were analyzed using the following model:  

 ; 1,..,3; 1,2; 1,..., 4ijk i j ij k ki kj kijy b f c e i j k               (12) 

where ijky  is the observed response in the i-th level of the nitrogen factor, the j-th level 

of the irrigation factor, and the k-th level of the block factor;   is the general mean of 

the response; i  is the effect of the i-th level of the nitrogen factor; j  is the effect of 

the j-th level of the irrigation factor; kb  is the k-th level of the random Block factor; ikf
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is the effect of Block k on level i of nitrogen (random effect); 
jkc is the effect of block k 

on level j of irrigation (random effect); 
ij  is the interaction between the factors 

nitrogen and irrigation; and 
ijke  is the residual error. The usual assumption is that 

       2 2 2 2~ 0, , ~ 0, , ~ 0, , and ~ 0,k b ki f kj c kij eb N f N c N e N    , where all are 

independent. 

A dot plot (Figure 108) is used to explore the observed means:   

 

 

Figure 108: Dot plot used to explore the means of Irrigation and Nitrogen (StripPlot.IDB2 file). 

 

 

This model can be fitted in InfoStat in the menu Extended mixed and linear models, 

selecting Yield as variable, and Irrigation, Nitrogen, and Block as class variables. Then 

in the Fixed effects tab the variables are specified as shown in Figure 109.  
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Figure 109: Window displaying the Fixed effects tab to evaluate a mixed model (StripPlot.IDB2 file). 

 

 

In the Random effects tab, the block effect should be specified for the constant ( kb ) as 

well as for the fixed factors Nitrogen and Irrigation ( ikf y 
jkc , respectively) (Figure 

110).  
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Figure 110: Window displaying the Random effects tab for  mixed model (StripPlot.IDB2  file). 

 

 

Extended and mixed linear models 

 

R specification of the model 

 

model000_Yield_REML<-

lme(Yield~1+Nitrogen+Irrigation+Nitrogen:Irrigation 

,random=list(Block=pdIdent(~1) 

,Block=pdIdent(~Nitrogen-1) 

,Block=pdIdent(~Irrigation-1)) 

,method="REML" 

,na.action=na.omit 

,data=R.data00 

,keep.data=FALSE) 

 

Results for model: model000_Yield_REML 

 

Dependent variable:Yield 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 R2_1 R2_2 R2_3 

24 106.09 115.00 -43.05  1.20 0.85 0.94 0.95 0.99 
Smaller AIC and BIC is better 

 



Linear Mixed Models in InfoStat 

 
162 

Sequential hypothesis testing 

 

                    numDF denDF F-value p-value 

(Intercept)             1    15 3061.88 <0.0001 

Nitrogen                2    15   60.13 <0.0001 

Irrigation              1    15   52.18 <0.0001 

Nitrogen:Irrigation     2    15   33.12 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

        (const) 

(const)    1.83 

 

 

Covariance model for random effects: pdIdent 

Formula: ~Nitrogen - 1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

     0   100   50  

0   0.70 0.00 0.00 

100 0.00 0.70 0.00 

50  0.00 0.00 0.70 

 

 

Covariance model for random effects: pdIdent 

Formula: ~Irrigation - 1|Block 

 

Standard deviations relative to residual standard deviation and 

correlation 

 

     high low  

high 1.49 0.00 

low  0.00 1.49 

 

 

Adjusted means and standard error for Nitrogen 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Nitrogen Means S.E.          

100      77.38 1.40 A        

50       71.75 1.40    B     

0        68.25 1.40       C  
Means with a common letter are not significantly different (p<= 0.05) 

 

Adjusted means and standard error for Irrigation 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Irrigation Means S.E.       

high       77.33 1.47 A     

low        67.58 1.47    B  
Means with a common letter are not significantly different (p<= 0.05) 
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Adjusted means and standard error for Nitrogen*Irrigation 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Nitrogen Irrigation Means S.E.                

100      high       79.50 1.59 A              

50       high       77.50 1.59 A  B           

100      low        75.25 1.59    B  C        

0        high       75.00 1.59       C        

50       low        66.00 1.59          D     

0        low        61.50 1.59             E  
Means with a common letter are not significantly different (p<= 0.05) 

 

An alternative equivalent formulation of this model is presented in Figure 111. 

 

Figure 111: Window displaying the Random effects tab to evaluate a mixed model with Nitrogen and 

Irrigation as cross factors (StripPlot.IDB2 file). 
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Extended and mixed linear models 

 

 

R specification of the model 

 

model.019_Yield_REML<-

lme(Yield~1+Nitrogen+Irrigation+Nitrogen:Irrigation 

,random=list(Block=pdIdent(~1) 

,Block=pdBlocked(list(pdIdent(~1) 

,pdIdent(~Nitrogen-1) 

,pdIdent(~Irrigation-1)))) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data19 

,keep.data=FALSE) 

 

Results for model: model.019_Yield_REML 

 

Dependent variable: Yield 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 R2_1 R2_2 

24 108.09 117.89 -43.05  1.20 0.85 0.91 0.99 
Smaller AIC and BIC is better 

 

 

Marginal hypothesis testing (Type III SS) 

 

                    numDF denDF F-value p-value 

(Intercept)             1    15 3061.88 <0.0001 

Nitrogen                2    15   60.13 <0.0001 

Irrigation              1    15   52.18 <0.0001 

Nitrogen:Irrigation     2    15   33.12 <0.0001 

 

 

Sequential hypothesis testing 

 

                    numDF denDF F-value p-value 

(Intercept)             1    15 3061.88 <0.0001 

Nitrogen                2    15   60.13 <0.0001 

Irrigation              1    15   52.18 <0.0001 

Nitrogen:Irrigation     2    15   33.12 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Block 

 

Standard deviations and correlations 

 

        (const) 

(const)    1.67 
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Covariance model for random effects: pdBlocked 

Formula: ~Nitrogen + Irrigation|Block 

 

Standard deviations and correlations 

 

        S.D. 

(const) 1.42 

0       0.83 

100     0.83 

50      0.83 

high    1.78 

low     1.78 

 

Experimental design with two factors and spatial dependence 

There are often situations in which levels of a factor of interest cannot be assigned 

randomly, due to their nature. This is the case when taking water samples in a river, 

when evaluating effects at different distances in a forest, or when taking soil samples at 

different depths. 

The fact that the factor levels cannot be randomized creates a spatial dependence that 

must be taken into account. Here we present an example (Earthworms.IDB2 file), where 

four types of shade in coffee crops are evaluated: control with sun (sun), legume 1 

(ShadeL1), legume 2 (ShadeL2) and non legume (ShadeNL) at three depths (1=0-10 

cm, 2=10-20 cm y 3=20-30 cm). In each of these experimental units (combination of 

treatments and repetitions), samples of 30×30 cm and 10 cm-deep were taken at each of 

the three depths. Worms were collected from each sample, and their live weight 

(biomass) was recorded. The experimental units were arranged in a completely 

randomized design with three repetitions. The variable treatment_rep identifies the 

experimental units in which the different depths are measured, and it was generated 

from the Data menu, from the Cross categories to form a new variable submenu (in the 

variables selection window, Treatment and replication were declared as variables). 

To analyze the data from the Earthworms.IDB2 file, the variables should be specified in 

the following way (Figure 112).  

http://dl.dropbox.com/u/65302225/Data/Earthworms.IDB2
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Figure 112: Variables selector window for the Extended and mixed linear model (Earthworms.IDB2 

file). 

Then, in the Fixed effects tab, the variables should be specified as shown in the 

following figure (Figure 113).  
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Figure 113: Window displaying the Fixed effects tab for evaluating a mixed model (Earthworms.IDB2 

file). 

Finally, the exponential spatial correlation model should be specified in the Correlation 

tab; depth should be identified as the X coordinate and Treatment_rep as the grouping 

variable (Figure 114).  
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Figure 114: Window displaying the Correlation tab for evaluating a mixed model with exponential 

spatial correlation (Earthworms.IDB2 file). 

The corresponding result is shown below.  

Extended and mixed linear models 

 

 

R specification of the model 

 

model001_Biomass_REML<-gls(Biomass~1+Treatment+Depth+Treatment:Depth 

,correlation=corExp(form=~as.numeric(as.character(Depth))|Treatment_Re

p 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data01) 

 

Results for model: model001_Biomass_REML 

 

Dependent variable:Biomass 

 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 

36 161.03 177.52 -66.52  3.46 0.97 
Smaller AIC and BIC is better 
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Sequential hypothesis testing 

 

                numDF F-value p-value 

(Intercept)         1 3725.04 <0.0001 

Treatment           3   66.75 <0.0001 

Depth               2  303.14 <0.0001 

Treatment:Depth     6    4.86  0.0022 

 

Correlation structure 

 

Correlation model: Exponential spatial correlation 

Formula: ~ as.numeric(as.character(Depth)) | Treatment_Rep 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim. 

range       2.12 

 

 

All the resulting factors are significant, and there is an interaction between Treatment 

and Depth (p=0.0022). The range parameter has an estimated value of 2.12. This 

parameter should be interpreted with care, depending on the spatial correlation model 

that is used. In the geostatistical bibliography, Range, for second-order stationary spatial 

processes, is defined as the distance at which observations can be considered 

independent. The Range parameter shown in the results is related to this definition, but 

it is not the distance at which there is no more correlation (except for the spherical and 

linear models). In the spatial correlation models for which the covariance only 

asymptotically reaches zero (all except for spherical and linear), there is no distance at 

which spatial correlation equals zero; thus, the concept is of a practical range (distance 

at which covariance is reduced to 5%, or, equivalently, the distance at which the 

semivariogram reaches 95% of its maximum). This distance depends on the model used: 

for exponential spatial correlation it is equal to 3 times the estimated range; for the 

Gaussian spatial correlation it equals √3 times the estimated range (Littel et al. 2006).   

