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DISSERTATION ABSTRACT

This dissertation addresses the problem of tropical forest classification using
remotely sensed data. Traditional remote sensing methods have had problems for
discriminating tropical secondary and disturbed forests As a consequence, important
information is lacking, that is required for research in biogeography and for a complete
assessment of carbon dioxide flows from land-use and land-cover change

To improve the discrimination of tropical secondary and logged forests using
remotely sensed data, a Bayesian classification approach was investigated. The prior
probabilities were modified as a function of the pixel’s geographical context, which is a
non-parametric strategy to incorporate information obtained from ancillary data into the
maximum likelihood classification. The method has been proposed before, but found little
application, because it presented practical problems for obtaining prior probability
estimates.

The dissertation describes and tests a data analysis procedure that generates prior
probability estimates from class frequencies modeled with ancillary data and a Mahalanobis
Distance threshold of previously classified pixels. The method produces a pixel sample
size that 1s large enough to estimate class prior probabilities in numerous geographic strata,
which is particularly desirable for the study of large and complex landscapes, in which
stratified random sampling for obtaining class frequency estimates is economically
prohibitive.

An experiment is presented, in which the procedure made it possible to estimate 537
sets of prior probabilities for an entire Landsat TM scene of central Costa Rica. After
modifying the prior probabilities, the overall classification consistency of the training sites
improved from 74 6% (traditional equal priors maximum likelihood classification) to
919%, while the overall classification accuracy of sites controlled in the field by
independent studies improved from 68 7% to 89.0%. The classification accuracy was most
improved for the spectrally similar forest categories.

The usefulness of spectral enhancement using the Normalized Difference
Vegetation Index (NDVI) and Tasseled Cap features wer¢ also investigated. The results of
spectral analysis and of 18 classification experiments using different band and index
combination are presented Weak evidence was found to support the hypothesis that
spectral enhancement might help the discrimination of tropical secondary, logged, and
undisturbed forest categories

Keywords: Remote Sensing, Geographical Information System, Landsat, NDVI,

Tasseled Cap, Prior Probability, Bayes’s Classification, Tropical Forest,
Secondary Succession, Costa Rica
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1. INTRODUCTION

1.1  Role of remote sensing in global change research and policy

Remotely sensed data are fundamental sources of information for our understanding of
global change. Past remote sensing research led to increased attention about the problem of
tropical deforestation (Woodwell ef al., 1987; Myers, 1988, Sader and Joyce, 1988; Westman
et al, 1989; Gilruth et al, 1990; Green and Sussmann, 1990; Hall er a/, 1991; Campbell and
Bowder, 1992; Grainger, 1993; Downton, 1995; Sohn ef al, 1999) Today, our knowledge
about land cover dynamics, surface resources, biological diversity, and the global climate system
has increased considerably in part because of the multiple types of data that have been made
available through remote sensing. Once processed and analyzed, remotely sensed data are
particularly useful for computer modeling of patterns and processes in the environment, at local
(Helmer, 1999; McCracken ef al., 1999), regional (Sader and Joyce, 1988; Iverson et al., 1993),
and global scale (Brown et al, 1993). As an example, data on land cover dynamics were
indispensable for the estimation of pools and fluxes of carbon from terrestrial ecosystems (Table
1). They allowed to conclude that about 23.6% (1 708 Gt C/yr) of human induced global
carbon dioxide (CO;) emissions during the decade 1980-89, and 20.3% (1 6+0.8 Gt C/yr) during
the period 1989-98 were originated from land-use and land-cover change (IPCC, 2000).

Table 1. Pools, sources, and sinks of carbon in terrestrial ecosystems

1980 Changes 1850 - 1980
Area | Vegetation Soil Area | Vegetation| Soil
(Mha) (Gt C) (GtC) | (Mha) (Gt C) (Gt C)
Tropical Forests 2167 288 203 -508 -59 -42
1755 | 212*° 216"
Temperate Forests 1492 127 155 -91 -26 -17
1038 59% 100
Boreal Forests 1167 96 237 -4 -6 -3
1372 88> 471*
Non-Forest Ecosystems 8900 73 845 +603 +1 +31
10950° 107° 1224°
Total Terrestrial 1327 583 1440 0 -90 -31
Ecosystems 15115° 466" 2011°

Sources: upper values: Houghton, 1996; lower values: a} Dixon ef a/., 1994 and b) IPCC, 2000.

However, the uncertainty in these numbers is still very important (IPCC, 2000). One
reason is that data on global land cover are still incomplete, coarse, and inconsistent on
land cover definitions used Important questions, such as the area covered by disturbed
and secondary forests in tropical regions, remain unanswered. As a consequence, CO;
flows in these ecosystems are poorly known Research that investigated CO; flows in tropical
forests concluded that secondary and disturbed forests might be significant sinks of atmospheric
carbon and therefore important for consideration in policy decisions about climate change
mitigation activities (Brown and Lugo, 1992; Lugo and Brown, 1992; Fearnside, 1996,
Fearnside and Guimaraes, 1996). However, the role of tropical forests in the global



carbon balance s still uncertain. A clear picture about the areas covered by different types of
forest has not yet been made available and is one of the major sources of uncertainties related to
the debate on biological carbon sinks.

Despite these problems, remotely sensed data are the most complete and consistent
sources of information about surface patterns and processes in our environment. This explains
why in recent years, remote sensing has also acquired an increased importance for the political
discussion about global change. As part of their commitments under the United Nation
Framework Convention on Climate Change (UNFCCC), nations have to report on ‘domestic
emissions of Green Houses Gases (GHG) from land use and land cover change. To do this, they
have to rely on land cover data obtained from remote sensing research In the future, remote
sensing will certainly play an important role for assessing compliance with Kyoto Protocol
commitments and for refining the global carbon balance.

By providing essential data about the surface and the atmosphere of the Earth, remote
sensing gives an important contribution to global change research and policy. The quality of the
data output by remote sensing has thus important consequences, which justifies research for
improving the quality of these data

1.2 Problem statement

In the past three decades, emphasis of remote sensing research in tropical regions has
been the assessment of deforestation and the improvement of the methods of its measurement
(Downton, 1995) Despite the importance of measuring deforestation, the simplified picture
“forest/non-forest” provided by most deforestation studies does not inform about areas that have
recovered through secondary successions, were altered through timber logging, or were
fragmented because of farm frontier expansion. These processes have important implications for
carbon cycling, biodiversity conservation, hydrological cycle, and the sustainability of tropical
agricultural systems. It is therefore important that remote sensing can be used to identify areas in
which these processes occur. If secondary forests are mistaken for primary forests, carbon pools
of tropical forests are likely to be overestimated, while carbon sinks are likely to be
underestimated (Lugo and Brown, 1992, Fearnside and Guimaraes, 1996). Estimates of
biodiversity and species extinction rates are also likely to vary depending on the data used about
area, spatial distribution, and fragmentation of these different forest categories (MacArthur and
Wilson, 1967, Westman ef al , 1989).

Unfortunately, the use of remotely sensed data for mapping secondary, logged, and
primary (old-growth) forests is hindered by the weak spectral definition of these different
vegetation categories. All information derived from remotely sensed data analysis is inferred
from measurements of the electromagnetic energy that has been reflected or emitted from the
objects present in the target area. A problem of object discrimination occurs, when different
objects have similar reflection and emission patterns, This is the case of most vegetation
categories

The few studies that reported success in the discrimination of tropical secondary forests
using remotely sensed data made use of high-density and high-quality ground data (Mausel et al.,
1993; Liet al, 1994; Foody et al, 1996) For the study of large tropical regions, methods that
rely on large amounts of ground data can rarely be applied, because such data are not available or
too costly to acquire. Classifier operations, combined with high-density ground data sampling,
were also successfully used to improve the discrimination of tropical forest categories (Li ef al ,
1994,  Brondizio et al, 1996; Foody et al, 1996). However classifier operations (e.g.




Extraction and Classification of Homogeneous Objects, ECHOQ) are not yet available in standard

remotely sensed data analysis packages and need farther validation.
Most study areas selected for remote sensing research are also too small to be

_ representative for the standard remote sensing task: if a project is to utilize Landsat TM data, it
. is because low-cost information is required for a large area. Sensor systems of higher spatial and
. spectral resolution — that produce more accurate levels of object discrimination than Landsat TM
- - do not provide yet this low-cost large-area view. Rugged topography, ecological diversity,
- and advanced landscape fragmentation, as found in many parts of Central America, complicate

the analysis of remotely sensed data (Pedroni and Velasquez, 1998) Conducting research in
small areas is an advantage for keeping these sources of “spectral noise” under control, but the
task is much more difficult to achieve in large study regions. Methods and conclusions of
remote sensing research conducted in simple environments or in small study regions might thus
be of limited application in large and complex tropical regions.

Multi-spectral data classification procedures, capable of discriminating tropical
vegetation categories of different composition, structure, and function have thus still to be

- improved or developed from scratch A need of practicable techniques for effective
- discrimination of tropical forest categories exists especially when the problem i is addressed over
- large and complex tropical regions.

1.3  Study approach

In the last decade, a considerable amount of digital cartographic data has been made
available by the increased use of Geographical Information Systems (GIS). This makes data
analysis strategies that integrate remotely sensed data with other types of spatial data potentially
usable. However, analysis techniques that merge ancillary spatial data sets and remotely sensed

- data have found limited application because of technical and practical problems that have been

only partially solved. A major problem has been obtaining information about the spatial
relationship between land cover categories and the ancillary, non-spectral variables previous to

- the classification. This is a key type of information for making the ancillary data set usable for
~ the classification. Traditionally, such information has been obtained from sampling random
- points in the field or in remotely sensed data of finer spatial resolution (e g. aerial photographs).

Statistically, this was a correct approach. However, random sampling might be extremely costly,

especially in large and often inaccessible tropical regions. As a consequence, this method was
- rarely applied.

The present work offers a solution to this problem, and demonstrates that the inclusion of

information obtained from ancillary data into the classification process of Landsat TM data
- might result in improvements of the classification accuracy, that traditional methods could not
. achieve.

- principles:

The methods tested in this research were developed keeping in mind the following

o Technical feasibility: Only methods considered technically feasible to apply over
large areas were investigated. This included requirements about density and design
of the ground data

s Representative data set: Remote sensing research is often conducted in small areas
and using a single set of remotely sensed data. Conclusions might thus be questioned,
especially if the study area was small and lacked of the complexity present in other
regions. The study region chosen for this study was large compared to that selected




by other studies (see Part II), and presented a high degree of spectral complexity
caused by its topography, land cover fragmentation, and ecological diversity.

» Costs of implementation: The methods tested in this research are believed not to be
more expensive than those of traditional methods, provided an adequate set of
ancillary data is available in digital format

It was thought that the definition and compliance of these principles was necessary to
prevent the investigation of data analysis techniques that would not be usable for potential users
in tropical countries

1.4  Aims and hypothesis of the study

The general aim of this work was to improve our ability to discriminate primary, logged,
and secondary forest types in large tropical areas using remotely sensed data

Since the forest categories of interest were known to be spectrally similar, integration of
ancillary non-spectral data in the classification process was chosen as the experimental approach.
The underlying hypothesis was that individual land cover categories have distinctive associations
with ecological and geographical variables such as elevation, accessibility, soil type, etc.
Integration of knowledge about this type of spatial relationships in the classification of the
satellite data was expected to improve the discrimination of primary, logged, and secondary
forest types. To test this hypothesis, three ancillary variables were chosen: elevation above sea
level, accessibility, and distance from the Pacific Coast.

Elevation data were hypothesized to help the discrimination of land cover categories that
occur at different elevations (mangroves, tropical crops, coffeé beans, subalpine paramo, etc.).
Elevation data were also expected to improve the discrimination of secondary forests, since
different categories of secondary forest occur in the mountains and in the lowlands of the study
region (see Part III and Part IV).

Accessibility data were hypothesized to help the discrimination of human induced land
cover categories, such as crops, pastures, secondary forests, and logged forests. Several studies
have demonstrated that a spatial relationship exists between access conditions, land management,
and the likelihood of deforestation (see below).

Data on distance from the Pacific coast were hypothesized to help the discrimination of
land cover categories that were known to occur at specific distance ranges from the Costa Rican
Pacific coast (mangroves, oil palm fields, banana fields, inundated palm forests, etc). It was
also observed, that patterns of brown vegetation caused by to the dry season were different in the
Pacific-Atlantic direction of the study region. Since the satellite image was acquired at the end
of the dry season (in March, 1996), this variable was also hypothesized to help the discrimination
of land cover categories that had variable spectral patterns across the East-West direction
because of variations in moisture content and green leaf biomass

The specific aims of this work were:

(1)  To test the Bayesian classification approach as a way to incorporate ancillary data
into the maximum likelihood classification and to improve the accuracy of the
classification. According to the literature (see below) the use of modified prior
probabilities (Bayesian approach) can produce significant improvements of the
classification accuracy, especially of spectrally similar land cover categories.
However, the use of this method has been limited because the estimation of prior
probabilities has been difficult, especially in large areas Applications in tropical
regions were not found in the literature,



(2)  Touse a new computer analysis technique, rather than random sampling, to model
the spatial variability of the class prior probabilities. With the development of this
technique it was hoped to make the Bayesian approach accessible for use in large
areas.

(3)  To test spectral data enhancement techniques (NDVI and Tasseled Cap) for
improving the discrimination of tropical forest categories, and compare the
classification results obtained with these techniques with those obtained with the
Bayesian classification. The use of vegetation indexes is often claimed to enhance
the spectral separability of vegetation categories. However, results reported in the
literature are inconsistent The hypothesis was thus considered worth to test for
the discrimination of the forest categories of interest The Bayesian classification
was hypothesized to produce better classification results, because it exploits the
ancillary information in addition to the spectral information.

2. THEORETICAL FRAMEWORK

2.1  Tropical forests and the missing carbon sink

Tropical forests are the largest terrestrial pool of global carbon (Table 1). Their clearing
is a major source of atmospheric carbon dioxide (IPCC, 2000), but their regeneration through
secondary succession is an important carbon (C) sink (Lugo and Brown, 1992; Fuentes, et al.
1995; Fearnside and Guimaraes, 1996). Whether tropical forests function as a planetary
significant CO; sink, and possibly explain a significant part of the “missing carbon sink™ in the
global carbon balance, is uncertain (Fung, 1996; Houghton, 1996). Houghton (1996) defines
these concepts as follows:

“Sinks can be defined as the net uptake or net accumulation of carbon.
The world’s oceans and growing forests are sinks of carbon. The missing sink
refers to the imbalance in terms of the global C equation: emissions of C from
combustion of fossil fuels (5.4 + 0.5 Pg C yr’! during the 1980s) and from changes
in land use (1.6 + 0.5 Pg C yr”') are not balanced by the accumulation of C in the
atmosphere and oceans (3.4 = 0.2 Pg C y” and 2.0 + 0.8 Pg C yr’, respectively).
The imbalance (or missing C} is approximately of the same magnitude as, but
opposite sign to, the net release of C from changes in land use. The imbalance is
thought to be explained by the accumulation of C on land in wundisturbed or
incorrectly understood disturbed ecosystems™”.

The most important sources of uncertainties leading to the missing carbon sink are:

* The extent of area covered by forests and the rates of deforestation and forest
recovery (Flint and Richards, 1994; Downton, 1995; Houghton, 1996).

Newest figures presented in the IPCC report (2000) for the reference period 1850-1998 are, that global CO,
emissions have been 270+30 Gt C from fossil fuel buming and cement production, and 136455 Gt C from land
use and land cover change. The increase of CO; in the atmosphere was 17610 Gt C.  Atmospheric
concenirations increased from about 285 to 366 ppm. Thus, about 43% of the total emissions over the reference
period have been retained in the atmosphere. The remainder is estimated to have been taken up in
approximately equal amounts by the oceans and terrestrial ecosystems,




o Carbon flow rates after disturbance, particularly those related with biomass
accumulation in secondary forests (Houghton and Hackler, 1994; Apps and Price,
1996; Fearnside, 1996)

¢ Biomass and carbon contents of both undisturbed and disturbed tropical forests
(Brown and Lugo, 1992; Brown and Iverson, 1992; Brown, 1996).

o The ambiguity of definitions of biomes (IPCC, 2000), that is one classification
scheme often used in remote sensing research.

The area covered by undisturbed, disturbed and secondary forests is thus an important
question that remote sensing has to answer However, as will be discussed below, answering this
question in tropical regions is particularly challenging

2.2 Categorization of secondary forests

Land cover maps are discrete representations of continuous and complex realities.
Transitions between vegetation types are frequent in nature, while sharp boundaries are relatively
rare. Where they exist, they are often man-made. This contrasts with the requirement of
mutually exclusive and exhaustive definitions for map legend categories in remote sensing
(Congalton, 1991). The variety of definitions existing for forest and secondary successions
makes the definition of such categories yet more difficult, and is also a major cause of
uncertainties about land cover and global carbon balance (IPCC, 2000). A review of the
ecological literature, however, let conclude that some agreement about general patterns of forest
successions is emerging. Succession stages, as defined in models of the succession process,
might therefore be used for a classification scheme.

In Costa Rica, three models of secondary successions have been described in the
literature. They have been used to define the classification scheme of secondary forests used in
this research, which is presented and discussed with more detail in Part IV of the present work.

Finegan (1992 and 1996) describes secondary successions in the humid neotropical
lowlands in terms of three phases A different plant community dominates each phase of the
succession, but the site is colonized by all species about at the beginning of the succession
process. For most species, seed dispersal is assured by vertebrates. The more long-lived and
shade tolerant species survive the whole succession process and arrive to dominance in the third
phase of the succession Short lived, fast growing, and shade intolerant species dominate the
early stages of the succession, but disappear in later phases because of their inability to
regenerate under shadow.

In the dry forest zone, Janzen (1988) and Sabogal (1992) describe a different succession
process. Here, seed dispersal and site colonization depend on wind rather than vertebrates.
Wind dispersed seeds fall close to their parent trees (Harper, 1977, Howe and Smallwood,
1982), and this makes tree colonization of abandoned pastures that are far from forest patches or
remnant trees difficult and slower than in the humid tropics. The first colonizing tree population
of abandoned dry zone pastures is composed of long-lived wind-dispersed species. A short-lived
second phase of the succession, as described in the humid tropics, is thus absent in the tropical
dry zone.

Kappelle (1995) and Kappelle et al. {1996) describe secondary successions in the high
mountains of the Talamanca Range. Here, as in the dry zone, the succession process appears to
develop in two phases, with species commonly found in old-growth forests already dominating




in the second phase of mountain successions. This is particular feature of mountain successions,
that is not observed for successions in the humid and in the dry tropical regions,

Secondary forests are thus a broad category encompassing very different types of
vegetation. Most research that was successful in mapping secondary forests using remotely
sensed data defined each phase of the succession as a separate land cover category (Mausel ef al ,
1993; Foody and Curran, 1994; Foody et a/, 1996; Moran ef al, 1996) This approach
appeared to be the best available classification scheme of secondary forests for the present work.
However, its use for the classification of remotely sensed data is not lacking of coriceptual and
practical problems. Finegan (1996) points out that his succession model is valid for sites that
have not been seriously degraded and for which seed sources are nearby. This observation
suggests that the succession process might differ depending upon local conditions and the history
of fand use. In other tropical regions, variations in terms of species composition, growth rates,
and time-frame, have been observed even for succession processes occurring at closely located
sites (Foody ef al, 1990; Uhl, 1987). Biomass and carbon accumulation rates have been shown
to vary among succession processes, depending on initial site conditions and previous land use,
by a factor of 10 (Uhl et ol , 1988)

While providing a conceptual framework for the classification of secondary forests, the
ecological literature remind us the secondary forest categories based on phase-models are neither
mutually exclusive, nor exhaustive in terms of biophysical parameters such as biomass.

An approach for classifying remotely sensed data that does not imply obtaining
overlapping categories in terms of biomass and other biophysical properties in the classified
output data set is far to have been developed Unfortunately, the exact relationship between
biophysical properties of the vegetation and remotely sensed radiation has rarely been
investigated (Foody and Curran, 1994). A correlation between data on biophysical properties of
the vegetation and data on remotely sensed radiation is often hypothesized in remote sensing
research. However, since few experiments have been realized to test this hypothesis, conclusions
should not be precipitated about the relationship between land cover categories defined in a
classification scheme and biomass and other biophysical properties of these categories

A critical discussion of the relationship between biophysical parameters and spectral
response of the vegetation is presented in Part IV of the present work.

2.3 Use of Landsat data in tropical regions

Among available remote sensing systems, Landsat Multi-Spectral Scanner (MSS) and
Thematic Mapper (TM) have been the most widely used. These sensor systems provide thirty
years of relatively low-cost data at a spatial and spectral resolution that is sufficient to
discriminate most surface features over large areas (Jensen, 1996). The TM scanner system has
been especially designed for the study of vegetation and Earth resources. It provides data for
almost the entire world on a 16 days cycle. However, the use of Landsat TM data for mapping
tropical vegetation has three inherent limitations

» Spectral similarity. All green vegetation has about the same pattern of spectral response.
Chlorophyll absorbs blue and red visible radiation and reflects green wavelengths. Leaf
mesophyll reflects near infrared (JR), while increased water content and shadow absorb all
wavelengths, but especially those in the IR portion of the spectrum.  If chlorophyll content,
mesophyll structure, water content, and shadow vary among vegetation categories, as a
consequence of differences in species composition, structure, and moisture, then these
vegetation categories should exhibit different patterns of spectral response. This is the



underlying hypothesis of vegetation studies using remote sensing However, only few
studies managed to register remotely sensed data and biophysical vegetation data of the same
date to test for correlation between the two data sets. Observed correlation were generally
weak (Sader ef al, 1989, Foody and Curran, 1994).

e Sensor system resolution, Landsat TM data have a spatial resolution of 28.5 x 28 5 m. Thus,
only one multi-spectral datum is available to describe all Earth features encompassed in a
ground surface of that size (812,25 m?). This is particularly problematic at the boundary of
land cover categories. Highly fragmented landscapes are more difficult to classify correctly
because the proportion of spectrally “mixed pixels” (boundary pixels) is high Spatial
resolution was found to be a major obstacle for the discrimination of secondary forests when
using MSS data (80 x 80 m) and Advanced Very High Resolution Radiometer (AVHRR)
data (1.1 x 1 1 km) (Woodwell et al , 1986 and 1987; Sader ef al., 1990)

The spectral resolution of Landsat TM data is of seven relatively broad spectral bands
(three in the visible and four in the IR portion of the spectrum). Much information contained
in the electromagnetic energy released by the Earth features is thus absent in the data of the
sensor system. If spectral differences between vegetation categories exist only at specific
wavelengths, Landsat data might not contain such information. For this reason, there is
considerable hope that by increasing the number of spectral bands (hyper-spectral sensor
systems) it will become possible to improve the discrimination among vegetation categories
and other Earth resources. However, currently available hyper-spectral sensor system do not
provide the synoptic view of Landsat.

* (louds. Most tropical environments are almost permanently covered by clouds. The
probability of obtaining cloud-free images for tropical regions from space-borne optical
sensor systems is thus very small (Foody and Curran, 1994), Time series of cloud-free
imagery would be advantageous for the detection of secondary forests less than thirty years
old, which corresponds approximately to the time-frame in which secondary successions
accumulate biomass (Brown and Lugo, 1990) However, because a sequence of cloud-free
Landsat sensor imagery is seldom available for tropical regions, remote sensing research has
to develop single-date data classification methods that are accurate enough to be used for the
production of informative land cover maps.

2.4 Digital classification techniques

Several reasons have already been mentioned that made it difficult to discriminate among
tropical secondary, logged, and undisturbed forests using Landsat TM data analysis (forest
definition; spectral similarity; spatial, spectral, and temporal resolution of the remotely sensed
data). The techniques more frequently used to classify Landsat sensor data represent another
type of problem. Most of these techniques take the classification decision for each pixel
individually, independently of its surrounding pixels and its geographical context. However,
much information is present in the data of pixels surrounding a point, and in geographic context
in which a given multi-spectral datum is classified. This information can potentially be analyzed
and included in the digital classification process to improve the chance of a correct classification.
Visual interpretation of aerial photographs and color composites of digital images does always
take such information into account. For that reason, Tuomisto ef al. (1995) could achieve a
better visual interpretation of Landsat TM color composites than a reliable pixel-by-pixel digital
classification of the data. Visual interpretation does not only observe the ‘color’ of a pixel (its
spectral pattern), but also its spatial context, its relationship with neighboring pixels, the shape of



the object to which it belongs, etc. All these features are not considered in digital pixel-by-pixel
classification techniques, which are thus unable to extract the whole information content inherent
in the multi-spectral data set.

Previous research that has atternpted to improve the extraction of information from the
multi-spectral data set has been based on two hypothesis. The first hypothesis is that subtle
spectral differences between the land cover categories of interest are present in the data, but not
adequately enhanced to allow the maximum likelihood decision rule to be sensitive to them.
Research based on this assumption developed spectral data enhancement techniques, the best
known among them being the computation of so called ‘vegetation indexes’, such as the
Normalized Difference Vegetation Index (NDVI) and the Tasseled Cap transformation (Sader et
al. 1989; Foody and Curran, 1994; Crist and Cicone, 1994; Sader, 1995; Helmer, 1999)

The second hypothesis is that variations in the spectral response of neighboring pixels
reflect texture variations of the Earth features of interest, for example differences in canopy
roughness and vegetation structure between secondary and old-growth forests Information
about image texture can be extracted digitally and included in the classification process
Proposed techniques have been spatial filtering of the data to reduce data variance and enhance
spectral-textural differences among the land cover categories of interest (Hill and Foody, 1994),
or addition of texture measures extracted from an n x n window to the multi-spectral data set
(Franklin and Peddle, 1989; Jensen, 1996)

The technique of adding data layers to the original image data about information
extracted from the multi-spectral data set itself has most commonly been used in the case of
vegetation indexes These are obtained through mathematical combinations of the original
spectral data and are intended to enhance some particular feature present in the data that might be
correlated with the land cover categories of interest. For example, NDVI has widely been used
because it is supposed to help the detection of green leaf biomass, since it enhances the
difference between red, that is absorbed by chlorophyll, and near-IR, that is reflected by the leaf
mesophyll (Jensen, 1996). The NDVI is simply a ratio of the difference between near-IR and red
band values over the sum of the same band values:

T™M4 - TM3

NDVIpy= , (1)

T™M3 - TM4

where TM3 is the third band of Landsat TM (red, 0.63-0.69 um) and TM4 is the fourth
band of Landsat TM (near infrared, 0 76-0 90 pm) (Jensen, 1996).

Other frequently used indexes are the “Brightness”, “Greenness”, and “Wetness” features
derived from the tasseled cap transformation (Crist and Cicone, 1984; Jensen, 1996; Helmer,
1999). These indexes are obtained from regression equations applied to the original spectral

data, and are supposed to relate with green leaf biomass, vegetation structure, and moisture
(Table 2),



Table 2. Transformation coefficients for the creation of the Tasseled Cap Indexes

using Landsat TM data
Feature TM1 TM2 T™3 T™M4 TMS T™M7
Brightness 0.33183 0.33121 0.55177 042514 0.48087 0.25242
Greenness -024717  -0.16263  -040639 0.85468 005493  -0.11749
Third (Wetness) 013929 022490 040359 025178 -0.70133  -045732
Fourth 084610 -070310 -046400 -000320 -0.04920 -0.01190

Source: Crist and Cicone, 1984

Research that used these techniques has not always achieved an improvement of the
classification accuracy of tropical forest categories (Sader ef al, 1989; Foody and Curran, 1994;
Puig, 1996; Helmer, 1999). Either a strong correlation between vegetation indexes and specific
ecological features of the vegetation measured in the field could not be found (Foody and
Curran, 1994), or, in the case of the addition of textural measures to the muiti-spectral data set,
the normality assumption of the data distribution was violated (Hutchinson, 1992; Jensen, 1996).

Only classifier operations, such as the use of textural classifiers, that are algorithms that
do not take a per-pixel but a per-object (group of pixels) classification decision, were reported to
consistently improve the classification accuracy of secondary forest types (Li ef al, 1994;
Brondizio ef al, 1996; Foody ef al., 1996) Such research was however related to an effort for
ground data collection that is seldom feasible for the study of large tropical regions. Object
classifiers are also not yet included in standard image processing software.

2.5  Use of ancillary data in remote sensing

The use of contextual information, going beyond that extracted from the multi-spectral
data themselves, has rarely been explored to solve the classification problem of tropical
secondary, logged, and undisturbed forests. However, spatial data might include useful
information to mathematically describe the geographical and ecological context of a particular
image pixel that has to be classified. The potential usefulness of such data to improve the
classification accuracy of remotely sensed data is straightforward.

Most vegetation types occur only within a range of ecological conditions, such as
elevation above sea level, latitude, soil type, and others. Human choices do also largely
determine the spatial distribution of land cover categories: crops are grown close to roads and
markets, forests are logged where timber extraction is financially lucrative, and secondary forests
are left to grow on abandoned farms that must therefore have been made accessible for humans,

In Costa Rica, an association between deforestation and climate, slope, soil fertility and
infrastructure for human access to forests has been demonstrated by previous studies (Sader and
Joyce, 1988; Veldkamp ef al, 1992). Similar correlations between deforestation and landscape
variables were also found in Brazil (Stone ef al, 1991; Moran ef al, 1994), Guatemala (Sader,
1995), Guinea (Gilruth ef al , 1995), Honduras (Ludeke e al, 1990), Madagascar (Green and
Sussman, 1990), Mexico (Dirzo and Garcia, 1992), Philippines (Kummer and Tuner, 1994), and
in other parts of the world. Since secondary successions develop on lands that were cleared for
farming or grazing, and then abandoned, a correlation should exist between secondary forests
and certain landscape features such as infrastructure for human access.
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If the patterns of spatial distribution of the cover types of interest are correlated with
variables that can be georeferenced using a GIS, then different strategies are available to use the
information content of such ancillary variables to improve the accuracy of the classification
(Hutchinson, 1982)

The simplest way of including ancillary variables in the discriminant analysis is to add an
ancillary data layer to the image data set, before the classification This method does not always
improve the classification accuracy (Hutchinson, 1992; Gallo, 1999) Environmental variables
have often skewed or multimodal distributions (Hutchinson, 1992; Flack, 1995; Jensen, 1996).
Simply adding them to the multispectral data set thus violates the normal distribution assumption
required for the maximum likelihood discriminant analysis. To avoid this problem, the ancillary
variables can be used in pre-classification image stratification (Franklin and Wilson, 1992) or in
post-classification sorting (Hutchinson, 1992; Cibula and Nyquist, 1987). These are simple and
effective ways to improve the classification accuracy, but they are limited by the artificially
sharp boundaries they create in the classified output data set due to their “deterministic, inflexible
nature” (Maselli ef al |, 1995).

2.6  Bayes’s classification with modified prior probabilities

A technique that allows inclusion of ancillary data into the classification process without
requiring assumptions about the distribution of the ancillary data or forcing the classification to
become deterministic, is the classification with modified prior probabilities, also known as
Bayesian approach (Swain and Davis, 1978; Strahler, 1980; Hutchinson, 1982; Mather, 1985;
Maselli et al, 1995). To understand this technique, it is necessary to briefly review the
mathematics of the maximum likelihood classification.

The maximum likelihood decision rule is based on a normalized (Gaussian) estimate of
the probability density function of each spectral class The probability density function for a
pixel xi can be expressed as (Foody ef al. 1992):

[-1/2(xy — ui)'V{I(Xk ~u)}
e
p(xc|i) = | @
[2n)"? A V2

where p(xki 1) is the probability density function for a pixel xx to be member of class i, n is the
number of channels present in the image, xy is the data vector for the pixel in all channels, v; is
the mean vector for class i over all pixels, and V; is the variance-covariance matrix for class i.
The maximum likelihood decision rule assigns the pixel x to the class for which equation (2)
results in the greatest probability value In practice, classification algorithms use a logarithmic
form of the maximum likelihood decision rule in which all constants are eliminated. Following
the mathematical manipulations shown in Strahler (1980), the maximum likelihood decision rule
can be expressed by the following discriminant function Fyx{x):

Fra(xi) = 1In | Vi| + (o - u) Vi ' Goeu) 3)

The pixel x, is assigned to the class for which the discriminant function results in the
lowest value.

The Bayes’s decision rule is identical to the maximum likelihood decision rule, except
that it does not assume that each class has the same probability to occur In almost every remote
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sensing application, some classes are encountered more often than others. The maximum
likelihood decision rule can be modified to take into account the prior probabilities of each class,
which are simply the expected area proportions of the classes in a particular scene or stratum
Their incorporation into the maximum likelthood decision rule occurs via manipulation of the
Law of Conditional Probabilities (Strahler 1980) Mathematically, this occurs by adding the
term —2InP; to equation (3):

Fax(x) = In | Vi| + (x = 1) Vi (xeeu) ~2InP; 4)

where P; is the prior probability of class 1 and Fax(xy) is the discriminant function that takes into
account the class prior probabilities. The sum of the P; of all classes must be 1.0 for each pixel,
because each pixel must be assigned to a class

Graphically, it can be observed, that changing the prior probabilities results in a shift of
the maximum likelihood decision boundary (Figure 1).

Figure 1. Shift of the maximum likelihood decision boundary
caused by modified prior probabilities
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As a consequence of this shift, a greater range of spectral data values will be assigned to
the more frequent class (A) and less to the rarer one (B). In the extreme case that the prior
probability of class B is zero, all pixels will be assigned to class A

Availability of ancillary data for the definition of the pixel’s geographical and ecological
context allows a different set of prior probabilities to be assigned to each pixel. For example, to
a pixel closely located to the Costa Rican Pacific coast - that might actually be mangrove forest -
a small prior probability might be assigned to the class “subalpine paramo” and a high prior
probability to the class “mangrove forest”. The opposite would then be done for a pixel located
in a mountain region that is actually a subalpine paramo. In that way, the probability of having
both pixels classified correctly will be higher than with the traditional approach, that would
assume equal class prior probabilities for both pixels.
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In the praxis, assigning a different set of prior probabilities to each individual pixel will
not make sense because it would be imposstble to estimate a different set of prior probabilities
for each of the numerous pixels present in an image. Instead, the ancillary variables relevant to
the spatial distribution of the cover types of interest can be used to stratify the study region in
portions of approximately invariant ecological and geographical conditions. The same set of
prior probabilities can then be assigned to each pixel within each of these strata For determining
which set of prior probabilities should be assigned to the pixels within a stratum, it is necessary
to know the relative surface occupied by the individual land cover categories within each
stratum. Observed land cover frequencies (for example from stratified random sampling in the
field) can thus be used as an estimate of the class prior probabilities.