In this example, an exponential spatial correlation model is used. Depth 1 is between 0 

and 10 cm, Depth 2 is between 10 and 20 cm, and Depth 3 is between 20 and 30 cm; in 

other words, according to the way in which they were declared, the difference between 

depths 1 and 2  is 1, however in the original scale, this difference equals 10. Thus, the 

practical range of the original scale equals 3×21.2 cm=63.6 cm. This implies that the  

worm biomass observations will never be independent (for the observations to be 

considered practically independent they should be more than 63.6 cm apart, which is 

impossible for these data).  
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The exponential isotropic spatial correlation model shown here is equivalent to a first-

order autoregressive model (Casanoves et al. 2005). If we apply a first-order 

autoregressive model (Figure 115) to this same dataset, the following results are 

obtained: 

  

Figure 115: Window displaying the Correlation tab for evaluating a mixed model with first-order 

autoregressive correlation (Earthworms.IDB2 file). 

 

Extended and mixed linear models 

 

R specification of the model 

 

model002_Biomass_REML<-gls(Biomass~1+Treatment+Depth+Treatment:Depth 

,correlation=corAR1(form=~as.integer(as.character(Depth))|Treatment_Re

p) 

,method="REML" 

,na.action=na.omit 

,data=R.data01) 

 

Results for model: model002_Biomass_REML 

 

Dependent variable:Biomass 
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Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 

36 161.03 177.52 -66.52  3.46 0.97 
Smaller AIC and BIC is better 

 

 

 

Sequential hypothesis testing 

 

                numDF F-value p-value 

(Intercept)         1 3725.05 <0.0001 

Treatment           3   66.75 <0.0001 

Depth               2  303.14 <0.0001 

Treatment:Depth     6    4.86  0.0022 

 

Correlation structure 

 

Correlation model: AR(1) 

Formula: ~ as.integer(as.character(Depth)) | Treatment_Rep 

 

Model parameters 

 

Parameter Estim. 

Phi         0.62 

 

 

The only difference between these results and the previous ones is that these show the 

Phi correlation parameter (0.62) instead of the range parameter. 

We will now study the validity of the assumptions of this model. For this, we requested 

the diagnostic graphs from the Analysis-exploration of estimated models submenu, 

shown below (Figure 116). 
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Figure 116: Graphic diagnostic tools (Earthworms.IDB2 file). 

 

As shown in these graphs, the variability of the residuals apparently differs for the 

different treatments. In order to evaluate a heteroscedastic model by treatment, variables 

were specified in the Heteroscedasticity tab, as shown in Figure 117, and the following 

results were obtained. 
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Figure 117: Window displaying the Heteroscedasticity tab for evaluating a mixed model 

(Earthworms.IDB2 file). 

 

Extended and mixed linear models 

 

 

R specification of the model 

 

 

model005_Biomass_REML<-gls(Biomass~1+Treatment+Depth+Treatment:Depth 

,weight=varComb(varIdent(form=~1|Treatment)) 

,correlation=corAR1(form=~as.integer(as.character(Depth))|Treatment_Re

p) 

,method="REML" 

,na.action=na.omit 

,data=R.data01) 

 

Results for model: model005_Biomass_REML 

 

Dependent variable:Biomass 
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Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 

36 164.03 184.06 -65.02  4.20 0.97 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

 

               numDF F-value p-value 

(Intercept)        1 4300.37 <0.0001 

Treatment             3   54.19 <0.0001 

Depth            2  511.72 <0.0001 

Treatment:Depth     6    6.32  0.0004 

 

Correlation structure 

 

Correlation model: AR(1) 

Formula: ~ as.integer(as.character(Depth)) | Treatment_Rep 

 

Model parameters 

 

Parameter Estim. 

Phi         0.73 

 

Variance structure 

 

Variance model: varIdent 

Formula: ~ 1 | Treatment 

 

Variance-function parameters 

 

Parameter Estim 

sun        1.00 

shadeL1   0.65 

shadeL2   0.66 

shadeNL   1.22 

 

The AIC and BIC criteria are larger for the heteroscedastic model than for the 

homoscedastic model, indicating that the latter is better. A similar conclusion is 

obtained by using the likelihood ratio test (p=0.3916) when comparing the models as 

shown in the section Analysis of fitted models. 

Comparison of models 

 

 

                       df  AIC    BIC   logLik  Test  L.Ratio p-value 

model001_Biomass_REML 14 161.03 177.52 -66.52                        

model002_Biomass_REML 17 164.03 184.06 -65.02 1 vs 2    3.00  0.3916 
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For this reason, we selected the homoscedastic model, and because there is interaction 

between the two factors, we generate a scatter plot to visualize the behavior of the worm 

biomass means (Figure 118).  

 

 

Figure 118: Dot plot used to study the interaction between Treatments and Depth and its effect on 

biomass (Earthworms.IDB2 file). 

 

As shown, this graph suggests the presence of linear behavior for sun and quadratic 

behavior for the other treatments. To test these hypotheses, orthogonal and polynomial 

contrasts are conducted, from the Comparison tab, Contrasts subtab (Figure 119).  
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Figure 119: Window displaying the Comparisons tab and Contrasts subtab for evaluating a mixed 

model (Earthworms.IDB2 file). 

 

The results of the contrasts are shown below. The only treatment that shows only a 

linear trend, and no quadratic trend, is the sun treatment (p<0.0001 and p=0.8147 

respectively). The rest of the treatments show a quadratic trend in addition to a linear 

trend.  

hypothesis testing for contrasts 

 

Treatment*Depth   F    df(num) df(den) p-value 

Ct.1         111.81       1      24 <0.0001 

Ct.2           0.06       1      24  0.8147 

Ct.3         222.11       1      24 <0.0001 

Ct.4          26.66       1      24 <0.0001 

Ct.5         164.40       1      24 <0.0001 

Ct.6          10.52       1      24  0.0035 

Ct.7          92.62       1      24 <0.0001 

Ct.8           7.26       1      24  0.0127 

Total           79.43       8      24 <0.0001 
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Contrasts coefficients 

 

Treatment Depth        Ct.1    Ct.2  Ct.3   Ct.4   Ct.5   Ct.6   Ct.7   Ct.8  

sun      1        -1.00   1.00   0.00   0.00   0.00   0.00   0.00   0.00 

sun      2         0.00  -2.00   0.00   0.00   0.00   0.00   0.00   0.00 

sun      3         1.00   1.00   0.00   0.00   0.00   0.00   0.00   0.00 

shadeL1 1         0.00   0.00  -1.00   1.00   0.00   0.00   0.00   0.00 

shadeL1 2         0.00   0.00   0.00  -2.00   0.00   0.00   0.00   0.00 

shadeL1 3         0.00   0.00   1.00   1.00   0.00   0.00   0.00   0.00 

shadeL2 1         0.00   0.00   0.00   0.00  -1.00   1.00   0.00   0.00 

shadeL2 2         0.00   0.00   0.00   0.00   0.00  -2.00   0.00   0.00 

shadeL2 3         0.00   0.00   0.00   0.00   1.00   1.00   0.00   0.00 

shadeNL 1         0.00   0.00   0.00   0.00   0.00   0.00  -1.00   1.00 

shadeNL 2         0.00   0.00   0.00   0.00   0.00   0.00   0.00  -2.00 

shadeNL 3         0.00   0.00   0.00   0.00   0.00   0.00   1.00   1.00 
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Augmented design with replicated checks  

This type of treatment arrangement is common in the evaluation of new cultivars 

(varieties, hybrids, etc.) in genetic plant breeding. Essentially, it consists of randomly 

locating the group of cultivars to be evaluated and always inserting a common control 

between the groups. The presence of this control allows us to model the systematic 

effects of soil quality where the experimental plots are located. An example with 16 

hybrids (H1, ..., H16) and one control, for a total of 32 experimental units, is presented. 

The data are in the file Matched checks.IDB2. 

A basic alternative for analyzing these data (that is not very efficient) is to conduct a 

one-way ANOVA in order to compare treatments using an estimation of the error term 

based on the variance between the controls (the only levels of the treatment factor that 

are repeated). This model is not able to take into account the bias produced by the 

systematic difference between experimental units. In order to fit this model, specify 

Yield as the dependent variable in the variables selector and Hybrid as the classification 

variable.   