Using the methods described above to classify remotely sensed data, only the land cover
categories that are likely to occur in a given geographical and ecological context have a chance
to classify the image pixels Spectrally similar categories that do occur in the scene, but not at
the same geographical and ecological context, have therefore little chance to become classified
This mechanism increases the classification accuracy of spectrally similar land cover categories,
unless they occur with the same frequency in similar conditions.

It has been shown that this classification method can produce great improvements of the
classification accuracy of spectrally similar land cover categories, while not affecting the
classification decision for spectral classes that are clearly different from others, and for which the
spectral information is sufficient to allow a reliable classification (Mather, 1985; Maselli ef al,
1995).

The major drawback of this method has been the need of random sampling, or stratified
random sampling, to obtain class frequency estimates. In large tropical environments, where
major portions of the scene can have prohibitive access conditions and up-to-date aenal
photographs may not be available, random sampling techniques might be simply impossible to
achieve. For that reason, the method has not found widespread application An approach to
solve this problem is shown in this dissertation.

3. MATERIALS AND METHODS

3.1.  Study region

The tropical study region selected for this research was the central portion of Costa Rica
comresponding to path 15 and row 53 of Landsat TM (Figure 2).

The study region inclydes approximately 30,950 km® and is therefore large compared to
that used in most classification experiments that have been reported in the literature (see Part I).
About 5433 km® (17.5%) are covered by water, and the rest is land with elevations ranging from
0 to 3825 mas 1, and with considerable variations in slope and aspect. Because of the presence
of the Central Volcanic and Talamanca mountain ranges and the influence of trade winds,
climatic conditions are extremely variable, with yearly average precipitation ranging from
1400 mm yr™! to more than 7000 mm yr”' (IMN, 1987)

Because of the broad range of climatic conditions, a wide array of natural ecosystems,
represented by 12 life-zones and 11 transition-zones (sensu Holdridge ef af., 1971), exists in the
study region. As a consequence of this ecological diversity, the study region was spectrally
complexity and particularly challenging to classify The small to medium sized land tenure, the
fragmented patterns of forest cover, the mixed forms of land-use, the rugged topography, and the
presence of clouds and haze added considerable spectral “noise” to the image data
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Figure 2. Study region
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3.2  Data collection and preparation

Three sets of data were used in this research: satellite data, ancillary spatial data (models
generated with a GIS of landscape variables considered relevant to the spatial distribution of the
spectral classes), and ground-truth data. The three data sets were used for classification (satellite
data), estimation of georeferenced sets of class prior probabilities (satellite data + ancillary data),

spectral signature extraction (satellite data + ground-truth data), and classification accuracy
assessment (ground-truth data).

Satellite data:

e A Landsat TM image from March, 5% 1996 (path 15 / row 53) was obtained from the
Foundation for the Development of the Central Volcanic Mountain Range, FUNDECOR.
Before classification, the image was georeferenced to the coordinate system Lambert
Conformal Conic of north Costa Rica.

To reduce the quantity of data to be processed, the thermal band (TM band 6) was eliminated
from the satellite image because it was considered of too low spatial resolution and spectral
contrast to be helpful for the discrimination of forest categories.

No atmospheric correction were performed (because of lack of data about atmospheric
conditions in March, 5®, 1996), but the Normalized Difference Vegetation Index (NDVI) and
the three first features of the Tasseled Cap transformation were added to the reflective bands,
because the literature review suggested that they helped to improve the discrimination of
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vegetation categories The Tasseled Cap features were computed using the regression
equations shown in Table 2.

Ancillary spatial data:

Digital Elevation Model (DEM). A DEM was generated from interpolation of contour lines
data using ARC/INFO 721 TOPOGRID module. The digital contour lines data were
obtained from the Costa Rican National Geographic Institute (IGN), that generated them
from scanned 1 - 50,000 scale maps. Since the IGN could not provide digital contour line
data for the entire study region, additional 1 : 50,000 and 1 : 200,000 scale contour lines data
were obtained from the Department of Geography at the University of Costa Rica (UCR),
and from CATIE’s GIS laboratory, respectively, to complete a digital contour line data base
for the entire study region. The DEM, as all other ancillary data used in this research, was
generated at the same spatial resolution of the satellite image.

Digital accessibility model. This model was generated from slope data derived from the
DEM and digital road data provided at a 1 : 50,000 map scale by the IGN  Because a large
proportion of the study region presented rugged terrain, it was thought that the use of an
Euclidian distance function from roads would not adequately represent the access conditions
existing in the study region In reality, the time and energy required to access a field is a
function of several variables. In this research, slope and distance from the closest road were
considered to be the most important variables to model conditions of access to a spot.
Firstly, using walking time data obtained from interviews to local farmers and foresters, a
regression equation was constructed to estimate the time a person would need to cross a pixel
(28 5 m) as a function of its slope. Then, the regression equation was applied to each image
pixel using slope data derived from the DEM. Finally, the least cumulative walking time was
calculated for each pixel, using the closest road as starting point of the calculation. This
walking time model was considered to adequately represent the access conditions of each
image pixel.

Digital model of distance categories from the Pacific Coast and export banana fields. Using
a boundary coverage of Costa Rica (digitized from 1 - 200,000 scale maps), and boundary
polygons of banana fields (screen digitized over the satellite image), a distance model was
created representing distance categories increasing from the boundary of the banana fields
toward the Pacific Coast As discussed previously, this model was created because it was
hypothesized that under the particular conditions of the study region it would have been
helpful to improve the discrimination of land cover categories such as mangrove forests, oil
palm fields, banana fields, inundated palm forest, and others.

Digital life zone map sensu Holdridge e al (1971). This map was digitized from
1 : 200,000 scale maps obtained from the Tropical Science Center (CCT) of Costa Rica and
was used for the selection of spectral observations from ecologically similar conditions (Part
II)

Ground-truth data;

826 field site descriptions were obtained from field surveys carried out during the period
from March, 1998, to March, 1999. The center coordinates of each field site were
determined using a Global Positioning System (GPS) unit (Garmin XL 12). This data set
was used for signature extraction and classification consistency evaluation (Figure 3).
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Figure 3. Location of ground-truth data of this study
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Notes:
o White spots represent the location of 826 ground-truth sites.

o Black areas represent regions covered by clouds, shadow, oceans, and no data (image
background).

e Colors represent different geographical and ecological conditions according to the ancillary
variable (R,G,B, display of accessibility, DEM, and distance categories)

The location of most field described sites was determined previous to field work, using the
following criteria:
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(1) Representative of all spectral patterns present in the image Spectral classes not
present in the training data set have a great probability of not being classified
correctly by the maximum likelihood algorithm. Through visual interpretation of
the satellite image it was made sure that all spectral patterns were present in the
training data obtained from field described sites.

(2)  Representative of the study region: As much as possible, ground truth data were
gathered well distributed in all three coordinates of the study region (Latitude,
Longitude, and elevation). Study regions not surveyed in the field might harbor
land cover categories not present in the map legend. A good spatial distribution
of the ground-truth data reduces the probability of forgetting a land cover
category in the classification scheme Classification schemes must be exhaustive
{Congalton, 1991)

3) Useful for the development of spectral signatures: Field sites used to develop
training signatures must be spectrally homogeneous and large enough to make it
possible to gather at least 10 spectral measurements (pixels) for each band of the
satellite image (Jensen, 1996). For the classification of a 7 band Landsat TM
image, this requirement would represent 70 pixels, or an area of about 568
hectares, boundary pixels excluded. In highly rugged and fragmented landscapes,
sites that meet these conditions are rare and must therefore be sought in the
computer screen previous to field work

(4)  Not under clouds or shadow: About 13.2% of the study region was either under
clouds or shadowed. It was necessary to avoid collecting ground-truth data in
areas that were not visible in the satellite image.

(5)  Easyto access: Limited resources were available for field survey. To reduce the
costs of fieldwork the collection of ground-truth data at location that were
difficult to access was reduced to a necessary minimum.

o 252 field site descriptions made in 1996 by other researchers were obtained from Oregon
State University (Ph . research data of Helmer, 1999) and FUNDECOR. This data set was
used for classification accuracy assessment only.

3.3  Sequence of data analysis

The basic approach of this research has been to merge two sources of information for
improving the quality of the classification. The first source of information is traditional in
remote sensing’ the spectral information. This information was obtained from well known
supervised procedures, and will thus not be discussed farther {more details are given in Parts II
and IIT}.

The second source of information was obtained from the ancillary data, and was basically
a model of how the frequencies of the different land cover categories change as a function of the
ancillary variables. This model was then incorporated into the Bayesian maximum likelihood
classtfication in form of modified prior probabilities.

The different steps required to accomplish this data analysis procedure are shown in a
flow diagram (Figure 4) and are described with more detail in the next sections.
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Figure 4. Flow-diagram of data analysis
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3.4  Stratification of the study region

Theoretically, a different set of prior probabilities can be used for the bayesian
classification of each pixel. In practice, estimating a separate set of prior probabilities for each
individual pixel is impossible. Instead, the study region can be stratified in portions of about
invariant ecological and geographical conditions. All pixels contained in the same stratum can
then be classified using the same set of prior probabilities. This approach was chosen for the
present study.

Figure 5. Stratification of the study region
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Note: The colors of this image represent 537 geographical strata. For each stratum, a different
set of prior probabilities was estimated and used for the Bayesian classification.
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To stratify the study region the three ancillary variables representing elevation,
accessibility and distance categories were used However, 256° possible strata (supposing 8 bit
data) would have resulted from the linear combination of the data of these variables (the colors
of Figure 3 are a graphical representation of these combinations). To reduce the number of strata
to some number that was considered easier to handle, ERDAS Imagine 83.1 ISODATA
clustering algorithm was used. The convergence threshold was set to 99% and reached after a
night of iterations. As result of the clustering process, 537 strata were delimited (Figure 5)

3.5  Estimation of prior probabilities

Because stratified random sampling to determine the class frequencies within each of the
537 strata would have been impossible to achieve through fieldwork or interpretation of aerial
photographs, an alternative method was developed The method used a selection of pixels
previously classified using the traditional equal prior maximum likelihood decision rule to
sample the spectral class frequencies in each image stratum. The sample pixels were selected for
their shortest Mahalanobis Distance to the mean values of the spectral signatures used for
training. It has been shown, that the Mahalanobis Distances 15 a good a measure of spectral
similarity between a pixel and the mean of a spectral class (Foody ef al,, 1992). Mathematically,
the MD is expressed by the following formula:

MD = (xx — ;)" Vi (xx — uy), (5)

where MD is the Mahalanobis Distance between the pixel xx and the mean of class i, v; is the
mean vector for class i over all pixels, and V; is the variance-covariance matrix of class i (Foody
et al. 1992). It was thus assumed that pixels with greatest spectral similarity to the mean of their
assigned spectral class had a greater chance to be classified correctly. As measure of spectral
similarity the MD was preferred over the a posteriori probability, since some pixels might have
high a posteriori probability values even if they are spectrally dissimilar to the class to which
their were allocated (Figure 6). This is for example the case, when some spectral classes are not
adequately represented in the training data set (Foody ef al., 1992).

Figure 6. A4 posteriori probability as an inadequate measure of spectral similarity
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Even if the threshold value of the Mahalanobis Distance was set for a high confidence
level (95%), 909,311 pixels passed the selection criterion. Nevertheless, not all of them were
assumed to have been classified correctly A small proportion of incorrectly classified pixels
was considered likely to exist even among pixels that were spectrally identical to the mean of the
spectral class to which they were allocated. Their use as class frequency samples would
therefore have resulted in biased frequency estimates. To minimize this risk, all selected pixels
whose incorrect class allocation was recognizable were eliminated before using them to estimate
the prior probability. '

To identify possibly misclassified pixels among the MD threshold selection, the range
was defined for ecological and geographical conditions that was considered allowable for each
particular spectral class according to interviews with local agronomic experts and personal
experience. Pixels found beyond this allowed range were eliminated This process required
ARC/INFO arc macro language (aml) data processing of the MD pixel selection and of the three
ancillary variables.

A low pixel frequency (0.1 pixels) was then added to the number of pixels left over for all
classes that could not be excluded from a particular stratum, according to the ecological and
geographical criteria  As suggested by Maselli ef al. (1995), this trick is required to avoid the
exclusion of a class in a particular geographic stratum just because it is not present in the
frequency sample. Finally, the pixel frequencies of the training data were added to the refined
MD selection of pixels, which yielded a body of 764,636 pixels for the estimation of the class
frequencies. From these pixels, 14 38% were obtained from the training data, and 85.62% were
selected with the MD threshold criterion and surpassed the ecological and geographical
credibility test

The sample size of 764,636 pixels would have been impossible to gather through
stratified random sampling in the field, but was large enough to estimate the frequency of 33
land cover categories in the 537 image strata.

To generate the prior probability set to be applied in each stratum, the pixels frequency of
each class was divided by the total number of pixels sampled in the stratum.

3.6  Classification experiments

To test the effectiveness of different spectral band and vegetation index combinations for
improving the discrimination, 18 classification experiments were performed using a supervised
maximum likelihood approach The band and index combination that resulted in the best
classification output for the forest categories was then classified again using the spatially variant
prior probability sets that were estimated using the methods described above. The computing
routine of this classification required ERDAS macro language (eml) and spatial modeler (sml)
programming, as well as a Visual Basic program written in house to control the flow of the
program execution.

3.7  Classification accuracy assessment

A statistically sound evaluation of the classification accuracy could not be achieved in
this research, because ground truth data meeting all requirements for such an assessment were
not available (Congalton, 1991).

Nevertheless, enough evidence to compare the performance of the different classification
experiments was obtained from:
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¢ The classification self-consistency of the training data set (979 sites, from which 826
were visited in the field, and 153 identified through visual interpretation of the
satellite image), and

+ The classification accuracy of the control data set (252 sites visited and described in
the field by other researchers)

4, RESULTS

4.1  Prior probability model

The final prior probability model was a set of 537 tables containing prior probability
values for each class Each table was related with a particular stratum, and contained prior
probability values for the 927 spectral classes used to classify the scene. Graphically, the model
is presented in Figure 7, and discussed in detail in Part II. In these figures the prior probabilities
are represented as functions of the three ancillary variables that were used to stratify the study
region. As was expected, the likelihood of occurrence of the different categories of land cover
showed great variations along the gradients. For most categories the range of variations was
from 0% to 100%. This pattern contrast with the implicit assumption made with the traditional
equal prior classification (Figure 8), in which each class, at whatever location, has exactly the
same prior probability to occur (3.03% in a classification with 33 land cover categories).

The tail regions of the probability distributions do not appear truncated, which indicates
that the elimination of pixels from the 95% confidence threshold did not generate artifacts in the
model.

The more horizontal the distribution of probabilities in the graphics of Figure 7, the less
the variable contributed to stratification. Time of access appears thus to have given the smallest
contribution to stratification. However, it was the most important variable for improving the
discrimination of forest categories, especially old-growth forests from logged and secondary
forests. This is particularly evident, when one observes the likelihood distribution of these
categories in the time of access variable. A variable can thus be important for improving
discrimination, but less important for stratification (see Part IT).

Elevation above sea level did also contribute to improve the discrimination of old-growth
forests, because greater abundance of undisturbed ecosystems is found at higher elevations,
probably because protected areas larger in mountain and foothill regions.

The distribution of secondary forests and logged forests is also slightly different to that of
old-growth forests for the variable distance from the Pacific Coast. The reason is probably the
same as for the variable elevation above sea level, because regions of higher elevation are
concentrated at specific ranges of distance from the Pacific Coast.

Only stratified random sampling in the field could have been used to make a quantitative
assessment of the quality of the prior probability model However, common sense and previous
knowledge about the spatial distribution of land cover in central Costa Rica can be used to allow
the conclusion that the prior probability model reflected, with an high degree of certainty, the
true land cover patterns in the study region. The methods used to estimate the prior probabilities
appear thus appropriate to produce useful information for the Bayesian classification The
elevated number of sample points produced by the proposed technique (Figure 9) might offset,
up to a certain degree, the bias inherent in a design that was not random and that might have
resulted in the selection of dome sample points that were not assigned to their true class
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Figure 7. Prior probability model (equal-area representation)

Figure 7.a. Land cover probability as a function of walking time from the closest road
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Figure 7.b. Land cover probability as a function of elevation above sea level
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Figure 7.c. Land cover probability as a function of distance from the Pacific Coast
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Tigure 9. Sample point density (black spots) used to estimate the class prior probabilities
(Image subset corresponds to the region of the Pods Volcano, aprox. 240 km?)
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4.2  Classification results

The usefulness of the Bayesian classification for improving the discrimination of land
cover categories is demonstrated by the classification results (Table 3)

The overall consistency of the classification in the 979 training sites using the Bayesian
classification was, with 91 9% (Kappa 0.914), 17.3% higher than using the traditional equal prior
maximum likelihood classification The overall classification accuracy in the 252 control sites
was 89 0% and 68 7% respectively. The land cover categories that improved the best were the
spectrally similar forest categories.

The classification results presented in Table 3 refer to the band and index combination
that resulted in the best discrimination. The results of 18 classification tests using different band
and index combinations are presented in Part III. Varations in classification accuracy of these
different tests were only a few percentage points. From this it was concluded that use of NDVI
and Tasseled Cap indexes was not as effective as the estimation and use of prior probabilities for
improving the discrimination of land cover, especially the spectrally similar categories.

The superior quality of the classification using modified prior probabilities could also be
appreciated visually. Part II shows two subsets of the study region, in which “salt and pepper”
effects, and the classification of land cover categories that could not exist, according to the
geographical context, are significantly reduced in comparison to the results obtained with the
traditional classification method.

4.3  Spectral enhancement using NDVI and Tasseled Cap

As discussed in depth in Part III, the use of vegetation indexes did not result in important
changes of the classification accuracy To test the usefulness of vegetation indexes for
improving the discrimination of different forest categories, spectral observations were selected
from field visited sites and then sensu Holdridge ef al., 1971) At the 95% confidence level, the
spectral mean values were statistically different among forest categories within the same
ecological life-zone (ANOVA and Tukey test), but were also different within the same forest
category between the two ecological life-zones (t-test and Wilcoxon rank sum test) Forest
categories were thus spectrally different between and within categories.

However, in all spectral bands and indexes, the mean spectral values of individual forest
categories were found to be within the standard deviation range of the mean values of the other
forest categories. While the mean values of the forest categories were different, spectral overlap
was important, thus suggesting little spectral dissimilarity, especially between advanced
secondary successions, logged forests, and old-growth forests.

The use of NDVI and Tasseled Cap indexes was of limited usefulness for increasing the
spectral separation between the forest categories. NDVI values were only useful for separating
forests categories from other land cover categories such as pastures. Tasseled Cap values
showed some difference among categories, but they had also greater variances than NDVI.

The spectral patterns of the forest categories of interest are analyzed in depth in part IIL
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Table 3. Percentage of overall classification consistency and accuracy
(Band combination: TM1, TM2 TM3, TM4, TMS5, TM7, NDVI, Brightness, Wetness)

Classification Consistency in
the Training Sites

Classification Accuracy of
Independently Controlled Sites

Land Cover Category

n

equal priors  mod. priors

n_ equal priors _mod. priors

Pasture 27970 904 969 1763 363 95 0
Annua! Crops 2592 888 97 1 0 - -
Plowed Soil 2997 939 99 0 0 — -
Sugar Cane 7624 94 2 98.8 482 67.6 828
Ormamental Plants 715 70.1 96.6 0

iPineapple 1033 99 8 1000 297 98.3 98 3
Shadowed Ornamental Plants; 903 983 1000 236 949 958
Mixed Agriculture 343 251 559 0 e —e
Bamboo 3322 659 935 0 - -
Banana 22841 81.9 979 355 845 963
Fruits and Nuts Trees 4383 61.9 8538 246 50.8 699
Coffee 4890 776 954 528 799 Q72
Oil Palm 3868 69 0 945 170 524 882
Palmito Palm 2680 79.6 901 0 —-- e
Tropical Old-growth Forest | 7819 45 4 820 1706 346 938
I ogged Tropical Forest 8347 275 716 285 267 558
[nitial SS 1694 330 66.0 0
Intermediate SS" 3673 2938 66.0 0
Advanced SS® 7514 311 68.6 296 578 774
Inundated Palm Forest 7201 642 96.0 352 852 97.7
Reforestation 7108 558 7.0 412 40.5 556
Montane Old-growth Forest | 8109 837 99.1 2115 716 95 4
Initial Montane SS® 589 555 84.7 494 158 58.9
Advanced Montane SS 669 508 638 618 303 739
Dwarf Subalpine Forest 267 677 67.5 444 119 48 2
PS®on Montane Landslides 82 892 93.8 0 -— m
Mangroves 2513 93.0 992 490 951 959
Subalpine Paramo 1920 99.1 99.8 1782 86.9 93.0
Bare Soil 1821 97 4 89 9 160 70.0 9318
Urban Areas 742 96.6 100.0 160 48 8 844
Water 10426 999 100.0 754 999 100.0
Clouds 3589 1000 100.0 963 100.0 100.0
Shadow 4020 997 99.9 98 39.8 98.9
Overall Accuracy 74.6 81.9 68.7 890
Kappa 0.73 0.91 0.66 0.88

%) Secondary Succession of tropical lowland forests after Finegan's model (1996)
@) Secondary Succession of montane forests after Kappelle's model (1995)

3 . .
@ Primary succession
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5. DISCUSSION

5.1  Advantages and drawbacks of the methods used

The methods used in this research achieved a much higher level of discrimination of
tropical forest categories than conventional methods The estimation of georeferenced prior
probabilities of land cover categories was achieved using a computer modeling approach (instead
of a random sampling approach) for a large and complex tropical region and then used in a
Bayesian classification of spectral data The research thus contributed to solve two critical
problems:  the estimation of prior probabilities in large and complex areas, and the
discrimination of tropical forest categories.

However, compared to other classification methods of Landsat TM data, the methods
used in this research required a considerable amount of additional data, skills, and computer
processing time. While obtaining additional data is only a problem when GIS data of good
quality are not available, computer processing time and skills must be acquired.

Bayesian classifiers might also be very sensitive to variations in the prior probability
estimates  Classification results will thus depend on the quality of the prior probability model
This would make the availability of a validation data set to test the quality of the prior
probability model of advantage. However, obtaining a validation data set has the same practical
problems than the estimation of prior probabilities using random sampling techniques As a
consequence, it will rarely be possible to quantitatively assess the quality of the prior probability
model, and only the classification output will provide information about its quality and
usefulness. Part II includes an in depth discussion of the classification with modified prior
probabilities.

5.2  Usefulness of spectral enhancement for improving the discrimination

The results obtained from spectral patterns analysis and from 18 classification tests
suggest that spectral data enhancement techniques are of little advantage for the study of regions
as complex as that chosen for this research. The use of such techniques implicitly assumes that
spectral patterns observed at the patch level are repeated over the entire scene. Instead, the
spectral response observed at the patch level might vary, within the same land cover category, in
space, and not only in time. This has also been observed in other remote sensing research of
secondary successions (Mausel ef al., 1993; Foody et al, 1996). In this research, speciral
variations within forest categories were expected, because during fieldwork important
differences in species composition, biomass, and site moisture were observed for forest patches
belonging to the same category. Such variations are also reported in the ecological literature,
since species composition, biomass accumulation rates, and time-frame of secondary successions
have been shown to vary depending on initial site conditions and the history of land use (Uhl,
1987; Uhl et al, 1988; Foody et al,, 1996). A more in depth discussion of these aspects can be
found in Parts IIT and IV of this work.

5.3  Potential use of the classified data

Despite the improvements in classification accuracy obtained with the methods used in
this research, the levels of discrimination achieved are insufficient to provide information about
location and area of secondary and logged forest at the farm-level. However, unlike other
classification techniques, the Bayesian classification using spatially variant sets of prior
probabilities minimizes the number of pixels allocated to land cover categories that are unlikely
to exist in the geographical context described by the ancillary variables. Within major strata,
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such as ecological life-zones, the area estimates obtained for the different forest categories are
therefore likely to approximate the true values, particularly if corrected for commission and
omission errors. Thus, for regional research applications, such as carbon budgeting over large
areas, the data classified with the methods used in this research could be useful. Nevertheless,
for such applications, attention should be paid to the relationship between the classification
scheme and its biophysical meaning

6. CONCLUSION

Landsat TM data have been shown to be useful for the discrimination of secondary and
disturbed forest categories in tropical regions of low relief and reduced forest fragmentation
Important requirements for using them effectively for this purpose were high-density ground data
of good quality, classifier operations, and — sometimes - ancillary data It is at least doubtful that
Landsat TM data might be used for the same purpose and with similar levels of success in more
complex tropical regions.  Rugged topography, ecological diversity, advanced forest
fragmentation, and continuous human intervention in the forest, are sources of “spectral noise”
that reduce the possibility of making a good discrimination using spectral data alone. In such
situations, ancillary data describing the forest site conditions at the pixel level might be used to
improve the quality of the discrimination.

The Bayesian classification used in this research appeared to be an effective strategy to
include the information provided by ancillary data in the discriminant analysis  This
classification technique was more effective for improving the accuracy of the discrimination of
tropical forest categories than the use of spectral enhancement techniques in the pre-processing
phase. NDVT and Tasseled Cap indexes were useful for the discrimination of broad land cover
categories, but little evidence was found to support the hypothesis that they can contribute to
more subtle discrimination objectives. The classification test using the Bayesian approach was
the only one, out of 18 classification experiments, that produced a significant improvement of the
discrimination of tropical forest categories.

If remotely sensed data are to be used to address carbon and biodiversity issues,
ecological and geographical modeling of the pixel’s context appears to be a necessary
complement of spectral data analysis and ground data collection. This will certainly increases
analysis costs However, the computer modeling approach used in this research proved to be a
viable alternative to generate the information about prior probability required for the Bayesian
classification. Its use in large and inaccessible tropical regions should be less expensive, and
probably equally accurate, than the traditional random sampling approach.

Classification schemes based on qualitative descriptions harbor the danger of not being
mutually exclusive and exhaustive in terms of biophysical properties that are now important to
assess for global change research On the other hand, the use of quantitative classification
schemes does not ensure that the classified categories are quantitatively different in terms of the
biophysical properties used to define the categories, Further multidisciplinary research thus
required for improving our understanding of the biophysical properties that explain the spectral
response of tropical forests.

As shown in this work, the most commonly used classification techniques appears unable
to exploit the whole information content of existing data More research is required to develop
spatial-spectral algorithms and classification techniques that are capable of identifying Earth
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features by their spectral response, shape, size, geographical context, and spatial relationship
with other neighboring features

Finally, an important question that should be investigated, is how classification errors of
commission and omission are propagated when output data from remote sensing research are put
in other research applications or scaled up and down.
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ABSTRACT

The use of modified prior probabilities to exploit ancillary data and increase
classification accuracy has been proposed before. However, this method has not been
widely applied because it has heavy computing requirements and because obtaining prior
probability estimates has presented practical problems. This article presents a procedure
that generates large sets of prior probability estimates from class frequencies modeled with
ancillary data and a Mahalanobis Distance selection of previously classified pixels. The
method produces a pixel sample size that is large enough to estimate class frequencies in
numerous strata, which is particularly desirable for the study of large and complex
landscapes.

A case study is presented, in which the procedure made it possible to estimate 537
sets of prior probabilities for an entire Landsat TM scene of central Costa Rica After
modifying the class prior probabilities, the overall classification consistency of the training
sites improved from 74.6% to 91.9%, while the overall classification accuracy of sites
controlled in the field by independent studies improved from 68.7% to 89.0%. The
classification accuracy was most improved for spectrally similar classes. The method
improves classification accuracy in large and complex landscapes with spectrally mixed
land-cover categories

1. Introduction

One important advantage of Landsat TM is its ‘synoptic view’, that makes it
possible to study large portions of the Earth’s surface at a relatively low cost. Sensor
systems of higher spatial and spectral resolution do not provide yet this large area view at a
low cost. For this reason, improvement of classification methods of Landsat sensor data
should focus on problems faced by large-area projects. Instead, this type of research has
often been limited to small image subsets, sometimes comparable in size to that of only a
few aerial photographs. As a consequence, innovative classification methods that produce
more accurate results, but require more software, hardware, or ground data, have rarely
been applied to large-areas. The large area view is now particularly important to
understand and address global change (Detwiler and Hall 1988, Houghton 1991, Dixon et
al. 1994, UNEP 1995). As an example, several countries have committed themselves to
realize national inventories of green house gases and need therefore data on land-use, land-
use change, and forestry (LULUCF) at the national level Improved classification of land
cover at national and supra-national scale, and better understanding of the driving forces
underlying land cover and land use change (Harrison 1991, Skole ez a/. 1994, Kummer and
Turner 1994), will both become essential to monitor leakage of carbon dioxide emissions of



LULUCF activities under the Kyoto Protocol Land cover data of large areas are also
essential to assess biological diversity at the ecosystem level (Sader ef al 1991, Lewis
1994, Caicco ef al 1995, Tuomisto ef al. 1995, Nagendra and Gadgil 1999) The rates of
tropical deforestation and forest regeneration, however, are still uncertain (Kleinn e al.
2001), as are the methods by which to accurately measure them (Myers 1988, Skole and
Tucker 1993, Downton 1995). The remote sensing community is thus asked not only to
refine traditional land-cover measurement, but also to differentiate ecological, functional,
structural, and compositional features on the Earth’s surface. This implies the need to
discriminate vegetation categories of different biomass content and taxonomic composition,
such as secondary, logged, and undisturbed old-growth forests. Some of these land-cover
categories have overlapping spectral signatures and are therefore difficult to discriminate
using remotely sensed data alone. Studies that address these problems are relatively recent
and few (Sader et al 1989, Mausel ef al. 1993, Foody and Curran 1996, Moran ef al. 1996,
Helmer 1999), and generally utilize an amount and density of ground data that is not
available for large-area projects.

Among data analysis methods, the supervised maximum likelihood classification
procedure of just the spectral data is still the most widely used classification strategy in
digital processing of Landsat sensor data (Booth and Oldfield 1989, Foody ef al. 1992,
Maselli et al. 1995) An attractive feature of the maximum likelihood classifier is that it
can be modified (Jensen 1996), which has led to the investigation of multiple variations of
the procedure. With the steadily growing availability of digital geographic data and the
increased speed of today’s computers, some of these modified procedures are now more
applicable. This offers new opportunities for solving classification problems in large-area
projects.

This article presents a classification procedure, that makes it possible to integrate
spatial data in the classification process through the strategy of modifying the class prior
probabilities. This strategy was proposed by Swain and Davis (1978), Strahler (1980), and
Hutchinson (1982), and has been successfully implemented by Mather (1985) and Maselli
et al. (1995) in smalil areas. However, the procedure that will be discussed here extends the
possibilities of the approach proposed by previous investigations. A strategy is shown, that
produces estimates of large sets of prior probabilities, without necessarily requiring an
expensive stratified random sampling of the training data  This does not imply, that such a
sampling procedure would be the most desirable technique in all situations where it can be
applied. Nor does it mean that no ground data are required to develop the training statistics
and to evaluate the classification accuracy. However, the proposed method addresses a
number of problems, from which the most relevant is probably that of an economically
feasible estimation of class prior probabilities in large-area applications.

2. Previous work

Among the most frequent experiments designed to improve the maximum
likelihood classification performance were computations of band ratios and vegetation
indexes for the enhancement of some spectral features present in the remotely sensed data
set (Sader et al. 1989, Boyd e al. 1996, Helmer 1999). Important efforts were also made to
incorporate image texture measurements into the analysis (Jensen and Toll 1982, Gong and
Howarth 1990, Joen and Landgrebe 1992) or to reduce texture variations before
classification (Hill and Foody 1994). Results of these investigations were mixed (Sader et
al. 1989, Foody and Curran 1994).



Since the spatial distribution of most land-cover categories has a strong relationship
with environmental variables, some researchers have investigated the possibility of
including data about these variables into the classification process (Strahler 1980,
Hutchinson 1982, Mather 1985, Cibula and Nyquist 1987, Skidmore and Turner 1988,
Maselli et al. 1995) These strategies were generally more successful than the manipulation
of spectral data in the pre-classification phase However, some of them violate the normal
distribution assumption of the data (Hutchinson 1982, Flack 1995, Jensen 1996), and other
result in artificially sharp boundaries in the classified output data set (Maselli et al. 1995).

The more successful procedure for incorporating ancillary data into the maximum
likelihood classification has been the use of modified prior probabilities. This method, well
described by Strahler (1980) and Mather (1985), is independent from the data distribution
of ancillary variables, does not create sharp boundaries in the output data set, and usually
results in greatly improved classification accuracy (Strahler 1980, Mather 1985, Skidmore
and Turner 1988, Maselli ef al 1995)

The method consists of producing estimates of the expected class frequencies in the
classified image, and using them to modify the prior probability of each class in the
maximum likelihood decision rule When a higher prior probability is assigned to a
particular class, the decision boundary of the discriminant function shifts away from the
mean of that spectral class, thus allowing a greater number of pixels to be classified to that
class. The result is that classes that are more likely to appear in the scene, or in a subset of
it, tend to classify more pixels, which in turn increases the chance of producing an accurate
classification. The different class prior probabilities, also called ‘weights’ or ‘priors’,
become decisive for assigning a pixel to a class, only when the spectral information is
insufficient to make the discrimination from other classes, that is to say, at pixel brightness
values where signatures are largely overlapping (Maselli et al. 1995). The priors do not
affect the classification decision at pixel brightness values where the spectral signatures are
widely separate (Mather 1985)

If a separate set of prior probabilities can be estimated for all image strata that have
been defined through ancillary data analysis, the information content of these data is
transposed to the maximum likelihood decision rule probabilistically As pointed out by
Maselli et al. (1995), this particular feature of the method is ‘useful to avoid introducing
artifacts from nominal scale variables’.