In the Fixed effects tab, Hybrid was specified as shown in Figure 120. Then, in the 

Comparisons tab, Fisher’s LSD test for Hybrid was requested.  

http://dl.dropbox.com/u/65302225/Data/Earthworms.IDB2
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Figure 120: Window displaying the Fixed effects tab (Matched checks.IDB2 file). 

 

The corresponding results are shown below.  

Extended and mixed linear models 

 

 

R specification of the model 

 

model001_Yield_REML<-gls(Yield~1+Hybrid 

,method="REML" 

,na.action=na.omit 

,data=R.data01) 

 

Results for model: model001_Yield_REML 

 

Dependent variable:Yield 

 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma  R2_0 

32 219.90 232.64 -91.95 101.35 0.69 
Smaller AIC and BIC is better 
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Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1 3580.56 <0.0001 

Hybrid         16    2.12  0.0763 

 

 

Adjusted means and standard error for Hybrid 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Hybrid   Means   S.E.              

H4      1230.00 101.35 A           

H3      1222.00 101.35 A           

H14     1193.00 101.35 A  B        

H10     1168.00 101.35 A  B  C     

H11     1116.00 101.35 A  B  C     

Witness 1115.81  25.34 A  B  C     

H5      1099.00 101.35 A  B  C     

H9      1063.00 101.35 A  B  C     

H2      1037.00 101.35 A  B  C  D  

H12     1033.00 101.35 A  B  C  D  

H8       975.00 101.35 A  B  C  D  

H7       966.00 101.35 A  B  C  D  

H16      928.00 101.35 A  B  C  D  

H6       907.00 101.35    B  C  D  

H1       886.00 101.35       C  D  

H13      876.00 101.35       C  D  

H15      756.00 101.35          D  

Means with a common letter are not significantly different (p<= 0.05) 

 

The F trial for Hybrid was not significant (p = 0.0763), thus the differences between 

means presented by Fisher’s LSD test should not be interpreted.  

Alternatively, it is possible to use spatial correlations to correct the means of each 

hybrid for the “site effect” of the location to which they were randomly assigned.  To do 

this, we proceed to specify plot Position as a covariate.  

The Fixed effects tab should look as in Figure 120. In the Correlation tab, the following 

different models should be specified: 

Model 1: Exponential spatial correlation (Figure 121). 

Model 2: Gaussian spatial correlation (Figure 122). 

Model 3: Linear spatial correlation (Figure 123). 

Model 4: “Rational quadratic” spatial correlation (Figure 124). 

Model 5: Spherical spatial correlation (Figure 125). 
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The spatial correlation selection windows and the fit measures for each of the estimated 

models are shown below. 

 

Figure 121: Window displaying the Correlation tab, and selection of Exponential spatial correlation 

(Matched checks.IDB2 file). 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma  R2_0 

32 218.62 232.08 -90.31 112.79 0.58 
Smaller AIC and BIC is better 
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Figure 122: Window displaying the Correlation tab, and selection of Guassian spatial correlation 

(Matched checks.IDB2 file). 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma  R2_0 

32 219.17 232.62 -90.58 106.78 0.58 
Smaller AIC and BIC is better 
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Figure 123: Window displaying the Correlation tab, and selection of Linear spatial correlation 

(Matched checks.IDB2 file). 

 

Fit measurements 

N   AIC    BIC   logLik Sigma  R2_0 

32 219.13 232.58 -90.56 107.52 0.56 
Smaller AIC and BIC is better 
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Figure 124: Window displaying the Correlation tab, and selection of “Rational quadratic” spatial 

correlation (Matched checks.IDB2 file). 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma  R2_0 

32 218.81 232.26 -90.40 106.92 0.59 
Smaller AIC and BIC is better 
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Figure 125: Window displaying the Correlation tab, and selection of Spherical spatial correlation 

(Matched checks.IDB2 file).  

 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma  R2_0 

32 219.21 232.66 -90.60 137.39 0.56 
Smaller AIC and BIC is better 

 

 

All the models have a good fit, as shown by the similarity between their AIC and BIC 

values. The model with the lowest values is the exponential spatial correlation model 

(AIC=218.62, BIC=232.08). The results for that model are shown below. 
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Extended and mixed linear models 

 

 

R specification of the model 

 

model003_Yield_REML<-gls(Yield~1+Hybrid 

,correlation=corExp(form=~as.numeric(as.character(position)) 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data03) 

 

Results for model: model003_Yield_REML 

 

Dependent variable:Yield 

 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma  R2_0 

32 218.62 232.08 -90.31 112.79 0.58 
Smaller AIC and BIC is better 

 

 

 

Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1  582.79 <0.0001 

Hybrid         16    5.27  0.0012 

 

Correlation structure 

 

Correlation model: Exponential spatial correlation 

Formula: ~ as.numeric(as.character(position)) 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim. 

range       2.74 
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Adjusted means and standard error for Hybrid 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Hybrid   Means  S.E.                 

H3      1248.31 85.33 A              

H4      1244.19 85.33 A              

H10     1145.64 85.33 A  B           

H5      1128.65 85.33 A  B  C        

Witness 1096.98 45.09 A  B  C        

H2      1091.07 85.33 A  B  C        

H11     1078.43 85.33 A  B  C        

H9      1078.28 85.33 A  B  C        

H14     1070.07 85.33 A  B  C        

H1      1005.46 85.33    B  C        

H12      979.80 85.33    B  C        

H6       966.31 85.33    B  C  

       

H7       936.21 85.33    B  C  D     

H8       933.40 85.33    B  C  D     

H16      902.87 85.33       C  D     

H13      727.55 85.33          D  E  

H15      653.36 85.33             E  

Means with a common letter are not significantly different (p<= 0.05) 

 

Differences between hybrids were found (p = 0.0012). Fisher’s LSD means comparison 

shows that the hybrids with the greatest yield are H2, H3, H4, H5, H9, H10, H11, H14, 

and that these do not differ from the control.  

Alternatively, the problem can be thought of as it might have been during the early days 

of spatial correlation modeling (Papadakis 1937), and one might use covariance analysis 

to adjust the means of the hybrids in the different positions. In order to approximate this 

type of analysis, we created a new variable called Tes, which contains the yields 

corresponding to the hybrid closest to each control. Then, the difference between the 

control yield and the hybrid yield (Dif) was calculated. 

We then conducted a linear regression analysis, with Dif as the dependent variable and 

position as the regressor. The predicted values of this model were saved with the 

intention of using them as covariates in the analysis of the hybrid means. Then, in the 

Extended and mixed linear models variables selector window, variables are specified as 

shown in Figure 126.  
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Figure 126: Variables selector window for the Extended and mixed linear models (Matched 

checks.IDB2 file). 

In the fixed effects window, declare PRED_Dif and Hybrid. The corresponding output 

is shown below.  

Extended and mixed linear models 

 

R specification of the model 

 

model004_Yield_REML<-gls(Yield~1+Hybrid+PRED_Dif 

.method="REML" 

.na.action=na.omit 

.data=R.data04) 

 

Results for model: model004_Yield_REML 

 

Dependent variable:Yield 

 

Fit measurements 

 

N   AIC    BIC   logLik Sigma R2_0 

32 215.09 227.23 -88.54 79.89 0.82 
Smaller AIC and BIC is better 

 

Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1 5763.58 <0.0001 

Hybrid         16    3.42  0.0129 

PRED_Dif        1   10.15  0.0066 
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Adjusted means and standard error for Hybrid 

LSD Fisher (alpha=0.05) 

p-value correction procedure: No 

 

Hybrid   Means  S.E.              

H4      1295.07 82.46 A           

H3      1293.92 83.02 A           

H10     1150.88 80.07 A  B        

H5      1143.52 81.10 A  B        

H2      1129.47 85.00 A  B        

H14     1121.08 83.02 A  B        

Witness 1115.81 19.97 A  B        

H11     1078.33 80.76 A  B        

H9      1052.73 79.95 A  B  C     

H12      988.48 81.10    B  C     

H1       985.32 85.76    B  C     

H8       985.27 79.95    B  C     

H7       983.12 80.07    B  C     

H6       944.67 80.76    B  C     

H16      828.68 85.76       C  D  

H13      810.93 82.46       C  D  

H15      663.53 85.00          D  
Means with a common letter are not significantly different (p<= 0.05) 

 

 
 

 

Although the conclusion regarding the cultivars is the same as that of the exponential 

spatial correlation analysis, we can observe that the adjusted means and the standard 

errors are different. The order, or ranking, among the hybrids that generated the greatest 

yields is also different. Furthermore, studying spatial correlation is a much simpler 

alternative to conduct this type of analysis.  
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Applications in linear regression 

Random coefficient regression 

In this example, we are evaluating the academic performance of sixth grade 

Mathematics students. Eight teachers were randomly selected to participate in the study. 

At the beginning of the academic year, the students from the participant teachers were 

administered a diagnostic test (pre-test) with sixth grade mathematical contents. At the 

end of the year, the same students were administered a post-test assessing the same 

content (Cáceres et al., 2011). 