Strahler (1980) and Maselli ef al. (1995) concede that one of the procedure’s major
drawbacks is that a separate set of prior probabilities must be estimated for each stratum.
The class frequencies of the training sites can be used to estimate the priors, provided they
were taken randomly (Maselli ef al. 1992, Conese ef al 1993). However, stratified random
sampling involving field surveys and aerial photograph interpretation does not necessarily
guarantee that all classes will be sampled in all the strata in which they actually occur. To
avoid artificially excluding a class, just because it is not present in the frequency sample
set, Strahler (1980), Hutchinson (1982), and Maselli ef al. {1995) suggest assigning a ‘non-
completely excludable ancillary prior’ {(Maselli e al 1995), a low probability threshold, to
all classes Strahler (1980) also suggests modeling the probabilities from a much smaller
set, assuming there is no high-level interaction and using statistical techniques to calculate
expected values for a multidimensional contingency table for which only certain marginal
totals are known. To limit the number of strata to be sampled, Maselli et a/ (1995) suggest
taking into consideration only the ancillary variables that are more explicative of the class
frequencies  For this purpose, they used Mutual Information Analysis, a non-parametric



technique described by Davis and Dozier (1990), and Conese and Maselli (1993), that can
be helpful to identify the data layers that are most important to the stratification process.

The work of Strahler (1980), Mather (1985), and Maselli et a/. (1995) demonstrated
that the method of modifying the class prior probabilities has the potential to improve
classification accuracy. However, due to increased computing and sampling requirements,
their methods have not found the widespread application they deserve

If a classification procedure requires software that is not commercially available, as
well as an intensive stratified random sampling of the landscape, it will not even be
considered for use in large area applications because of the heavy investment it implies.
This fact has often been overlooked by researchers developing new classification methods.
Because large sets of image data are not necessary when developing new classification
methods, most studies have been conducted over small areas (Strahler 1980° 220 km?,
Mather 1985: 45 03 km®, and Maselli ef al 1995 40.96 km®). The advantage being, that
small data files have to be processed, high-density ground data can be sampled, and
research cost remains low. For projects involving the classification of one or several
Landsat scenes, each encompdssing more than 30 000 km’, only a small fraction of the
ground data density typically presented in scientific studies can be gathered. Random
sampling, and separate training and control sites are often sacrificed because of time and
budget restrictions.

Before discussing the theoretical background of a cost-effective procedure to
estimate the class prior probabilities in large and complex areas, it is necessary to briefly
review the maximum likelihood classification with modified prior probabilities.

3, Maximum likelihood classification with modified prior probabilities

The maximum likelihood decision rule is based on a normalized (Gaussian)
estimate of the probability density function of each class. The probability density function
for a pixel xx can be expressed as (Foody ef al. 1992):
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where p(xx | i) is the probability density function for a pixel xx to be member of class i, n is
the number of channels present in the image, xy is the data vector for the pixel in all
channels, u; is the mean vector for class i over all pixels, and V; is the variance-covariance
matrix for class i The maximum likelihood decision rule simply assigns the pixel xx to the
class for which the right hand expression of equation (1) results in the greatest probability
value. In practice, classification algorithms use a logarithmic form of the maximum
likelihood decision rule in which all constants are eliminated. Following the mathematical
manipulations shown in Strahler (1980), the maximum likelihood decision rule can be
expressed by the following discriminant function Fy x(x):
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The pixel xi is assigned to the class for which the discriminant function results in
the lowest value.

The maximum likelihood decision rule can be modified to take into account the
prior probabilities of each class, which are simply the expected area proportions of the
classes in a particular scene or stratum.  Their incorporation into the maximum likelihood
decision rule occurs via manipulation of the Law of Conditional Probabilities (Strahler
1980). Mathematically, this occurs by adding the term -2inP; to equation (2):

Fax(xi) = In| V| + (e — ui) Vi (i) —21nP; 3)

where P; is the prior probability of class 1 and Fx(x\) is the discriminant function that takes
into account the class prior probabilities. The sum of the P; of all classes must be 1.0 for
each pixel, because each pixel must be assigned to a class.

4. Stratified sampling with the Mahalanobis Distance

Most land-cover categories have typical distributions along ecological and
socioeconomic gradients such as elevation, precipitation, soil types, and access conditions,
among others (Veldkamp ef al. 1991, Franklin and Wilson 1992} The assumption that the
class prior probabilities are constant along these gradients does not hold, but is always
made by the maximum likelihood algorithm, even if the priors are modified without a scene
stratification  Therefore, before sampling the landscape to estimate the class prior
probabilities, it is advisable to stratify the scene. The goal is to identify landscape units in
which the range of ecological and human induced conditions is small enough to maintain
approximately constant class frequency — or prior probability — along the gradients stil
present within each of them.

Once these units of homogeneous context have been identified, a sample procedure
is required to estimate the class prior probabilities within each stratum. Because the area of
a particular land-cover category can be estimated through random sampling, the frequency
of randomly selected training sites can be used as an estimate of class prior probability
(Maselli e al. 1992). However, when numerous strata are present in the study region,
access is difficult, or the area to be surveyed is very large, the classical procedure of
random sampling in the field can not be applied. The alternative method suggested here is
to sample the class frequencies using a subset of previously classified pixels. The problem
is then reduced to the selection of a subset of pixels with minimum spatial bias and
maximum likelihood of correct class allocation.

As discussed by Foody ef a/ (1992), two measures can potentially be used to
evaluate the quality of the classification at the pixel level: the a posteriori probability and
the Mahalanobis Distance (MD) The a posteriori probability of a pixel xx to belong to
class i, L(i | Xk), can be determined as follows (Foody et al 1992);
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where i is the class number, t is the total number of classes, and P; is the a priori probability
of membership in class i.
The term:

MD = (x¢ — ui)’V;'I(xk — ) (5

of equation (1) is the Mahalanobis Distance between the pixel xx and the mean of class i,
which is a measure of how spectrally typical the pixel is for that class (Foody ef al 1992).

The a posteriori probability indicates the relative probability that a pixel belongs to
the class to which it was assigned, while the MD indicates whether the spectral signature of
the pixel is actually similar to the class spectral signature.

While misclassified pixels are always present in a classified output data set, it can
be assumed that their number will decrease at greater a posteriori probability and shorter
MD values Provided the training data set is representative of the spectral patterns of the
land-cover categories of interest, a threshold of pixels with short MD values or high a
posteriori probability can therefore provide a better estimation of the spatial distribution
and frequency of these categories than the whole set of classified pixels. The MD measure
is better suited to this purpose than the a posteriori probability measure, because it
represents a spectrally related measurement of classification confidence. The risk of
counting pixels that are spectrally unrelated to the class to which they were assigned is
therefore minimized. Particularly in large-area projects with low training site density, there
is a good chance that a specific land-cover category will not be well represented in the
signature training data set or that individual pixels will have spectral patterns that are
atypical for their category. This makes it possible for pixels with high a posteriori
probability to belong to a different class from that to which they were assigned.

An advantage of using a MD threshold for the estimation of class prior probabilities
is that even for high confidence levels, such as 95%, it is still possible to select a much
larger number of pixels than what could possibly be obtained through stratified random
sampling in the field However, unlike the frequency estimates obtained from field and
aerial photograph sampling, it must be assumed, that the class allocation is not correct for
an unknown proportion of the pixels selected with the MD threshold criterion. Even high
spectral typicality does not completely eliminate the possibility of wrong class allocation,
especially for closely related spectral classes. This can bias the frequency and therefore the
prior estimates obtained from the MD sampling technique. Also, a class may not appear in
the sample of a particular stratum, as happens with samples taken from training sites and
photography interpretation, thus giving the false impression that the class is not present in
that particular stratum, However, because of the large sample size, this situation is less
likely to occur with the MD sampling technique, than with the comparatively smalier
sample size that can be obtained from training data and photo-interpretation. These two
problems, wrong class allocation and absence of a class from a sample, can be minimized
with further computer processing of the pixels selected using the MD threshold criterion
As will be shown below, a set of ecological, economical, and geographical criteria can be
applied to the selected sample data set in order to eliminate those pixels that are unlikely to
have a correct class label. The same set of criteria can then be applied to each stratum to
create low prior probability thresholds for all classes that can theoretically occur in it. This
follows the suggestion about ‘non completely excludable ancillary priors’ made in the
aforementioned studies (Strahler 1980, Hutchinson 1982, Maselli ef al. 1995).
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5. Case study

5.1 Study area

The study area encompasses the entire Landsat TM scene (path 15 and row 53) of the
central portion of Costa Rica (figure 1) The scene covers approximately
30 950 km®, of which 5433 km? (17.5%) is covered by water and the rest is land with elevations
ranging from 0 to 3825 m.a s | and with considerable variation in slope and aspect. The image is
from March 1996 (dry season) and was taken on a day with relatively low cloud cover for this
part of the world (approximately 13 2%) The ecological complexity of the area includes 12 life-
zones and 11 transition-zones (sensu Holdridge ef al. 1971) according to the Ecological Map of
Costa Rica (Bolafios and Watson 1993). Due to the influence of trade winds and the presence of
the Central Volcanic and Talamanca mountain ranges, climatic conditions are extremely
variable, with yearly average precipitation ranging from 1400 mm yr’ to more than 7000 mm yr’
! (IMN 1987). One consequence of the climatic variability within the scene is that some
vegetation is brown in the Pacific Slope during the dry season, while most of it remains green in
the Atlantic Zone and in the mountains. The small to medium- sized land tenure, the fragmented
patterns of forest cover, the frequent mixed forms of land-use, the sometimes extremely rugged
terrain, and the presence of clouds and haze add considerable spectral complexity to the scene.

5.2 Data processing

The Landsat TM image was georeferenced to the coordinate system Lambert Conformal
Conic of North Costa Rica The thermal band was eliminated from the data set, because of its
lower spatial resolution and contrast. The Normalized Difference Vegetation Index (NDVI), and
the brightness and greenness indexes of the Tasseled Cap transformation were added to the
reflective bands, because it was found that they helped to improve the discrimination of some
cover types.

During the period from March, 1998 to March, 1999, 826 sites were visited in the field
and their coordinates collected with a non-differential GPS unit (Garmin 12 XL) operating in
average mode for approximately 5 minutes. The coordinates of a majority of the field sites
visited were previously located on the screen to make sure that all spectral patterns visually
present in the scene were appropriately represented in the training data. The structure and
floristic composition of the vegetation in each site were briefly described to ensure correct class
labeling of the different forest types. The pixels with field descriptions and additional visually
interpreted image portions were then used to extract spectral signatures for the cover types of
interest. Sites that were thought to have changed before they were surveyed in the field, and
spectrally confused signatures were eliminated from the training data set, so that in the end, 979
spectral signatures were maintained for use in classifying the scene.

To stratify the study area, three ancillary variables were considered: elevation, time of
access, and a discrete model of distances from the Pacific Coast and export banana fields. The
choice of ancillary variables was determined by the availability and accuracy of digital data for
the study region.

Elevation data were obtained from a digital elevation model of the study area generated
using the ARC/INFO TOPOGRID contour line data interpolation algorithm The digital contour
line data were provided by the Costa Rican National Geographic Institute (IGN), that generated
them from scanned 1 : 50 000 scale maps Because these data were not available for all portions
of the image, the <contour line data set was complemented with
1 : 200 000 scale contour lines from CATIE’s GIS laboratory and additional 1 : 50 000 scale



contour line data provided by the Department of Geography at the University of Costa Rica
(UCR). Elevation data were thought to be of great ecological significance in the spatial
distribution of cover types.

Tt was assumed that accessibility is the most important factor affecting human- induced
spatial distribution of crops, pasture, undisturbed, logged, and secondary forests. However,
because difficulty of access is not only a matter of the Euclidian distance to roads, a ‘time of
access’ model was created, using slope data derived from the digital elevation model and data on
distance from roads derived from digital road data To estimate the time required to cross pixels
of different slopes, an empirical regression model was estimated using walking time data
obtained from interviews with local farmers and foresters. The digital road coverage was
obtained from 1 : 50 000 scale maps scanned by the IGN and complemented with screen
digitized lines over the satellite image. This was necessary, because the cartographic base was
quite outdated for certain portions of the study area. Information about protected areas was
included in the ‘time of access’ model by increasing the time of access by 15 minutes at the
borders of protected areas where tracts of undisturbed forests are known to exist. It was
therefore assumed that if a piece of land lay within 15-minutes walking distance, people would
be willing to walk in to conduct logging, agricultural, or cattle raising activities. However, if no
such land is accessible within this range, then people would not hesitate to trespass on legally
protected areas to farm or log.

Because of their shape, export banana fields in the Atlantic Zone are visually easy to
identify on the satellite image. However, spectrally they tend to blend in with oil palm fields
(Pacific Coast), and swampy palm forests (Atlantic Zone). Mangroves, some types of crops and
other land-cover categories also occur at specific distance ranges from the Pacific Coast. During
the dry season, humidity and precipitation levels increase as one moves from the Pacific Coast
toward the central mountain ranges, and across to the Atlantic Coast. As a consequence, the
spectral response of land cover categories, such as pasture, forest and some crops, changes along
this gradient. Banana fields and swampy palm forests both occur in the Atlantic Zone, at similar
distance ranges from the Pacific Coast. To better discriminate between these two cover types,
banana fields were digitized on the screen, and a distance model was then created from them.
This model was combined with a ‘distance from the Pacific Coast’ raster, thus creating a discrete
continuous model of two distance variables. This distance model was created to better
discriminate particular land cover categories present in the study area and is not necessarily a
relevant ancillary variable in other parts of the world Nevertheless, the concept of a distance
model is applicable to other features that might be present in other situations (e g. distance from
a city relative to crops that must be trucked in).

Using custom tables, the three layers representing elevation, time of access, and
continuous distance categories were recoded to 8 bit values to reduce data dimensionality and
then clustered using the ERDAS-Imagine 8 3.1 ISODATA clustering algorithm. As a result of
the clustering process, 537 strata were delimited, for which different sets of prior probabilities
had to be estimated

To estimate the class prior probabilities within each of the 537 strata, a gray level MD
image was first computed using a maximum likelihood classification with equal priors. The chi-
square approximation to the F distribution of the MD was then used to select, with 95% degree
of confidence, the pixels for each spectral signature that were closer to their estimated class
means. This yielded a threshold selection of 909 311 pixels The training pixels not present in
this MD threshold selection were added, so that finally 14.38% of the pixels used to sample the



class frequency were obtained from the training data, and 8562% from the MD threshold
selection. Visually, these pixels appeared well distributed in space and thus acceptable for
estimating class frequencies.

To eliminate misclassified pixels from the MD selection of pixels, lower and upper limits
of each ancillary variable were defined for each spectral signature Pixels classified outside this
range were eliminated from the class frequency sample. For example, no signature was allowed
that classified outside an elevation range of + 500 m of the elevation of its corresponding training
site (except for water, shadow, and cloud signatures). Signatures for reforestation classified at
walking distances greater than 60 minutes were not allowed; nor were crop types beyond 40
minutes, and urban pixels beyond 10 minutes. For most cover types, especially crops, upper and
lower elevation ranges were defined, according to the information obtained from interviews with
local agronomic experts, from literature, and from personal experience. The same was done for
certain natural vegetation types (mountain oak forests above 1600 m, subalpine paramo above
2800 m, mangroves below 10 m, etc). Some cover types were allowed to be classified only
within certain distance ranges from the Pacific Coast: mangroves at less than 5 km, oil palm
within 15 km, and export banana fields beyond 85 km. After the application of these selection
criteria, 764 636 pixels were left to estimate the class frequencies in the 537 strata.

To avoid exclusion of a class signature in a particular stratum just because it was not
sampled, a frequency corresponding to 0.1 pixels was added to the pixel selection of each
stratum existing within the range of conditions allowed for each signature. The resulting
frequencies were normalized so that their sum was 1.0 for all signatures and used as an estimate
of the class prior probabilities. The image was then classified again, using a computing routine
that classified each stratum with its corresponding prior probability set. The scene stratification
was performed using ERDAS Imagine 83 1 spatial modeler language. The sequence of
computing routines to extract the image pixels corresponding to a stratum, their classification
with the appropriate prior probability set, and union with previously classified strata was
controlled by a Visual Basic program written in house

For the classification accuracy assessment, 252 sites encompassing 15 206 pixels were
selected from ground data provided by three independent studies. The selection was necessary
because not all reference data could be assigned to the class definitions used in this study. The
information provided by the independent studies did not include reference data about some of the
categories classified in this study, whose classification accuracy could therefore not be assessed
independently. The independent reference data used to evaluate the classification accuracy were
provided by Helmer (1999), a local NGO (FUNDECOR), that collected them in 1996, and a
student of the Swiss Federal Institute of Technology, who collected them in an undisturbed
mountain region at the beginning of the year 2000

To allow a comparison of the classification self-consistency for all classes, a contingency
matrix was also computed using the 979 sites (164 466 pixels) of the training data as reference
data.

10



Figure 2.
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53  Results

The result of the classification with stratified modification of prior probabilities is shown
in figure 2. The classification accuracy of independently selected control sites was clearly
superior using the method of modified prior probabilities (table 1). The self-consistency of the
classification of the training sites was also higher using this method After modifying the class
prior probabilities the overall classification consistency in the 979 training sites improved from
74.6% to 91 9% (Kappa 0.912), while the overall classification accuracy of sites controlled in the
field by independent studies improved from 68.7% to 89 0%. These results are consistent with
those reported by other researcher that modified the prior probabilities within strata (Maselli e/
al. 1995). Of the 33 land-cover categories present in the map legend, especially the most
spectrally similar classes (different forest types) were classified with increased accuracy. This
demonstrates that the method of stratified modification of prior probabilities is helpful when
spectral information is insufficient for discrimination.

Figure 3 shows the prior probability model generated with the methods described in
section 5.2 The tail regions of the probability distributions do not appear truncated, which
indicates that the criteria used to eliminate potentially misclassified pixels from the 95%
confidence threshold did not create artifacts. No a single class has equal prior probability within
the study region Instead most classes exist only within a specific range of values of the ancillary
variables. This is quite different from the implicit assumption made with the equal priors
classification approach. The prior probability model actually represents assumptions that are
consistent with previous knowledge about the distribution of classes along ancillary gradients.
As expected, the likelihood of undisturbed forest types increases, while that of other classes,
especially crops, decreases rapidly where walking distances are greater (figure 3a). At short
walking distances all land-cover categories are present, but at longer ones their number goes
down progressively, which increases the chance of correct class allocation to one of the
remaining classes. The same occurs at higher elevations (figure 3b), where climate conditions
become prohibitive for most tropical crops, and forests are less rich in species and, above 1600
m.a.s ], increasingly dominated by the genus Quercus The model also shows that cover types
that appear at comparable elevations and access conditions, such as banana and oil palm fields,
sometimes exist at different distances from the Pacific Coast (figure 3c). ‘

The linear scale of the ancillary variables (graphics on the left side of figure 3) helps to
check if the model assumptions are consistent with previous knowledge However, because
equal intervals of ancillary data represent very different surfaces of the study region (figure 4),
the linear scale is inadequate for understanding the contribution of ancillary variables to the
discrimination of categories and stratification of the study region.

In the right side graphics of figure 3, the three ancillary variables are scaled in 100 equal-
area intervals, and the prior probabilities are represented as a function of these equal-area
intervals. The more horizontal the distribution of a cover type in the equal-area model, the less
the ancillary variable was helpful for stratification.

The prior probabilities for low values of time of access and elevation above sea level
appear stretched in the equal-area graphics because large portions of the scene can be accessed
from the closest road within few minutes or are of low elevation In contrast, probabilities
appear compressed for regions corresponding to long access time or high elevation because these
areas represent only a small proportion of the study region. This stretch-and-compress effect is
less evident in the model of the distance from the Pacific Coast, because surface differences for
equal distance intervals are less important for this variable
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Table 1. Percentage of overall classification consistency and accuracy
(Band combination: TM1, TM2. TM3, TM4, TM5, TM7, NDVI, Brightness, Wetness)

Classification Consistency in
the Training Sites

Classification Accuracy of
Independently Controlled Sites

Land Cover Category

n  equal priors _mod. priors

n  equal priors _mod. priors

Pasture 27970 90.4 96.9 1763 863 950
Annual Crops 2592 88 8 97 1 0 - e
Plowed Soil 2997 939 990 0 - -
Sugar Cane 7624 942 08 8 482 67.6 82.8
Omamental Plants 715 70.1 96.6 0

Pineapple 1033 998 100.0 297 983 983
Shadowed Omamental Plants| 905 98.3 106.0 236 94 9 9538
Mixed Agriculture 543 251 559 0 - -
Bamboo 3322 659 935 0 — —
(Banana 22841 81.9 979 355 845 963
Fruits and Nuts Trees 4383 61.9 858 246 508 699
Coffee 4890 77.6 954 528 799 972
(il Palm 3868 690 945 170 524 88.2
Palmito Palm 2680 796 90.1 0 e —-—
Tropical Old-growth Forest | 7819 45 4 820 1706 346 938
Logged Tropical Forest 8347 275 71.6 285 2617 558
Initial S 1694  33.0 66.0 0
Intermediate SS 3673 298 66.0 0 ——— e
Advanced SSt 7514 311 686 296 5738 774
[nundated Palm Forest 7201 64.2 96.0 352 852 977
Reforestation 7108 55.8 87.0 412 40.5 55.6
Montane Old-growth Forest | 8109 837 99 1 2115 71.6 954
Initial Montane SS@ 589 555 84.7 494 158 589
Advanced Montane SS@ 669 50.8 63.8 618 303 73.9
Dwarf Subalpine Forest 267 677 675 444 11.9 48 2
PS®on Montane Landslides 82 892 98 8 0 ——- -
Mangroves 2513 93.0 99.2 490 951 959
Subalpine Paramo 1920 99 1 99 8 1782 86.9 930
Bare Soil 1821 97.4 999 160 700 938
Urban Areas 742 96 .6 100.0 160 48 8 84 4
‘Water 10426 999 100.0 754 999 1000
Clouds 3589 100.0 100.0 963 100.0 100.0
Shadow 4020 99.7 99.9 98 89 8 98.9
Overall Accuracy 74 6 91.9 68.7 89.0
Kappa 0.73 0.91 0.66 (.88

™ gecondary Succession of tropical lowland forests after Finegan's model (1996)
@ Secondary Succession of montane forests after Kappelle's model (1995)

3 . .
) Primary succession
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Figure 3. Prior probability model over cloud-free land areas
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Figure 4. Arial distribution of the ancillary variables used to stratify the satellite image
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The equal-area prior probability model for time of access indicates that about three
quarters of the study area are dominated by cover types that were originated by human
activities: pasture, crops, reforestation, secondary forests, and logged forests. Only in the
less accessible quarter natural forests and other natural ecosystems still dominate.

Horizontally distributed prior probabilities in the time of access model indicate that
this variable was less usefi1l for stratification than the other two in about one quarter of the
study area. However, time of access was the most effective ancillary variable for
improving the discrimination of undisturbed forests from logged forests, secondary
successions, and spectrally related crop categories such as shadowed coffee and mixed
agriculture. There is a clear pattern that differentiates mature undisturbed forests from
other human induced categories. In the normalized equal-area representation of time of
access (figure 5), secondary successions and logged forests have similar distributions and
are more frequent than old-growth forests in areas that can be accessed in less than 30-40
minutes. At access times longer than one hour, logging and secondary successions become
very unlikely, Since farmlands are sometimes left fallow to restore soil fertility, secondary
successions, especially younger successions, are the most frequent at the shortest times of
access. Between 2 and 3 minutes the likelihood of secondary successions reaches a
minimum, only to increase slightly up to 20 to 40 minutes, when a second maximum is
reached, At even longer access times, the frequency of secondary successions and logged
forests decreases progressively.
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As access time increases, the proportion of older successions increases, and that of
young successions decreases Cropland and pastures appear thus to be abandoned more
frequently and definitively at longer access times, probably because at long walking times
benefits from land farming or cattle raising become marginal due to increased costs of
transport

Pasture and crop categories have a clear pattern of decreasing frequency from low
to high values of access time. The decrease is much faster than for secondary successions,
logged or planted forests. Only the distributions of pineapple and shadowed ornamental
plants present a different pattern The incompleteness of the digital road coverage used to
model time of access is very likely responsible for this seemingly atypical pattern As
observed in Landsat imagery acquired between 1982 and 1996, large fields of pineapple
and shadowed ornamental plants were established in the last decade. Some of the roads
that give access to these new fields were constructed after the latest national cartography
was completed As a result, these categories appear to be more frequent in less well
accessible areas even if, in fact, accessibility is very good The bias in the time of access
model caused by roads not present in the digital database can also be observed in the
distribution of other crop categories, but is less evident for those categories that have a
longer tradition in the study region and that are therefore close to older roads (ej. coffee,
sugar cane, and some banana fields). Mixed agriculture, which is mostly a land use form of
small land-holdings and subsistence agriculture, might also be more frequent at longer
access times because better accessible lands are used by larger farms that produce export
crops.

Patterns of access time for forest categories in mountain regions are similar to those
in the tropical lowland area.  Undisturbed ecosystems (old-growth forest and dwarf
subalpine forest) have very similar patterns and are mostly very difficult to access, while
secondary successions are more abundant in areas that are easy to access. Primary
successions, which are dominated by the pioneer Alnus acuminata, typically cover
landslides incidentally generated either by road construction in steep slopes (peak at about
18 minutes of access time) or by natural disturbances such as earthquakes and extreme
weather events.

Since most natural ecosystems and crops exist within specific elevation ranges,
elevation above sea level helped to improve their discrimination, especially for those
categories that have narrow elevation ranges (figure 6). Coffee, that is sometimes
spectrally mixed with secondary successions and logged forests, dominates at an elevation
range where these other categories are less frequent. This contributed to reduce confusion
between these land cover categories.

Elevation was of little use for improving the discrimination within categories of
secondary succession because there is no reason to expect a correlation of elevation with
grow stages of secondary successions. However, old-growth forests are more frequent than
secondary successions at higher elevations. This is because most protected area within the
study region were established in mountain or foothill regions. Elevation was thus useful for
improving the discrimination between old-growth forests and secondary successions, but
not for the discrimination of categories within secondary successions. Elevation and time
of access explain why tropical old-growth forests, logged forests and secondary successions
were classified much better using modified priors probabilities.
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The distance from the Pacific Coast was especially useful for improving the
discrimination of cover categories with different patterns of horizontal distribution within
the study region (figure 7). Some of these categories are spectrally similar and occur at
comparable conditions of access an elevation (banana, oil paim, inundated palm forest).

As expected, different stages of tropical secondary succession have similar patterns
of distance from the Pacific Coast However, these patterns are slightly different from
those of tropical old-growth forests, probably because there are regional concentrations of
old-growth forests within the protected areas of the Central Volcanic Mountain Range In
mountains regions, secondary successions present two frequency peaks slightly on the left
and on the right of the peak for undisturbed mountain forests. The left peak is expliained by
the greater abundance of secondary forests in the Pacific slope (Los Santos Reserve), which
has been more severely degraded than other mountain forests of the Talamanca range, The
upper Talamanca range explains the peak of undisturbed mountain old-growth forest.
Right to it, the second peak of secondary successions, corresponds to the Jocation of the
Centra! Volcanic Mountain Range, where deforestation and land abandonment has been
more advanced than in the mountain forests of the Talamanca Range

The accuracy and scale of the available ancillary data layers affected the prior
probability model. The fieldwork phase revealed that the road data were quite outdated,
especially in regions where great abundance of secondary forests and tropical crops were
found (Atlantic Zone). Better road data and a digital elevation mode! of higher resolution
would probably have contributed to a more accurate model of time of access, and thus to a
even better discrimination of cover types related to different accessibility conditions (e.g.
old-growth, logged, and secondary forest types). Despite limitations in quality of the
ancillary data used in this study, the classification with per-stratum modified priors resulted
in much greater map accuracy than the traditional maximum likelihood classification with
equal priors. Thus the method appears to be useful for improving the classification
accuracy of large and complex landscapes with spectrally mixed land-cover categories.

6. Discussion

In most remote sensing applications, only a subset of potential land-cover categories
makes sense, ecological or otherwise, at a given pixel location. The proposed classification
method is more accurate because all contextually unlikely classes, unless spectral evidence
is strong, have little chance of classifying. Therefore, even if several land-cover categories
are present in the map legend, at any given pixel location, the situation is similar to that of a
classification with fewer categories. This favors correct class allocation. However,
classification accuracy can only improve if image stratification was conducted carefully.
Classification of no or too coarsely stratified images using unequal but invariant priors
within the strata could even be less accurate to that of equal priors, because contextually
impossible categories would be always present, and sometimes with increased probabilities.
In addition, categories with low prior probabilities would have slim chance of classifying a
pixel, even if the context would strongly favor their presence. Thus, fine image
stratification is important not only to avoid artifacts at the boundaries of strata, but also to
minimize the risk of biasing area and positional information

Minimized classification of contextually impossible categories is clearly an
advantage of classifying with locally modified prior probabilities. This becomes evident
over ocean water, where only clouds, shadow and water signatures had significantly
increased priors.
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Figure 8. Visual comparison of classification results

Ocean water under semi-transparent clouds was correctly classified using modified priors (a), but was classified
as urban area (red) or bare soil (yellow) with the equal priors classification (b).

The salt and pepper’ effect is much greater in the output of the classification with equal priors (d). Contextually
unlikely classes, such as fruit and nuts tree plantations (cyan) in inundated palm forests (purple), or sugar cane
(red) in banana fields (yellow) are absent in the image classified with locally modified prior probabilities (c).
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This resulted in a correct classification of clouds and water over the oceans, while unlikely
cover types, like urban areas and bare soil, were classified in the border regions of clouds
over ocean water with the traditional equal prior classification (figure 8a and 8b).

The ‘salt and pepper’ effect in the image classified with modified prior probabilities
is also much reduced in comparison to the output of the traditional approach. This is
especially true in the strata where only few categories are possible, such as areas with high
elevation or difficult access. However, the difference is evident even in areas with low
elevation and good access conditions, where several land-cover categories are likely to be
present (figure 8c and 8d})

Misclassification in the image classified with locally modified priors is likely to
occur in two situations: when a particular land-cover category exists over a wide range of
ecological conditions, and in local contexts where several spectrally similar land-cover
categories have approximately the same prior probability of existing. Both situations occur
for secondary successions. Different growth stages of secondary successions have
overlapping spectral signatures and exist in very similar geographic conditions. In addition,
the range of ecological conditions where secondary successions exist is the same of that of
other spectrally related categories, such as mixed agriculture, shadowed coffee, logged
forests, tree plantations, and others. This made it particularly difficult to obtain high levels
of classification accuracy for secondary successions. The choice of ancillary variables to
stratify the scene and model the prior probabilities is obviously of great importance to
minimize these situations, However, as experienced in this study, the availability of digital
data will often determine the choice of ancillary variables to be considered. Nevertheless,
for the stratification decision, it is important to give particular attention to land-cover
categories that can occur in a wide range of ecological conditions and that are spectrally
similar to other categories. In this study sugar cane and coffee were over- classified. Sugar
cane because it appears from sea level to about 1600 m.as i, and because several spectral
signatures are required to adequately represent all phenological and harvesting stages
present in sugar cane farms Some of these stages were spectrally similar to other land-
cover categories. Coffee because it is often grown in association with trees, which makes it
spectrally similar to secondary forests, tree plantations, and mixed agriculture, which all
exist in about similar conditions.

The contribution of ancillary variables to stratification and improved discrimination
need to be evaluated separately As in the case of time of access, a variable can be less
important for stratification, but especially useful for improving the discrimination of
spectrally similar categories

In most study regions, the spatial distribution of cover categories is not random, and
patterns of horizontal distribution can easily be recognized through simple visual
interpretation. Ancillary variables with minimal or no biophysical meaning, such as the
distance from the Pacific Coast in this study, can be useful to improve the discrimination of
these categories. Such variables are easier to generate in digital format than more complex
variables, such as time of access and elevation.

In areas where several land-cover categories are likely to occur (easy access, low
elevation) several signatures have similar prior probabilities. This can result in some ‘salt
and pepper’ effect. However, this effect has a different significance than in the output of
the traditional approach. Regions of great mixture of pixels assigned to different classes
are spectrally mixed and likely to harbor different classes. This conclusion can not be made
when the classification is performed without modifying the priors on a contextual basis.
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When the priors are constant and invariant, contextually impossible categories are present,
which does not occur with locally modified priors For that reason, area estimates obtained
through a classification performed using contextually modified class prior probabilities, and
corrected with their corresponding estimates of omission and commission errors, are more
likely to correspond to the true areas, than their equivalent estimates obtained from the
traditional approach This conclusion is important for ecological modeling using area
estimates obtained from interpretation of satellite sensor data

7. Conclusion

The methods presented in this article were successfully implemented in a tropical
region of great complexity and over an area that largely surpass those studied with a similar
approach by other researchers. It can be concluded that practical limitations of the
classification method using modified prior probabilities have been successfully overcome.
First, to address the issue of cost, the MD threshold method proved to be an effective
alternative to stratified random sampling of training data for the estimation of priors.
Second, the sample size obtained from this sampling technique was large enough to allow
for a confident estimate of the prior probabilities, even if the number of strata and classes
was large. The large sample size also minimized the potential bias of the prior estimates
due to a non-random design of the training data. Third, the risk of incomplete and
potentially biased prior estimates was minimized through a process for comrecting the
sampled class-frequencies using a set of ecological and geographical criteria. Finally,
clustering the ancillary variablé to stratify the scene appeared to be adequate to exploit the
information content of these variables.