Each teacher had between 10 and 30 students, and some students completed the pre-test 

but not the post-test. We wish to assess whether there is a relationship between learning 

gain (difference between pre- and post-test score) and the pre-test score. If we plot this 

relationship using the data in the file Learning.IDB2, we observe a negative relationship 

between gain and pre-test score. Furthermore, adding a smooth line to each teacher’s 

data we can notice that the trends are approximately linear, and that the parameters of 

these lines vary from teacher to teacher (Figure 127):  

 
Figure 127: Relationship between Learning gain and Pre-test score, smoothed separately for each 

teacher. File Learning.idb2.   

 

In order to fit a model in InfoStat to describe these data one must consider that the 

teachers are randomly selected, and therefore the variability between lines is random. 

An appropriate model is a simple linear regression with random intercept and slope.  
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http://dl.dropbox.com/u/65302225/Data/Learning.IDB2
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These random effects must clearly be correlated (in general, if the slope increases the 

intercept should decrease for the data to stay in the same observed area). Hence, the 

model must be specified in InfoStat in such a way that correlated intercept and slope 

random effects can be incorporated. To do this, in the Variables window we need to 

select Gain as variable, Teacher as class variable, and Pre-test score as covariate. Then, 

in the Fixed effect tab, Pre-test score is selected, and we need to add the explicit 

specification of the intercept (to be able to declare both as random effects later). This is 

done adding 1 in the Fixed effects tab (Figure 128). We also need to check the option 

Fixed effects coefficients to obtain the equation of the average line. 

 

 

Figure 128: Window to select fixed effects in the Extended and mixed models for the data in the file 

LearningIDB2.  
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The specification of the random effects is done by adding Teacher as stratification 

criterion, and indicating that this effects acts on 1+Pre.test (i.e., there are random 

teacher effects on the intercept and on the slope) (Figure 129). Furthermore, it is 

necessary to indicate pdSymm as the covariance structure of these random effects in 

order to have different variances for intercept and slope (obvious given the different 

nature of both parameters), and correlation between both random effects  

 

Figure 129: Extended and mixed linear models with the Random effects tab for the data in the file 

Learning.IDB2.  

The output for this model shows, in addition to the usual parts in mixed models, the 

coefficients of the average straigth line, ˆ 30.13 0.81Y x  . As expected, as the pre-test 

score is larger the gain decreases. One can also notice the large correlation between 

intercept and slope (-0.876), which confirms the need to incorporate this parameter in 

the model.  
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Extended and mixed linear models 

 

 

R specification of the model 

 

model.008_Gain_REML<-lme(Gain~1+Pre.test.score 

,random=list(Teacher=pdSymm(~1+Pre.test.score)) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data08 

,keep.data=FALSE) 

 

Results for model: model.008_Gain_REML 

 

Dependent variable: Gain 

 

 

Fit measurements 

 

N     AIC      BIC     logLik  Sigma  R2_0  R2_1  

184 1485.954 1505.178 -736.977 13.174 0.339 0.366 
Smaller AIC and BIC is better 

 

 

 

Marginal hypothesis testingmodel.008_Gain_REML 

 

               numDF denDF F-value p-value 

(Intercept)        1   175 104.797 <0.0001 

Pre.test.score     1   175  78.129 <0.0001 

 

 

Sequential hypothesis testing 

 

               numDF denDF F-value p-value 

(Intercept)        1   175  29.007 <0.0001 

Pre.test.score     1   175  78.129 <0.0001 

 

 

Fixed effects 

 

               Value  Std.Error DF  t-value p-value 

(Intercept)    30.133     2.944 175  10.237 <0.0001 

Pre.test.score -0.811     0.092 175  -8.839 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdSymm 

Formula: ~1 + Pre.test.score|Teacher 

 

Standard deviations and correlations 

 

               (const) Pre.test.score 

(const)          2.645         -0.876 

Pre.test.score  -0.876          0.111 
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Heteroscedastic regression 

In a research to evaluate primary productivity in pastures and its relationship with 

precipitation, nine plots were evaluated (five with native pasture and four with sown 

pastures). The primary productivity for 22-day periods was measured several times 

during the year in each plot (most plots were measures 12 times). Simultaneously, 

rainfall (mm) during the 22-days growing period was recorded (Ospina 2011, Ospina et 

al. 2012). The data are in the file Primary productivity.IDB2. In order to make a 

regression analysis including pasture as a classification variable, we select the variables 

in the Extended and mixed linear models module as shown in Figure 130. 

 

 

Figure 130: Variable selection window in the Extended and mixed linear models module for the data 

in file Primary productivity.IDB2. 

 

In the Fixed effects tab we select the variables as in Figure 131 and in the Random 

effects tab we select Plot (Figure 132). With these specifications we are fitting a linear 

regression model with two intercepts (one for native and one for sown pastures), and a 

random plot effect. The residuals obtained from fitting this model can be used to 

http://dl.dropbox.com/u/65302225/Data/Primary%20productivity.IDB2
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diagnose possible problems. In Figure 133 the q-q plot shows that the residuals 

distribution is approximately normal, but the scatterplot of Pearson conditional residuals 

vs. Rain shows a runs of negative residual values beyond 300 mm. This same run is 

observed in the scatterplot of Pearson conditional residual vs. fitted values, in this case 

beyond 110 g of primary productivity. This suggests the need to add a quadratic term 

for the regression Rain. To do this, in the Data menu, Transformations submenu, select 

Rain as variable. Then request a power transformation (in this case of order 2), and this 

generates a new variable in the dataset call POW_Rain.  

 

 

Figure 131: Window from the Extended and mixed linear model with the Fixed effects tab for the data 

in file Primary productivity.IDB2. 
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Figure 132: Window from the Extended and mixed linear model with the Random effects tab for the 

data in file Primary productivity.IDB2. 
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Figure 133: Graphical tools for diagnostic obtained from the data in file Primary productivity.IDB2 

with Rain as regressor and Pasture as fixed factor. 

 

 

The variable POW_Rain was added as covariate in the variable selector window in 

Extended and mixed linear models. Then it was included in the Fixed effects tab in the 

model, together with the other variables already entered as shown in Figure 142. The 

random effects tab is left unchanged as in Figure 132. Once this model is fitted and the 

residual diagnostic is requested, we obtain the plots shown in Figure 134. 
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Figure 134: Graphical tools for diagnostic obtained from the data in file Primary productivity.IDB2 

with Rain and POW_Rain as regressors and Pasture as fixed factor. 

 

Analyzing the scatter plot of Pearson conditional residuals vs. fitted values, we notice a 

clear trend for the residuals to increase their variance as their mean value increases. This 

suggests the need to model the variance heterogeneity with a function relating the 

residual variances with the mean. To use this function, we run the analysis again 

(remember that CTRL + r repeats the last command in InfoStat), and in the 

Heteroscedasticity tab we add VarPower as shown in Figure 135. 



Linear Mixed Models in InfoStat 

 
199 

 

Figure 135: Window from the Extended and mixed linear model with the Heteroscedasticity tab for the 

data in file Primary productivity.IDB2, and the selection of the function VarPower. 

This analysis was repeated with two other variance functions: VarExp y 

VarConstPower. Here are the fit statistics for the three models: 

VarExp 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

104 1002.64 1020.87 -494.32  9.89 0.52 0.52 
Smaller AIC and BIC is better  

 

VarPower 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

104 1001.07 1019.31 -493.54  2.16 0.53 0.53 
Smaller AIC and BIC is better  
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VarConstPower 

Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

104 1001.85 1022.69 -492.92  0.62 0.52 0.52 
Smaller AIC and BIC is better  

 

 

We cannot compare these models using likelihood ratio tests because they do not form a 

nested set of hypotheses (except VarPower and VarConstPower). In these cases only 

the AIC and BIC criteria are useful. The model VarPower results the best alternative to 

model the variance heterogeneity. After fitting this model, residuals do not show any 

trend (Figure 136). 

  

Figure 136: Graphical tools for diagnostic obtained from the data in file Primary productivity.IDB2 

with Rain and POW.Rain as regressors, Pasture as fixed factor, and a VarPower function to model 

variance heterogeneity.  
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To test the hypothesis of equal linear and quadratic trends for both pastures, we 

included in the model the interactions between pasture type and the two regressors 

(Figure 137). The random plot effect was added in the Random effects tab (Figure 138) 

and the heteroscedasticity was specified as in Figure 135. 

 

Figure 137: Window from the Extended and mixed linear model for the data in file Primary 

productivity.IDB2, and the specification of the model with interaction.  

 



Linear Mixed Models in InfoStat 

 
202 

 

Figure 138: Window from the Extended and mixed linear model module with the Random effects tab 

for the data in file Primary productivity.IDB2. 