Software development is still required to mesh all the elements required to apply
this classification strategy in an easy to use interface. Once such interface is available,
analyst time and required training to apply the method will be reduced, thus allowing the
method to be applied in mqst operational situations.
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ABSTRACT

NDVTI and Tasseled Cap are often claimed to enhance spectral separability of vegetation
categories with different leaf biomass, canopy roughness, and species composition  Since
secondary, logged, and undisturbed forests have different structure and composition, spectrally
enhanced Landsat TM data are hypothesized to be useful for their discrimination However,
evidence supporting this hypothesis in tropical regions is weak, because good correlations
between spectral data and data on biophysical properties of tropical forests were rarely observed.
Instead, spatial patterns of forest occurrence might be related to geographical variables, such as
ease for human access, elevation, and others. Inclusion of these non-spectral variables into the
classification process might thus improve the discrimination of spectrally overlapping forest
categories.

In a complex study region in central Costa Rica, a Landsat TM scene from March, 1996
was classified using 18 different combinations of spectral bands, NDVI and Tasseled Cap
features. These classification experiments resulted in minor changes of the classification accuracy.

A Bayesian classification approach was then tested, in which the class prior probabilities
were modified for 537 image strata representing different ecological and geographical conditions
of the study region. The overall classification accuracy of this experiment was at least 17%
superior to those that were obtained with the previous classifications. The land cover categories
with the most important improvements in classification accuracy were the spectrally similar forest
categories.

The hypothesis of spectral separability of tropical forest categories is discussed, and the
potentials of methods that integrate spatial data with remote sensing data are demonstrated.

KEYWORDS: Secondary forests, Landsat TM, NDVI, Tasseled Cap, Prior Probabilities,
Costa Rica
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1. Introduction

The use of ancillary data has a great potential for improvement of the classification
accuracy of vegetation types with little spectral separability However, spectral data enhancement
techniques have been used more frequently because they are easier to apply and because they have
been helpful for the discrimination of broad land cover categories. Mapping of broad land cover
categories, such as forest / non-forest, has had historical importance by increasing awareness
about the problem of tropical deforestation (Woodwell ef al, 1987, Myers, 1988;, Sader and
Joyce, 1988; Westman, ef al , 1989; Gilruth, ef al,, 1990; Green and Sussmann, 1990; Hall e/
al. 1991; Campbell and Bowder, 1992; Grainger, 1993, Downton, 1995; Sohn et al., 1999},
However, this level of analysis of remotely sensed data portrayed an incomplete picture of tropical
forest environments, since vegetation recovery through secondary succession, and forest
disturbance caused by timber logging, have only rarely been addressed.

Secondary forests are thought to cover millions of hectares of abandoned land throughout
the tropics (Dourojeanni, 1987; Brown and Lugo, 1990; Lugo and Brown, 1992; Fearnside and
Guimaraes, 1996) While ecological research has made considerable progress for identifying
patterns and processes of tropical secondary succession at the patch level (Saldarriga ef al., 1988,
Janzen, 1988; Kappelle, 1995; Finegan, 1996), remote sensing could only provide incomplete
and coarse information about forest succession and disturbance at the landscape level. Critical
questions, such as the potential contribution of tropical secondary forests in offSetting global
carbon dioxide emissions, have thus not yet been answered conclusively (Brown, et al, 1996). If
secondary and logged forests are erroneously classified as undisturbed old-growth forests, carbon
pools in tropical forests are likely to be overestimated, while carbon sinks might be
underestimated More accurate data on forest succession and disturbance at the landscape level
are also required to address the conservation of biological diversity (MacArthur and Wilson,
1967, Westman ef al, 1989), the restoration of soils, the management of water resources, and
the sustainability of tropical agricultural systems The remote sensing community is thus asked to
abandon traditional forest / non-forest mapping and to develop methods that allow discrimination
of forests categories that have distinctive ecological function, structure, and composition.
Unfortunately, mapping secondary, logged, and undisturbed tropical forests using Landsat TM
data is a complex task because of the spectral similarity of these categories. For improving their
discrimination, spectral data enhancement techniques have been used with mixed results (Sader e?
al., 1989; Foody and Curran, 1994; Sader 1995; Helmer, 1999). Only more sophisticated data
classification techniques coupled with high density ground data resulted more consistently in
improved classification accuracy of secondary forests (Brondizio ef al,, 1994; Hill and Foody,
1994; Moran et al., 1996; Foody et al., 1996) 1If large areas are to be studied, methods that
require stratified forest inventories and farm-level interviews are of little application because of
cost constraints. Such working approaches were indeed an important facet of research that
reported success in mapping secondary forests using Landsat TM data.

This paper presents the results of 18 classification experiments, in which a better
discrimination of tropical secondary, logged, and old-growth forest was sought using two
different strategies The first strategy was based on the hypothesis that spectrally enhanced data
were useful for improving the discrimination. The Normalized Difference Vegetation Index
(NDVT) and the first three features of the Tasseled Cap transformation were computed and added
to the spectral band of a Landsat TM image of central Costa Rica The study region was then




classified using different spectral band and index band combinations with the aim of identifying the
band combination that would result in the more accurate discrimination.

The second strategy was based on the hypothesis that the discrimination of tropical forest
categories can be improved using ancillary spatial data from a Geographical Information System
(GIS). To test this hypothesis, the study region was stratified using the ancillary data, and a set of
class prior probabilities was estimated for each stratum. The scene was then classified using a
Bayesian approach, and the results compared with the prevnous experiments.

As a final experiment, training sites were selected in two ecological life-zones (sernsu
Holdridge et al , 1971), and the spectral signatures were analyzed with the aim of understanding
patterns of spectral response and the usefulness of spectral enhancement.

2. Background of the study

Efforts to map successional forest using remotely sensed data are not new, but the first
attempts in the 80's were unsuccessful Woodwell ez al. (1986) and Woodwell et al. (1987) were
unable to differentiate secondary growth from mature forest in Rondonia using MSS and AVHRR
data. The failure was later attributed to the coarse spatial resolution of these sensor systems.
Sader et al. (1990) suggested that discrimination of different forest types in the humid tropics
might be possible using remotely sensed data with finer spatial resolution, such as Landsat TM or
SPOT multispectral scanner data, which are also taken in spectral bands that are more suitable for
vegetation studies. Results obtained by later studies that used such data supported this view (e g.
Roy et al. , 1991, Saxena et al, 1992; Jusoff and D’Souza, 1996). However, limited
discrimination capacity was not only caused by the spatial and spectral resolutions of data, but
also by the digital classification procedures that were used Most traditional classification
techniques are unable to capture the whole information content of the spectral data. This has
been demonstrated by Tuomisto ef al (1995), in a rain forest in Peru, where the visual
interpretation of Landsat TM color composites produced more reliable information than the
digital classification.

The computation of vegetation indexes, such as NDVI and Tasseled Cap, has often been
proposed in remote sensing literature, as a simple strategy to extract more information from the
spectral data The use of such indexes was based on the underlying hypothesis that certain
features present in the spectral data set were correlated with leaf biomass, canopy roughness, and
other distinctive characteristics of the vegetation, but needed some type of enhancement practice
to allow for digital discrimination. However, improved classification results using these
techniques were not always reported. For example, in Puerto Rico and Costa Rica, Sader ef al.
(1989) found poor correlation between the NDVI calculated from Landsat T™M data and forest
successional stage and forest biomass. They concluded that NDVI was affected by sun-angle
variations caused by topography and recommended the use of NDVI for low relief tropical
forests In a later study in two flat areas of Guatemala, Sader (1995) found that when the NDVI
difference technique was applied, it was effective in stratifying major change categories, but not in
effectively distinguishing among differences between the clearing of forest fallow and the clearing
of older forest. In a research site in Ghana, Foody and Curran (1994) investigated the correlation
between remotely sensed data from different sensor systems, vegetation indexes and forest
biophysical properties measured in permanent plots They concluded that ‘further work to refine
the relationships between remotely sensed radiation and biophysical properties related to
regenerative state are required if remotely sensed data are to be used to locate and estimate the



strengths of carbon sinks in tropical forests’ (Foody and Curran, 1994, p. 240) While most
research has focused on tropical lowland regions, Helmer (1999) used Tasseled Cap features in a
mountainous region in central Costa Rica. She found that Tasseled Cap was useful to classify
secondary forest sites on sunlit slopes, but not on shadowed ones. At her research site, high
values of the third Tasseled Cap feature (the “Wetness” index) were correlated with old-growth
forests, a result that was consistent with Steininger’s findings in Brazil (1996) and with studies in
the temperate region (Fiorella and Ripple, 1993; Cohen and Spies, 1992; Cohen et al., 1995).
However, Helmer admitted that the Kappa accuracies she obtained for different band and
Tasseled Cap feature combinations did not differ significantly at the 95% confidence level In her
conclusion, she recommends stratifying by ecological zone and incorporating ancillary data for
mapping forest successional stages in mountainous regions (Helmer, 1999, p. 45)

Most research that used spectral enhancement techniques such as NDVI and Tasseled Cap
has been based on per pixel analysis techniques. Such classification techniques do not extract any
information about the texture of the image data However, textural variations in the image data
might correlate with forest canopy roughness, a feature that is important to differentiate between
old-growth forest types, that have emerging trees and canopy gaps, and secondary successions,
that have a more homogeneous canopy texture (Finegan, 1996).

In a study site in Peru, Hill and Foody (1994) found that texture variations between
different forest types could be spectrally enhanced using low-pass filters, therefore improving
classification results. Low-pass filters reduced data variance and spectral overlap between
classes. Texture variations were associated with forest structure (canopy height, smoothness,
continuity, and tree density), but the authors acknowledged that the precise relationship between
forest structural features and textural differences in the image data needed further investigation.

Nevertheless, extraction of textural information has been a common strategy of two
groups of researchers that were successful in the discrimination of tropical secondary forest
stages. The first group has been working several years in Brazil (Mausel ef al. 1993; Brondizio
et al.,, 1994; Moran ef al., 1994a; Moran et al. 1994b; Li ef al, 1994; Moran ef al., 1996;
Brondizio et al, 1996; Tucker, ef al, 1998) and the second has been working in Bolivia, Brazil
and Peru (Lucas ef al, 1993; Hill and Foody, 1994; Curran et al., 1995; Foody ef al., 1996;
Boyd et al, 1996). Methods used by these researchers involved intensive field surveys, texture
classifiers, and, sometimes, ancillary data.  Texture classifiers, such as Extraction and
Classification of Homogeneous Objects (ECHO), are spatial-spectral classifiers that work in a two
stage process: first the scene is segmented into statistically homogeneous regions, and then, the
data from each segment are classified in mass using the conventional maximum likelihood
approach (Sholz ef al., 1977; Kartikeyan ef al, 1994; Kushwaha ef al, 1994).

Successful discrimination of tropical forest categories has thus been related to
considerable achievements for conducting farm-level surveys, forest inventories, and classifier
operations. However, spectral pattern and texture analysis may not be sufficient to accurately
map tropical forest environments that are severely fragmented, house great ecological diversity, or
that are topographically complex. These factors add spectral complexity to the data, but are often
correlated to other non-spectral variables. Ancillary spatial data might thus be used to control
landscape variables that are causing “spectral noise” or to include in the discriminant analysis
information about the spatial distribution of land cover. This latter approach is based on
hypotheses such as: secondary successions following farmland abandonment are spatially
correlated with conditions of easy access for humans; undisturbed old-growth forests are more




frequent in areas of difficult access; and logged forests occur only in areas where timber
transportation is feasible and tree species are of market value.

In Costa Rica, an association between deforestation and climate, slope, soil fertility and
infrastructure for human access to forests has been demonstrate by previous studies (Sader and
Joyce, 1988; Veldkamp ef al, 1992) Correlation between deforestation and landscape variables
were also found in Brazil (Stone ef al, 1991, Moran et al, 1994a), Guatemala (Sader, 1995),
Guinea (Gilruth ef al | 1995), Honduras (Ludeke ef a/ , 1990), Madagascar (Green and Sussman,
1990), Mexico (Dirzo and Garcia, 1992), in the Philippines (Kummer and Tuner, 1994) and other
parts of the tropical region

If information about the spatial relationship between land cover categories and ancillary
variables can be made available on a per pixel basis, classification strategies that are able to exploit
this information should produce better classification results than traditional classification
approaches,

This type of use of ancillary data to improve the classification accuracy has been proposed
for at least two decades (Swain and Davis, 1978; Strahler, 1980; Hutchinson, 1982). However,
it appears that applications in tropical forest environments have been rare. Of course, some
classification methods that use ancillary data have been shown to have little application because of
their deterministic nature (pre-classification stratification, post-classification sorting) or because
data distribution assumptions might be violated (e.g. addition of an elevation data layer to the
multispectral data set before the classification). However, such problems are avoided with the use
of a non parametric classification strategy involving geographical stratification and per stratum
modification of class prior probabilities (Mather, 1985; Maselli et al, 1995).

The increased use of GIS for data management, decision support, and scientific research is
broadening the availability of digital databases about landscape variables in tropical countries,
Classification techniques that are capable of using the information stored in these databases are
thus becoming potentially usable. .

3. Materials and methods

3.1 Study region

As an example of large and complex tropical region, the entire Landsat TM scene (path 15
and row 53) of the central portion of Costa Rica (Figure 1) was chosen as the study area The
scene includes a ground area of 30,950 km?, of which 5,433 km?® (17 .5%) are covered by water,
and the rest is land with elevations ranging from 0 to 3,825 meters above sea level. The image
was taken on March 1996, on a day of the dry season with relatively low cloud cover for this part
of the World (approximately 13 2%). The image was of great spectral complexity because of the
diverse ecological, topographical, climatical, and land-use conditions it represented: 12 life-zones
and 11 transition-zones (sensu Holdridge et al., 1971) were present within the scene according to
the Ecological Map of Costa Rica (Bolafios and Watson, 1993). By comparison, the central and
eastern United States combined have only 11 life-zones among them (Sawyer and Lindsey, 1964}.
Trade winds and the mountains of the Central Volcanic and Talamanca ranges create extremely
variable climatic conditions in the study region, with average yearly precipitation ranging from
1,400 mm yr”! to more than 7,000 mm yr'! (IMN, 1987). This climatic variability results in brown
vegetation patterns in the Pacific area during the dry season, and almost evergreen vegetation m
the Atlantic Zone and in the mountain regions.




Sun-angle variations due to the rugged topography, small to medium-sized land tenure,
fragmented patterns of forest cover, frequently mixed forms of land-use, and clouds and haze
added considerable spectral complexity to the scene

Figure 1. Study area
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3.2 Classification scheme of secondary forest

Classification schemes have to be mutually exclusive and exhaustive (Congalton, 1991).
This is particularly difficult to achieve in a classification scheme of secondary vegetation, since
each growth stage is a phase in a succession time-continuum from clean land to mature forest. In
this research, qualitative descriptions of succession categories were adopted to classify the
training sites, because quantitative ground data were not available and too costly to obtain.

The forest succession categories were defined using models of the succession process
described in the ecological literature. Secondary forests found in the basal, premontane and low
montane tropical regions (sensu Holdridge et al. 1971) were classified using the three-phase
model (initial, intermediate, and advanced secondary succession) described by Finegan (1992 and
1996), who developed his model from research conducted in the Costa Rican Atlantic zone.




In mountain regions, secondary forests were classified using Kappelle’s (1995) and
Kappelle’s et al. (1996) two-phase succession model (initial and advanced montane succession)
Kappelle’s model was developed from research conducted in the upper mountains of the Costa
Rican Talamanca Range

Other remote sensing research adopted similar classification schemes. Mausel ef al
(1993) and Foody et al. {1996) used a three phase succession model to classify tropical secondary
forests that was very similar to that described by Finegan. They found distinctive spectral patterns
for each of the three succession categories. Helmer (1999) used Kappelie's model to classify
secondary forests in a mountain region of Costa Rica, and achieved a good discrimination. Thus,
it appeared likely that a good classification could be achieved using these models as a
classification scheme.

3.3  Fieldwork and data processing

The satellite image was georeferenced to the northern Costa Rican national coordinate
system using a Lambert Conformal Conic projection. The thermal band was eliminated from the
spectral data set because its spatial resolution and contrast were considered to be too coarse for
spectral discrimination. The blue band was eliminated in the first classification test, but its
exclusion was found to reduce the classification accuracy even though the data in this band were
affected by haze Atmospheric corrections were not performed because of lack of data about
atmospheric conditions at the date of image adquisition.

The Normalized Difference Vegetation Index (NDVI) and the first three features of the
Tasseled Cap transformation were added to the reflective bands, because the review of the
literature suggested that they might enhance certain spectral features of the cover types focussed
in this study.

During the period from March, 1998, to March, 1999, 826 sites were visited in the field
and their coordinates gathered in average mode using a non differential Global Positioning System
(GPS) unit (Garmin 12 XL). The majority of the sites visited in the field, had had their
geographic coordinates read previously from the georeferenced satellite image. The center points
were selected in the computer screen for land cover patches that met the following criteria: they
were located outside areas covered by clouds and shadow; they were easy to delimit from
surrounding land cover types; they appeared to contribute for the completion of an exhaustive
training data set of all spectral patterns observed in the image; they were not too difficult to
access; and they were large enough for training statistics development. At each field location the
composition and structure of the vegetation was briefly described using a form especially designed
for this study. Because of time and budget restrictions, no quantitative measurements were taken
of the vegetation. Field-level forest description and classification were carried out with assistance
of trained personnel of the Tropical Agricultural Research and Higher Education Center (CATIE)
that had had several years experience in measuring permanent plots of secondary and primary
forest, ¢j. in the framework of research conducted by Finegan (1992 and 1996). This ensured
accurate field-level identification of succession forest, and consistence with the classification
scheme.