 

With these specifications we obtained the following output:  

Extended and mixed linear models 

 

R specification of the model 

 

model.014_Productivity_REML<-

lme(Productivity~1+Pasture+Rain+POW_Rain+Pasture:Rain+Pasture:POW_Rain 

,random=list(Plot=pdIdent(~1)) 

,weights=varComb(varPower(form=~fitted(.))) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data14 

,keep.data=FALSE) 

 

Results for model: model.014_Productivity_REML 

 

Dependent variable: Productivity 
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Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 

104 1004.89 1028.15 -493.45  2.46 0.65 0.65 
Smaller AIC and BIC is better 

 

 

Marginal hypothesis testing (Type III SS) 

 

                 numDF denDF F-value p-value 

(Intercept)          1    91    0.32  0.5703 

Pasture              1     7   12.62  0.0093 

Rain                 1    91  167.15 <0.0001 

POW_Rain             1    91   55.66 <0.0001 

Pasture:Rain         1    91    4.19  0.0435 

Pasture:POW_Rain     1    91    0.01  0.9179 

 

 

Sequential hypothesis testing 

                 numDF denDF F-value p-value 

(Intercept)          1    91  152.56 <0.0001 

Pasture              1     7   34.31  0.0006 

Rain                 1    91  184.34 <0.0001 

POW_Rain             1    91   62.10 <0.0001 

Pasture:Rain         1    91   21.04 <0.0001 

Pasture:POW_Rain     1    91    0.01  0.9179 

 

 

Fixed effects 

                      Value   Std.Error DF t-value p-value 

(Intercept)              6.83      3.67 91    1.86  0.0660 

PastureSown            -16.27      4.58  7   -3.55  0.0093 

Rain                     0.60      0.07 91    8.32 <0.0001 

POW_Rain             -1.0E-03   1.8E-04 91   -5.74 <0.0001 

PastureSown:Rain         0.23      0.11 91    2.05  0.0435 

PastureSown:POW_Rain -2.9E-05   2.8E-04 91   -0.10  0.9179 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Plot 

 

Standard deviations and correlations 

 

        (const) 

(const) 1.3E-03 

 

 

Variance structure 

 

Variance model: varPower 

Formula: ~ fitted(.) 

 

Variance-function parameters 

 

Parameter Estim. 

power       0.60 

 

As can be seen from the previous output, there is interaction of pasture with rain, which 

indicates that the linear component is different in both pastures. On the other hand, there 
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are no differences in the quadratic component and hence it is the same in both pastures. 

The final model eliminated the interaction Pasture*POW_Rain, and the resulting output 

follows.  

Extended and mixed linear models 

 

 

R specification of the model 

 

model.015_Productivity_REML<-

lme(Productivity~1+Pasture+Rain+POW_Rain+Pasture:Rain 

,random=list(Plot=pdIdent(~1)) 

,weights=varComb(varPower(form=~fitted(.))) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data15 

,keep.data=FALSE) 

 

Results for model: model.015_Productivity_REML 

 

Dependent variable: Productivity 

 

Fit measurements 

 

N    AIC     BIC   logLik  Sigma R2_0 R2_1 

104 988.37 1009.14 -486.19  2.46 0.65 0.65 
Smaller AIC and BIC is better 

 

 

Marginal hypothesis testing (Type III SS) 

 

             numDF denDF F-value p-value 

(Intercept)      1    92    0.35  0.5579 

Pasture          1     7   17.01  0.0044 

Rain             1    92  171.84 <0.0001 

POW_Rain         1    92   57.67 <0.0001 

Pasture:Rain     1    92   21.17 <0.0001 

 

 

Sequential hypothesis testing 

 

             numDF denDF F-value p-value 

(Intercept)      1    92  154.21 <0.0001 

Pasture          1     7   33.77  0.0007 

Rain             1    92  186.37 <0.0001 

POW_Rain         1    92   63.32 <0.0001 

Pasture:Rain     1    92   21.17 <0.0001 

 

 

Fixed effects 

 

                  Value   Std.Error DF t-value p-value 

(Intercept)          6.66      3.43 92    1.94  0.0553 

PastureSown        -16.00      3.88  7   -4.12  0.0044 

Rain                 0.60      0.06 92   10.42 <0.0001 

POW_Rain         -1.0E-03   1.4E-04 92   -7.59 <0.0001 

PastureSown:Rain     0.21      0.05 92    4.60 <0.0001 
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Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Plot 

 

Standard deviations and correlations 

 

        (const) 

(const) 2.2E-03 

 

 

Variance structure 

 

Variance model: varPower 

Formula: ~ fitted(.) 

 

Variance-function parameters 

 

Parameter Estim. 

power       0.60 

 

 

 

Adjusted means and standard error for Pasture 

LSD Fisher (Alpha:=0.05) 

p-value correction procedure: No 

 

  Pasture    Means S.E.       

Sown         70.01 4.58 A     

Semi-natural 56.17 3.52    B  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

 

Due to the presence of a polynomial regression, it is more appropriate to report 

sequential tests (type I). We can conclude that there is a pasture effect (p=0.0007), a 

rain quadratic effect (p<0.0001), and a difference in linear trend between pastures 

(p<0.0001). Figure 139 shows the estimated average lines and the observations at 

individual plots.  
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Figure 139: Scatterplot showing the relationship between primary productivity and rain for each of the 

two pastures. File Primary productivity.IDB2. 

 

Since there is interaction, it is not possible to interpret the adjusted means. In order to 

compare both pastures at a given level of rain we can use the menu Model Exploration, 

Linear combinations tab. To determine the coefficients to be used, consider the 

following hypothesis (which tests if there are differences in primary productivity of 

both pastures for a cumulative rain of 100 mm):  

 
0 0 1 2 0 1 2 1: 100 10000 100 10000 100H                

This hypothesis is equivalent to 
0 1: 100 0H    , which is expressed as a linear 

combination of parameters in the model . Similarly, it is possible to contrast pastures at 

other rain levels. The coefficients to do for 100 mm, 300 mm and 500 mm are shown in 

Figure 140. 
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Figure 140: Model exploration window with Linear combination tab for the data in file Primary 

productivity.IDB2. 

 

The results indicate that there are no significant differences between pastures when the 

cumulative rain is 100 mm (p=0.2008), but when the cumulative rain is 300 mm or 500 

mm the sown pasture has a significantly larger primary productivity (P=0.0002 and 

p=0.0001 respectively). 

Hypothesis testing for linear combinations 

 

Linear comb. Estimate S.E.  df  F    p-value 

Comb.1           5.48  4.25  1  1.66  0.2008 

Comb.2          48.44 12.45  1 15.14  0.0002 

Comb.3          91.40 21.59  1 17.92  0.0001 

Total                             nd      nd 

 

Linear combination coefficients 

 

  Parameters     Comb.1 Comb.2 Comb.3 

(Intercept)        0.00   0.00   0.00 

PastureSown        1.00   1.00   1.00 

Rain               0.00   0.00   0.00 

POW_Rain           0.00   0.00   0.00 

PastureSown:Rain 100.00 300.00 500.00 
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Incomplete blocks and related designs 

Alpha lattice designs 

The data from this example come from an 18-variety barley trial conducted in Scotland 

(Patterson et al., 1989). Due to the large number of treatments, it was impossible to find 

blocks with 18 homogenous experimental units, and hence the blocks were incomplete 

(Data: Alpha lattice.IDB2). A complete replication for this experiment consists of 3 

incomplete blocks with 4 experimental units each, and 2 blocks with 3 units each. There 

was a total of 4 replications (Figure 141). 
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Figure 141: Layout of the design for the 18-variety barley trial conducted in an alpha-lattice. Roman 

numbers at the right indicate replicates, arabic numbers at the top of each cell indicate the incomplete 

block (of sizes 4 and 3), and numbers at the bottom of each cell represent the varieties.  

 

The first analysis will be done considering only the repetitions as whole (complete) 

blocks. Since there are 4 repetitions, an error term for the comparisons can be estimated.  

In the variable selection window in Extended and mixed linear models we select Yield 

as variable, Variety, Incomplete block and Repetition as class variables. After this, we 

select Variety in the Fixed effects tab (Figure 142), and Repetition in the Random effect 

tab (Figure 143). Since all the varieties are present in each repetition, this form corrects 

for possible repetition bias, although it ignores the incomplete block effects (and hence 

the possible bias due to incomplete blocks). 

 

http://dl.dropbox.com/u/65302225/Data/Alpha%20lattice.IDB2
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Figure 142: Window from the Extended and mixed linear model with the Fixed effects tab for the data 

in file Alpha lattice.IDB2. 
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Figure 143: Window from the Extended and mixed linear model with the Random effects tab and the 

Replication effect for the data in file Alpha lattice.IDB2. 

 

The following output shows the result from this model. 
 

Extended and mixed linear models 

 

R specification of the model 

 

model.002_Yield_REML<-lme(Yield~1+Variety 

,random=list(Replication=pdIdent(~1)) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data02 

,keep.data=FALSE) 

 

Results for model: model.002_Yield_REML 

 

Dependent variable: Yield 

 

Fit measurements 

N   AIC   BIC   logLik Sigma R2_0 R2_1 

72 65.28 105.06 -12.64  0.22 0.37 0.70 
Smaller AIC and BIC is better 
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Marginal hypothesis testing (Type III SS) 

 

            numDF denDF F-value p-value 

(Intercept)     1    51 1977.36 <0.0001 

Variety        17    51    3.74  0.0001 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1    51 1977.36 <0.0001 

Variety        17    51    3.74  0.0001 

 

Fixed effects 

 

            Value Std.Error DF t-value p-value 

(Intercept)  5.33      0.16 51   33.73 <0.0001 

Variety10   -0.68      0.16 51   -4.27  0.0001 

Variety11   -0.20      0.16 51   -1.26  0.2118 

Variety12   -0.48      0.16 51   -3.00  0.0041 

Variety13   -0.33      0.16 51   -2.05  0.0451 

Variety14    0.00      0.16 51    0.00 >0.9999 

Variety15   -0.05      0.16 51   -0.32  0.7532 

Variety16   -0.23      0.16 51   -1.42  0.1610 

Variety17    0.18      0.16 51    1.11  0.2738 

Variety18   -0.48      0.16 51   -3.00  0.0041 

Variety2    -0.43      0.16 51   -2.69  0.0097 

Variety3    -0.08      0.16 51   -0.47  0.6374 

Variety4    -0.05      0.16 51   -0.32  0.7532 

Variety5    -0.38      0.16 51   -2.37  0.0216 

Variety6    -0.33      0.16 51   -2.05  0.0451 

Variety7    -0.20      0.16 51   -1.26  0.2118 

Variety8    -0.40      0.16 51   -2.53  0.0146 

Variety9    -0.13      0.16 51   -0.79  0.4330 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Replication 

 

Standard deviations and correlations 

 

        (const) 

(const)    0.22 

 

Adjusted means and standard error for Variety 

LSD Fisher (Alpha:=0.05) 

p-value correction procedure: No 

 

Variety Means S.E.                      

17       5.50 0.16 A                    

14       5.33 0.16 A  B                 

1        5.33 0.16 A  B                 

15       5.28 0.16 A  B  C              

4        5.28 0.16 A  B  C              

3        5.25 0.16 A  B  C  D           

9        5.20 0.16 A  B  C  D  E        

11       5.13 0.16    B  C  D  E  F     

7        5.13 0.16    B  C  D  E  F     

16       5.10 0.16    B  C  D  E  F     

6        5.00 0.16       C  D  E  F     

13       5.00 0.16       C  D  E  F     
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5        4.95 0.16          D  E  F  G  

8        4.93 0.16             E  F  G  

2        4.90 0.16             E  F  G  

18       4.85 0.16                F  G  

12       4.85 0.16                F  G  

10       4.65 0.16                   G  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

As we can see, the mean comparisons are done with a single standard error (the standard 

error of the estimated treatment effects, 0.1582, represent the standard error of the 

difference between each treatment and the reference treatment). Now we will conduct a 

new analysis incorporating the Incomplete Block effects. To do this, we leave the Fixed 

effects tab as in Figure 142 (Variety) and in the Random effects tab we select Repeticion 

and Incomplete Block  as shown in Figure 144. 

 

Figure 144: Window from the Extended and mixed linear model with the Random effects tab and the 

Replication and Incomplete block effect for the data in file Alpha lattice.IDB2. 

The following is the output corresponding to this model.  
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Extended and mixed linear models 

 

 

R specification of the model 

 

model.003_Yield_REML<-lme(Yield~1+Variety 

,random=list(Replication=pdIdent(~1) 

,Replication=pdIdent(~Incomplete.Block-1)) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data03 

,keep.data=FALSE) 

 

Results for model: model.003_Yield_REML 

 

Dependent variable: Yield 

 

Fit measurements 

 

N   AIC   BIC  logLik Sigma R2_0 R2_1 R2_2 

72 52.35 94.12  -5.17  0.15 0.34 0.66 0.90 
Smaller AIC and BIC is better 

 

 

 

Marginal hypothesis testing (Type III SS) 

 

            numDF denDF F-value p-value 

(Intercept)     1    51 2154.51 <0.0001 

Variety        17    51    6.54 <0.0001 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1    51 2153.76 <0.0001 

Variety        17    51    6.54 <0.0001 

 

 

Fixed effects 

 

            Value Std.Error DF t-value p-value 

(Intercept)  5.36      0.14 51   38.82 <0.0001 

Variety10   -0.74      0.12 51   -6.09 <0.0001 

Variety11   -0.16      0.12 51   -1.35  0.1824 

Variety12   -0.43      0.12 51   -3.55  0.0008 

Variety13   -0.39      0.12 51   -3.23  0.0022 

Variety14   -0.13      0.12 51   -1.04  0.3050 

Variety15   -0.07      0.13 51   -0.54  0.5892 

Variety16   -0.22      0.13 51   -1.75  0.0861 

Variety17    0.11      0.12 51    0.94  0.3517 

Variety18   -0.52      0.12 51   -4.35  0.0001 

Variety2    -0.45      0.13 51   -3.57  0.0008 

Variety3    -0.09      0.12 51   -0.73  0.4664 

Variety4    -0.11      0.13 51   -0.84  0.4027 

Variety5    -0.46      0.12 51   -3.74  0.0005 

Variety6    -0.34      0.12 51   -2.83  0.0067 

Variety7    -0.19      0.12 51   -1.57  0.1233 

Variety8    -0.59      0.12 51   -4.76 <0.0001 

Variety9    -0.27      0.12 51   -2.24  0.0292 
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Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Replication 

 

Standard deviations and correlations 

 

        (const) 

(const)    0.20 

 

 

Covariance model for random effects: pdIdent 

Formula: ~Incomplete.Block - 1|Replication 

 

Standard deviations and correlations 

 

   S.D. 

1  0.18 

2  0.18 

3  0.18 

4  0.18 

5  0.18 

 

 

 

Adjusted means and standard error for Variety 

LSD Fisher (Alpha:=0.05) 

p-value correction procedure: No 

 

Variety Means S.E.                                  

17       5.47 0.14 A                                

1        5.36 0.14 A  B                             

15       5.29 0.14 A  B  C                          

3        5.27 0.14 A  B  C                          

4        5.26 0.14 A  B  C  D                       

14       5.24 0.14 A  B  C  D                       

11       5.20 0.14    B  C  D  E                    

7        5.17 0.14    B  C  D  E  F                 

16       5.14 0.14    B  C  D  E  F  G              

9        5.09 0.14       C  D  E  F  G  H           

6        5.02 0.14          D  E  F  G  H  I        

13       4.98 0.14             E  F  G  H  I  J     

12       4.93 0.14                F  G  H  I  J     

2        4.91 0.14                   G  H  I  J     

5        4.90 0.14                      H  I  J     

18       4.84 0.14                         I  J  K  

8        4.77 0.14                            J  K  

10       4.62 0.14                               K  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

In this output we can notice that the standard errors of the differences (=standard error 

of the variety effect) are still similar for each variety, although not equal, since although 

all varieties have the same number of repetitions (n=4), the incomplete blocks are of 

different size (3 or 4 experimental units). Also, these standard errors are smaller than in 

the previous model, since now we have eliminated the variance of blocks within each 
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replicate. The means in this last analysis are also corrected for the block effects 

(adjusted means), and therefore this is a better analysis: the adjusted means are unbiased 

(conditionally on the observed blocks). The mean ranking has changed: in the whole-

block-only analysis the top three means are 17, 14, and 1 respectively; while in the 

incomplete block analysis the top three means were 17, 1, and 15 respectively. The 

standard error of the difference of two means in the first analysis was 0.158 and in the 

second analysis was 0.122 on average (in order to compute an average standard error of 

differences, the usual procedure is to square each S.E., average these values, and then 

take the square root of the average). The efficiency of the second analysis with respect 

to the first one was: 

 

2
2

0.158
1.68

0.122

WholeBlocksOnly

IncompleteBlocks

SEdiff
E

SEdiff

   
         

 

The analysis including the incomplete blocks is 68% more efficient than the one not 

including this effect.  

A summary of the fit measures of the two models follows. Using AIC and BIC criteria 

the incomplete block analysis is better.  

Incomplete block analysis 

 

N    AIC     BIC   logLik  Sigma   R2_0   R2_1   R2_2  

72 52.3497 94.1184 -5.1749 0.1532 0.3431 0.6595 0.8961 
Smaller AIC and BIC is better 

 

 

Whole blocks only analysis 

 

N    AIC     BIC     logLik  Sigma   R2_0   R2_1  

72 65.2834 105.0631 -12.6417 0.2237 0.3714 0.7015 
Smaller AIC and BIC is better 

 

 

Latinized row-column design  

The data in this example come from a trial to evaluate 30 cotton varieties. Each variety 

was repeated 5 times (William 1986). Figure 145 shows the field arrangement of the 

design. Each variety is present only once in each column (latinized columns). At the 
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same time, there are groups of six rows each, containing all 30 varieties (complete 

replication). These two are the randomization restrictions which must be taken into 

account in the design. Notice that the rows within each repetition constitute incomplete 

blocks (Lattice row column.IDB2).   

To conduct the analysis in Extended and mixed linear models, select Yield as variable 

and Variety, Replication, Row and Column as class variables. Then we select Variety in 

the Fixed effects tab (Figure 146) and the rest of the variables in the Random effects tab, 

as shown in Figure 147.  

  

http://dl.dropbox.com/u/65302225/Data/Lattice%20row%20column.IDB2
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Repetition Row Col 1  Col 2 Col 3 Col 4 Col 5 

 

 

I 

 

 

1 21 20 25 14 1 

2 10 3 29 28 13 

3 11 24 26 5 15 

4 16 7 22 19 17 

5 30 2 27 9 6 

6 4 8 18 23 12 

 

 

II 

7 2 17 14 15 23 

8 27 18 24 29 25 

9 6 21 10 12 7 

10 13 9 20 26 16 

11 8 19 3 30 5 

12 28 1 11 4 22 

 

 

III 

13 9 29 15 1 8 

14 18 14 5 22 10 

15 7 27 23 20 11 

16 26 25 17 6 3 

17 12 30 16 24 28 

18 19 4 13 21 2 

 

 

IV 

19 1 26 2 7 18 

20 15 16 21 3 27 

21 29 12 19 11 14 

22 23 5 28 25 9 

23 20 10 30 17 4 

24 22 13 6 8 24 

 

 

V 

25 5 6 4 16 29 

26 24 23 1 10 19 

27 25 15 7 13 30 

28 17 11 9 18 21 

29 14 28 8 27 26 

30 3 22 12 2 20 

Figure 145: Field layout for a 30-variety cotton trial conducted as a latinized row-column design with 

five replication.  
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Figure 146: Window from the Extended and mixed linear model with the Fixed effects tab and the 

Variety effect for the data in file Lattice row column.IDB2. 
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Figure 147: Window from the Extended and mixed linear model with the Random effects tab and the 

Column, Row and Replication effects for the data in file Lattice row column.IDB2. 

The following is the output corresponding to this model. 

Extended and mixed linear models 

 

 

 

R specification of the model 

 

model.016_Yield_REML<-lme(Yield~1+Variety 

,random=list(.U.=pdBlocked(list(pdIdent(~Column-1) 

,pdIdent(~Replication-1))) 

,Replication=pdIdent(~Row-1)) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data16 

,keep.data=FALSE) 

 

Results for model: model.016_Yield_REML 

 

Dependent variable: Yield 
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Fit measurements 

 

N     AIC     BIC   logLik  Sigma  R2_0 R2_1 R2_2 

150 1673.82 1768.59 -802.91 140.59 0.32 0.63 0.70 
Smaller AIC and BIC is better 

 

 

 

Marginal hypothesis testing (Type III SS) 

 

            numDF denDF F-value p-value 

(Intercept)     1   116 1285.12 <0.0001 

Variety        29   116    3.25 <0.0001 

 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   116 1285.12 <0.0001 

Variety        29   116    3.25 <0.0001 

 

 

Fixed effects 

 

             Value  Std.Error DF  t-value p-value 

(Intercept) 1929.15     86.43 116   22.32 <0.0001 

Variety10    271.61     91.94 116    2.95  0.0038 

Variety11    100.51     91.90 116    1.09  0.2763 

Variety12    -12.83     92.68 116   -0.14  0.8902 

Variety13    339.68     92.68 116    3.66  0.0004 

Variety14     97.63     91.90 116    1.06  0.2903 

Variety15    295.71     91.94 116    3.22  0.0017 

Variety16     15.66     92.73 116    0.17  0.8662 

Variety17     14.84     92.68 116    0.16  0.8730 

Variety18    165.33     91.90 116    1.80  0.0746 

Variety19    161.42     91.94 116    1.76  0.0818 

Variety2      48.63     91.94 116    0.53  0.5979 

Variety20    185.26     91.94 116    2.01  0.0462 

Variety21   -126.88     91.94 116   -1.38  0.1702 

Variety22    113.80     91.94 116    1.24  0.2183 

Variety23    142.67     91.90 116    1.55  0.1233 

Variety24     64.77     91.94 116    0.70  0.4826 

Variety25    288.17     91.94 116    3.13  0.0022 

Variety26    232.68     91.94 116    2.53  0.0127 

Variety27    347.24     92.68 116    3.75  0.0003 

Variety28    234.60     91.94 116    2.55  0.0120 

Variety29    232.48     91.94 116    2.53  0.0128 

Variety3      18.77     92.73 116    0.20  0.8400 

Variety30    196.12     92.73 116    2.11  0.0366 

Variety4      63.15     91.94 116    0.69  0.4936 

Variety5     173.95     92.68 116    1.88  0.0630 

Variety6     290.18     92.73 116    3.13  0.0022 

Variety7     149.96     91.94 116    1.63  0.1056 

Variety8     281.10     91.94 116    3.06  0.0028 

Variety9     115.42     91.94 116    1.26  0.2119 

 

Random effects parameters 

 

Covariance model for random effects: pdBlocked 

Formula: ~Column + Replication - 1 

 

Standard deviations and correlations 
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              S.D.  

Column1      111.22 

Column2      111.22 

Column3      111.22 

Column4      111.22 

Column5      111.22 

Replication1  58.01 

Replication2  58.01 

Replication3  58.01 

Replication4  58.01 

Replication5  58.01 

 

 

Covariance model for random effects: pdIdent 

Formula: ~Row - 1|Replication  

 

Standard deviations and correlations 

 

   S.D.  

1  50.57 

10 50.57 

11 50.57 

12 50.57 

13 50.57 

14 50.57 

15 50.57 

16 50.57 

17 50.57 

18 50.57 

19 50.57 

2  50.57 

20 50.57 

21 50.57 

22 50.57 

23 50.57 

24 50.57 

25 50.57 

26 50.57 

27 50.57 

28 50.57 

29 50.57 

3  50.57 

30 50.57 

4  50.57 

5  50.57 

6  50.57 

7  50.57 

8  50.57 

9  50.57 

 

 

Adjusted means and standard error for Variety 

LSD Fisher (Alpha:=0.05) 

p-value correction procedure: No 

 

Variety  Means  S.E.                                

27      2276.39 86.43 A                             

13      2268.83 86.43 A  B                          

15      2224.86 86.43 A  B  C                       

6       2219.33 86.43 A  B  C                       
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25      2217.33 86.43 A  B  C                       

8       2210.25 86.43 A  B  C  D                    

10      2200.76 86.43 A  B  C  D  E                 

28      2163.75 86.43 A  B  C  D  E  F              

26      2161.84 86.43 A  B  C  D  E  F              

29      2161.63 86.43 A  B  C  D  E  F              

30      2125.28 86.43 A  B  C  D  E  F  G           

20      2114.41 86.43 A  B  C  D  E  F  G           

5       2103.10 86.43 A  B  C  D  E  F  G  H        

18      2094.48 86.43 A  B  C  D  E  F  G  H  I     

19      2090.57 86.43    B  C  D  E  F  G  H  I     

7       2079.11 86.43       C  D  E  F  G  H  I     

23      2071.82 86.43       C  D  E  F  G  H  I     

9       2044.57 86.43       C  D  E  F  G  H  I     

22      2042.96 86.43       C  D  E  F  G  H  I     

11      2029.67 86.43          D  E  F  G  H  I     

14      2026.78 86.43             E  F  G  H  I     

24      1993.92 86.43                F  G  H  I     

4       1992.30 86.43                F  G  H  I     

2       1977.78 86.43                   G  H  I  J  

3       1947.92 86.43                   G  H  I  J  

16      1944.82 86.43                   G  H  I  J  

17      1944.00 86.43                   G  H  I  J  

1       1929.15 86.43                      H  I  J  

12      1916.32 86.43                         I  J  

21      1802.28 86.43                            J  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

Residual analysis suggests no evidence of violations to assumptions of 

homoscedasticity or normality (Figure 147), and hence we can recommend the best 

varieties according to the ranking shown by the LSD test using this model. Varieties 27, 

15, 13, 6, 25, 8, 10, 28, 26, 29, 30, 20, 5, and 18 are the ones with the highest yield, and 

there are no significant differences among them. 
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Figure 148: Graphical tools for diagnostic obtained from the data in file Lattice row column.IDB2. 
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Balanced squared lattice design 

This example shows data from a trial with 25-wheat variety in 6 repetitions. Rows and 

columns effects will be accounted for within each square (repetition). Rows and 

columns constitute incomplete blocks. This trial was conducted in 1976 in Slate Hall 

Farm, Cambridgeshire, UK (Gleason, 1997). Figure 149 shows the field arrangement. 

The data are in the file Square lattice.IDB2. In order to analyze these data we first use 

the variable selector window in Extended and mixed linear models. Yield is selected as 

variable, and Replication, Row, and Column as class variables (Figure 150). Then we 

select Variety in the Fixed effects tab (Figure 151). The Random effects tab is completed 

as follows: first we include Repetition, and then we need to indicate that both Row and 

Column are nested within Repetition (Figure 152). 

1 2 4 3 5 19 23 2 6 15 18 25 9 11 2 

6 7 9 8 10 8 12 16 25 4 5 7 16 23 14 

21 22 24 23 25 11 20 24 3 7 6 13 22 4 20 

11 12 14 13 15 22 1 10 14 18 24 1 15 17 8 

16 17 19 18 9 5 9 13 17 21 12 19 3 10 21 

3 18 8 13 23 16 24 10 13 2 10 4 17 11 23 

1 16 6 11 21 12 20 1 9 23 12 6 24 18 5 

5 20 10 15 25 4 7 18 21 15 19 13 1 25 7 

2 17 7 12 22 25 2 14 17 6 21 20 8 2 14 

4 19 9 14 24 8 11 22 5 19 3 22 15 9 16 

Figure 149: Layout of the design for the 25-variety wheat trial conducted in a square lattice whit six 

replications (squared) and numbers of each cell represent the varieties. 

 

http://dl.dropbox.com/u/65302225/Data/Square%20lattice.IDB2
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Figure 150: Window from the Extended and mixed linear model with the variable selection for data in 

file Square lattice.IDB2. 
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Figure 151: Window from the Extended and mixed linear model with the Fixed effect tab for data in 

file Square lattice.IDB2. 
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Figure 152: Window from the Extended and mixed linear model with the Random effect tab for data in 

file Square lattice.IDB2. 

Extended and mixed linear models 

 

 

 

R specification of the model 

 

model.017_Yield_REML<-lme(Yield~1+Variety 

,random=list(Replication=pdIdent(~1) 

,Replication=pdIdent(~Row-1) 

,Replication=pdIdent(~Column-1)) 

,method="REML" 

,control=lmeControl(msMaxIter=200) 

,na.action=na.omit 

,data=R.data17 

,keep.data=FALSE) 

 

Results for model: model.017_Yield_REML 

 

Dependent variable: Yield 
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Fit measurements 

 

N     AIC     BIC   logLik  Sigma R2_0 R2_1 R2_2 R2_3 

150 1703.31 1785.33 -822.65 89.79 0.27 0.38 0.67 0.92 
Smaller AIC and BIC is better 

 

 

 

Marginal hypothesis testing (Type III SS) 

 

            numDF denDF F-value p-value 

(Intercept)     1   120 1216.28 <0.0001 

Variety        24   120    8.84 <0.0001 

 

 

Sequential hypothesis testing 

 

            numDF denDF F-value p-value 

(Intercept)     1   120 1216.28 <0.0001 

Variety        24   120    8.84 <0.0001 

 

Random effects parameters 

 

Covariance model for random effects: pdIdent 

Formula: ~1|Replication 

 

Standard deviations and correlations 

 

        (const) 

(const)   65.29 

 

 

Covariance model for random effects: pdIdent 

Formula: ~Row - 1|Replication 

 

Standard deviations and correlations 

 

    S.D.  

1  124.88 

2  124.88 

3  124.88 

4  124.88 

5  124.88 

 

 

Covariance model for random effects: pdIdent 

Formula: ~Column - 1|Replication 

 

Standard deviations and correlations 

 

    S.D.  

1  121.70 

2  121.70 

3  121.70 

4  121.70 

5  121.70 

 

 

 

Adjusted means and standard error for Variety 

LSD Fisher (Alpha:=0.05) 

p-value correction procedure: No 
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Variety  Means  S.E.                                      

Var19   1669.55 60.20 A                                   

Var22   1644.38 60.20 A  B                                

Var20   1639.95 60.20 A  B                                

Var25   1630.63 60.20 A  B                                

Var13   1619.04 60.20 A  B  C                             

Var18   1592.18 60.20 A  B  C  D                          

Var02   1549.01 60.20 A  B  C  D  E                       

Var24   1546.47 60.20    B  C  D  E                       

Var05   1533.27 60.20    B  C  D  E  F                    

Var06   1527.41 60.20    B  C  D  E  F                    

Var17   1498.17 60.20       C  D  E  F  G                 

Var15   1498.01 60.20       C  D  E  F  G                 

Var21   1493.44 60.20          D  E  F  G                 

Var12   1483.79 60.20          D  E  F  G                 

Var08   1457.37 60.20             E  F  G  H              

Var04   1451.86 60.20             E  F  G  H  I           

Var03   1420.93 60.20                F  G  H  I  J        

Var07   1400.73 60.20                   G  H  I  J  K     

Var16   1346.15 60.20                      H  I  J  K     

Var23   1329.11 60.20                         I  J  K     

Var11   1327.25 60.20                            J  K     

Var14   1326.65 60.20                            J  K     

Var09   1298.86 60.20                            J  K  L  

Var01   1283.59 60.20                               K  L  

Var10   1193.22 60.20                                  L  
Means with a common letter are not significantly different (p<= 0.05) 

 

 

As shown in the section Use of mixed models to control spatial variability in 

agricultural experiments, an alternative way of modelling this type of trials is to use the 

location in the plot space (in all lattice designs plots are of identical size and in a 

rectangular array) as covariates to adjust a spatial correlation function. Assuming that 

the field arrangement of the trial is as shown in Figure 149, the file Square lattice.IDB2 

contains two variables, Latitude and Longitude, that can be used for this. In order to fit 

this alternative model, variables are selected as shown in Figure 153. Nothing is 

selected in the Random effects tab, and Latitude and Longitude are entered in the 

Correlations tab, as shown in Use of mixed models to control spatial variability in 

agricultural experiments, page 136.  
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Figure 153: Window from the Extended and mixed linear model with the selected variables for spatial 

analysis for data in file Square lattice.IDB2. 
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Figure 154: Window from the Extended and mixed linear model with the Correlation tab and the 

inclusion of Latitude and Longitude for data in file Square lattice.IDB2. 

 

Extended and mixed linear models 

 

 

 

R specification of the model 

 

model.018_Yield_REML<-gls(Yield~1+Variety 

,correlation=corExp(form=~as.numeric(as.character(Longitude))+as.numer

ic(as.character(Latitude)) 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=R.data18) 

 

Results for model: model.018_Yield_REML 

 

Dependent variable: Yield 

 

Fit measurements 
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N     AIC     BIC   logLik  Sigma  R2_0 

150 1692.55 1768.92 -819.28 212.96 0.27 
Smaller AIC and BIC is better 

 

Marginal hypothesis testing (Type III SS) 

 

            numDF F-value p-value 

(Intercept)     1  399.80 <0.0001 

Variety        24    7.70 <0.0001 

 

Sequential hypothesis testing 

 

            numDF F-value p-value 

(Intercept)     1  393.70 <0.0001 

Variety        24    7.70 <0.0001 

 

Correlation structure 

 

Correlation model: Exponential spatial correlation 

Formula: ~ as.numeric(as.character(Longitude)) + 

as.numeric(as.character(Latitude)) 

Metric: euclidean 

 

Model parameters 

 

Parameter Estim. 

range       2.45 

 

Adjusted means and standard error for Variety 

LSD Fisher (Alpha:=0.05) 

p-value correction procedure: No 

 

Variety  Means  S.E.                             

Var19   1664.57 86.82 A                          

Var20   1659.01 87.25 A                          

Var13   1626.37 87.32 A  B                       

Var22   1589.59 87.21 A  B  C                    

Var06   1552.97 86.99 A  B  C  D                 

Var24   1550.00 87.19 A  B  C  D                 

Var25   1544.63 87.50 A  B  C  D                 

Var18   1537.52 87.20 A  B  C  D  E              

Var17   1535.60 87.60 A  B  C  D  E              

Var02   1531.18 86.48 A  B  C  D  E              

Var21   1510.73 87.08    B  C  D  E  F           

Var05   1477.87 86.64       C  D  E  F           

Var08   1473.21 87.17       C  D  E  F           

Var12   1456.69 87.40       C  D  E  F  G        

Var15   1422.74 87.02          D  E  F  G  H     

Var03   1407.62 86.78             E  F  G  H     

Var04   1399.11 86.90             E  F  G  H     

Var07   1389.06 87.46                F  G  H     

Var16   1332.43 86.72                   G  H  I  

Var14   1327.22 87.19                   G  H  I  

Var11   1326.39 87.04                   G  H  I  

Var23   1306.36 87.02                      H  I  

Var09   1289.71 86.66                      H  I  

Var01   1231.80 86.54                         I  

Var10   1201.09 87.28                         I  
Means with a common letter are not significantly different (p<= 0.05) 
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In order to compare the fit of both models, we can compare their AICs or BICs (since 

one of the models is not a special case of the other, we cannot conduct a likelihood ratio 

test to compare them). The following are the values of AIC and BIC:  

 

                                          

Model AIC BIC 

IBD 1703.31 1785.33 

Spatial correlation  1692.55 1768.92 

 

From these results, the spatial correlation model fits the data better. Nevertheless, if we 

compute the average standard errors of the difference of means for both models we find 

that the spatial correlation model yields a value of 69.118, while the model considering 

the design structure yields a value of 62.019. Hence if the goal is to compare variety 

means, the model considering the design structure is more appropriate.  
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