The GPS coordinates of the field sites were superimposed onto the satellite image to
locate and delimit the polygons required for signature extraction The polygons were delimited
using the region-growing option of ERDAS Imagine 8 3.1 software, and their boundaries were
cross-checked with sketches of the sites and their surroundings, that had been made during



ground data collection Some sites, especially those at the earliest stages of succession, were
eliminated from the training data set, when the visual interpretation of the image suggested that
they had significantly changed since the image data were acquired. The training data set was then
complemented with additional data obtained through visual interpretation of the sateliite image,
especially for evident land cover categories such as water, bare soil, clouds, shadow, and urban
areas. The final set of training data included 979 spectral signatures representing variations in
age, structure, composition, moisture, phenological status, elevation above sea level, and sun-
angle illurnination for 33 land cover categories.

The pixel vectors of selected training sites were then extracted to perform a statistical
comparison of the spectral patterns of the different forest types using SAS software. Comparable
sites were defined as those belonging to the same ecological life-zone sensu Holdridge et al.
(1971) and with similar sun-angle exposition. The sun-angle stratification of the scene was
performed using a digital elevation model shadowed with the sun-angle parameters of the date
and hour in which the satellite image was acquired. Two ecological life-zones were selected for
spectral analysis: the Tropical Wet Forest (TWF), and the Premontane Tropical Wet Forest
Transition to Basal (PTWFTB). These two life-zones categories covered the largest areas within
the study region, and included secondary forest sites investigated by Finegan (1992, 1996). Their
selection ensured that enough spectral observations from field described sites were available for
spectral pattern analysis.

17 maximum likelihood classifications assuming constant and invariant class prior
probabilities were then performed using the spectral bands and different vegetation index
combinations. The band and index combination that produced the best classification output for
the forest categories was then classified again, using a maximum likelihood classification routine
in which the class prior probabilities were modified.

The class prior probabilities were modified according to the geographic context, that was
described by three ancillary data sets representing models of. elevation above sea level, walking
time required to access a pixel location from the closest road; and distance categories from the
Pacific Coast and export banana fields (Figure 2). The three models were created from digital
vector data at a 1 : 50,000 map scale, except for some portions of the contour line data set, that
were available only at a 1 : 200,000 map scale The data of these models were combined using
ERDAS Imagine 8.3.1 ISODATA clustering algorithm, and the resulting 537 clusters were
considered different geographical strata,

To estimate the class prior probabilities from sampled class frequencies within each of
these strata, stratified random sampling in the field would have been impossible to achieve.
Therefore, an alternative sampling procedure was used, that counted training data pixels as well as
those from the best previous classification that with 95% confidence were of greatest spectral
similarity (shortest Mahalanobis Distance) to the mean vectors of the training data  Using
ARC/INFO macro language, the frequency of these pixels was then adjusted to fit the range of
geographical and ecological conditions allowed for each land cover category according to the
criteria of local experts and personal experience  The estimated class frequencies of each stratum
were normalized so that they added to 1.0, and were then used as a model of class prior
probabilities. With this procedure, information from the ancillary data set was included into the
maximum likelihood decision rule probabilistically, thus avoiding the problems mentioned earlier
related to determinism and data distribution assumptions.




The procedure used to estimate the class prior probabilities is described with more detail
in another paper by the author of this research.

Figure 2. Geographic context of the study area
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RGB composition of the three ancillary variables representing elevation above sea level,
walking time required to access a pixel, and discrete continuous distance categories from
the Pacific coast and export banana fields.



The results of the different classifications were compared to evaluate the effectiveness of
the different spectral band and index combinations, and the usefulness of including information
extracted from ancillary variables into the multi-spectral data classification process.

4. Results

The mean plots of the spectral data sampled at similar sun-angle illumination showed that
spectral differences among forests with varying degrees of disturbance and at different stage of
the succession were subtle (Figures 3)

The mean Digital Numbers {DN) were statistically different (p < 0.05) among forest
categories for the same ecological life-zone (ANOVA and Tukey) However, they were also
different within the same forest category between two ecological life-zones (t-test and Wilcoxon
rank sum test)

Forest categories were thus spectrally different between and within categories. However,
the class spectral separability was not as good as suggested from the result of analysis of variance.
The band and index mean values of any particular forest class were often within the standard
deviation range of the means of the other classes Only for inundated forests the mean DN of
band 5 (middle IR) and the Wetness index were outside the standard deviation range of the other
forest classes. These results were expected, since variations within individual forest categories
were observed during fieldwork in terms of vegetation structure, composition, and humidity, and
because the sample size used for spectral data analysis was large.

The underlying hypothesis of NDVI, that increased red absorption and near-IR reflectance
is correlated with increased green leaf biomass was supported only for pasture and the forest
categories as a group. In both life-zones, pastures showed less red absorption than the forest
categories, while the differences between the forest categories were minimal. Near-IR reflectance
decreased with succession from the initial to advanced stages, probably because of increased
shadow and moisture. In pastures found in the TWF life-zone, the near-IR reflectance was higher
than it was for that found for forest categories. The opposite was observed in pastures of the
PTWFTB life-zone, which was consistent with the expectation of positive correlation between
biomass and near-IR reflectance (Figure 4).

In both life-zones, near-IR reflectance increased following the sequence: advanced
succession, logged forest, and primary forest, that is thought to correspond with increased leaf
biomass, while visible reflectance values decreased from pasture toward intermediate forest
succession stages and remained about constant for the other forest categories. Middle-IR values
(especially band 5), that are generally related to water absorption, decreased in the sequence from
pasture toward advanced forest succession. However, differences were minimal, except between
pasture and initial succession stages

The NDVI enhancement of the relationship between red and near-IR was useful for
discriminating between pasture and forest categories. The latter had consistently higher NDVI
values than pastures. However, NDVI was almost invariant among the forest categories, and was
therefore useless for their discrimination.
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Tasseled Cap indexes appeared to be more useful for enhancing spectral differences
between secondary succession stages, logged, and undisturbed forest categories. Brightness DN
were higher for pasture and initial forest succession, approximately constant for the other forest
categories, and lower for inundated palm forests. Greenness DN decreased from initial succession
stages to advanced succession stages, increased following the sequence: advanced SuCCessions,
logged forest, undisturbed old growth-forest; and were again lower for inundated palm forests.
The peak in Greenness and Wetness DN for initial succession stages in the PTWFIB life-zone
was most likely caused by the presence of very wet training sites in this category. Wetness DN
were positively correlated with wetter forest sites, since they increased in the sequence: logged
forest, undisturbed forest, inundated palm forest, and mangroves Wetness DN are consistently
lower for pastures, where moisture levels were generally lower than in forest categories. Wetness
DN were negatively correlated with the middle-IR band 5, which confirmed that the third feature
of the Tasseled Cap transformation was a good indicator of vegetation categories with increased
water content.

The usefulness of spectral data enhancement using vegetation indexes for improving the
discrimination of tropical forest categories was also assessed using a comparison of the
classification accuracy obtained with the classification experiments However, only 252 control
sites (15,206 pixels) described in the field by other researchers could be made available for
classification accuracy assessment of selected land cover categories. For that reason, the self-
consistency of the classification of the 979 training sites (164,466 pixels) was calculated as well.
This was considered sufficient to compare the performance of the different classification
experiments.

Classification results showed that NDVI and Tasseled Cap indexes have some capacity to
erthance spectral differences among forest categories and especially between pasture and forest.
However, variations in classification accuracy were minimal compared to results obtained with the
Bayesian classification (Table 1). In addition, only four band and index combinations (TM +
NDVI, TM + Brightness, TM + NDVI + Brightness, TM + NDVI + Brightness + Wetness)
produced superior overall classification consistencies than did the classification of the TM bands
alone {Table 2). The band and index combination TM + NDVI + Brightness -+ Wetness was used
for the classification with modified prior probabilities because it produced the highest average
classification consistency for the forest categories, which are the land cover categories that were
more difficult to discriminate.

From the evaluation of the classifications results, it was concluded that while NDVT and
Tasseled Cap were of little advantage for increasing the classification accuracy of secondary,
Jogged, and undisturbed tropical forest categories, the inclusion of information extracted from
ancillary non-spectral variables was instrumental in achieving this goal.
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Table 1. Percentage of overall classification consistency and accuracy
(Band combination: TM1, TM2 TM3, TM4, TM5, TM7, NDVI, Brightness, Wetness)

Classification Consistency in Classification Accuracy of
the Training Sites Independently Controlled Sites

Land Cover Category n  equal priors mod priors | n__ equal priors _mod. priors
Pasture 27970 90 4 96 9 1763 863 950
Annual Crops 2592 88.8 971 0 ——- e
Plowed Soil 2997 939 990 0 e e
Sugar Cane 7624 942 988 482 676 828
Ornamental Plants 715 70.1 96.6 0
Pineapple 1033 99 8 1000 297 98.3 983
Shadowed Ornamental Plants | 905 983 100.0 236 949 958
Mixed Agriculture 543 251 559 0 - ——
Bamboo 3322 65.9 935 0 - -
Banana 22841 819 979 355 845 963
Fruits or Nuts Trees 4383 619 85.8 246 508 699
Coffee 4890 776 954 528 799 972
Oil Palm 3868 69.0 945 170 52 4 88 2
Palmito Palm 2680 79 6 901 0 - —
Tropical Old-growth Forest 7819 454 820 1706 346 93.8
Logged Tropical Forest 8347 275 71.6 285 2677 558
Initial SV 1694 330 66.0 0
[ntermediate SS* 3673 2938 66.0 0
Advanced SS* 7514 311 68.6 296 5738 77.4
Inundated Palm Forest 7201 642 96 0 352 852 977
Reforestation 7108 558 870 412 405 556
Montane Old-growth Forest | 8109 83.7 99.1 2115 71.6 95 4
[nitial Montane $S* 589 555 847 494 1538 589
Advanced Montane SS* 669 508 63 8 618 303 739
Dwarf Subalpine Forest 267 67.7 67.5 444 119 482
PS®on Montane Landslides 82 892 08.8 0 --- ———
Mangroves 2513 930 992 490 951 959
Subalpine Paramo 1920 99.1 99.8 1782 869 930
i%are Soil 1821 974 999 160 700 938

rban Areas 742 96.6 100.0 160 48 8 84 4
Water 10426 99.9 100.0 754 99.9 100.0
Clouds 3589 1000 100.0 963 100.0 1000
Shadow 4020 99.7 99.9 98 89.8 98.9
Overall Accuracy 74.6 919 68.7 890
Kappa 0.73 0.91 0.66 0.88

) Secondary Succession of tropical lowland forests after Finegan's model (1996)
@ Secondary Succession of montane forests after Kappelle's model (1995)

©) Primary succession
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5. Discussion

Classification results provided little evidence that spectral data enhancement techniques
might be useful to improve the classification accuracy of secondary, Jogged, and undisturbed
tropical forest categories in regions as large and complex as those of the selected study region

The spectral patterns observed in training sites selected at similar sun illumination levels
and in the same ecological life-zone suggest that ecologically meaningful succession categories
have spatially variant spectral patterns, which is consistent with observed variations.in vegetation
structure, composition, and moisture within these categories. Such variations are well known
from the ecological literature, which suggests that despite typical patterns of vegetative
development, secondary succession stages, and thus very likely their corresponding spectral
patterns, are strongly influenced by initial site conditions and land-use history.

In the humid tropics, vertebrates play an important role in seed dispersal from neighboring
forests (Howe and Smallwood, 1993), remnant trees produce seeds or attract seed vectors
(Guevara e? al., 1986), soil fertility influences growth rates (Uhl, 1987; Tucker ef al , 1998), and
land-use history determines capacity of soil seed banks to germinate, and the sprouting vigor of
cut or crushed roots and stems (Uhl ef al, 1988). These initial site conditions affect the duration
of the succession, species richness, and biomass accumulation rates. Because initial sites
conditions can vary greatly within a region, forest age can not be used as a predictor of
successional stage or to estimate any biophysical parameter such as biomass, tree height or
species composition. Forest age is also difficult to determine in practical situations, because
forest clearing and land abandonment result in a mosaic of secondary forests with each area
representing a point in a succession time-continuum from cleared land to mature forest. From
space-borne sensor systems, forest age is difficult to establish because frequent cloud-cover does
not allow for continuous observation of the same point. Nevertheless, successional sequences are
characterized by increases in leaf and wood biomass (Uhl, ef al., 1988; Brown and Lugo, 1990),
canopy roughness (Foody et al., 1996, Tucker, ez al., 1998), and changes in species composition
(Finegan, 1992 and 1996). Such changes are thought to result in distinguishable patterns of
spectral evolution of secondary successions. This hypothesis may hold true when observing the
same forest patch over time. It may not necessarily apply when observing several forest patches
at different locations and at the same time

The question of what forest patch is observed, at when and where is relevant for drawing
conclusions about patterns of spectral response. In areas with rugged terrain, variable moisture
conditions, and advanced forest fragmentation (which implies presence of few large homogeneous
forest patches and numerous small patches), extraction of spatially unbiased, normally distributed,
and spectrally representative and separable training statistics can hardly be obtained. Signatures
of selected homogeneous sites will not be representative of the true spectral nature of the cover
types of interest Analysis of spectral data obtained from such sites alone is likely to suggest
spectral separability, which might be a correct conclusion for these sites, but not for the entire
population of spectral patterns present in a large scene. In contrast, signatures extracted from
randomly selected sites might be representative, but are more likely to show large variances and
spectral overlap, a problem that the requirement of extracting the signatures from large training
sites (at least 10 pixel per band according to Jensen, 1996) might increase. Analysis of such
training data is less likely to produce separable spectral classes, but such data are representative of
true spectral patterns. '
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In ecologically complex and fragmented landscapes, a fewer number of forest patches
might be found, that exhibit the area and illumination requirements for adequate training sites and
that correspond exactly with one and only one growth stage of the succession More frequently,
training sites of secondary forest categories will include some proportion of pixels belonging to
other land cover categories, such as pasture, younger or older succession forest, and remnant
trees. Variations in illumination caused by rugged topography might also increase the spectral
variability of these sites. It is almost impossible to avoid including pixels which correspond to the
canopy of large isolated trees in the training data for pasture, canopy openings in forested training
sites, or early succession portions in sites that are predominately intermediate or advanced
secondary successions.

In Costa Rica, large patches of homogeneous forest can rarely be found outside remaining
fragments of undisturbed forest. This makes it particularly difficult to obtain spectral information
for secondary and disturbed forest categoreis On most farms, secondary forests, especially at the
earlier stages, are a mix of small patches at different stages of development, with sometimes a
single phase dominating the site. A similar observation can be made in logged forests that
sometimes include patches of secondary succession where timber extraction has opened large
portions of the forest canopy. In mature forest plantations it is not rare to observe invading
secondary vegetation below the canopies of the trees, while in young, not well managed
plantations, natural secondary vegetation might even dominate the site. Sites dominated by
secondary vegetation might also include species that were established by the farm owner (e g.
Coffea sp., Erithrina sp., Musa sp., Theobroma cacao, Macadamia sp., Citrus sp.), and that
continued to survive even after land abandonment. There also might be some remnant trees still
standing from before the original forest was cleared for farming or grazing. The presence of such
abandoned crops and mature trees alter the “typical” spectral response hypothesized for
secondary successions.

The hypothesis that secondary successions evolve following a typical pattern of spectral
change also implicitly assumes that there has been no human intervention in the abandoned sites.
During fieldwork it was observed that intermediate and advanced secondary succession forests
had been cleared a second time, but sometimes only partially, to utilize the tallest trees to shade
new farming or grazing investments. Such sites are sometimes abandoned again, thus allowing a
second wave of secondary succession to develop, while remnants of the first wave are still
present.

Classification with modified prior probabilities allows for a certain level of control of the
ecological and spectral complexity of a scene. The site specificity can be modeled and controlled
through the stratification process, while the spectral complexity can be controlled through
weighting the class spectra, In this way, pixels can only be assigned to classes that make
ecological and geographical sense. Therefore, misclassification is possible only for site conditions
where spectrally similar categories are equally likely to occur. With an adequate choice of
ancillary variables, the number of strata where spectrally undistinguishable classes have similar
prior probabilities can be minimized. In addition, within homogeneous site conditions,
ecologically different vegetation categories have a greater chance of being spectrally dissimilar,
since local factors that might alter biomass, species composition, and canopy roughness, and
hence the spectral response, are less likely to be variant.

The accuracy by which the site conditions are modeled and the class prior probabilities are
estimated, is of critical importance for improving land cover discrimination using the Bayesian
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classification approach Finer stratification is certainly more suitable for controlling ecologically
and spectrally relevant gradients, but the accuracy by which the prior probabilities can be
estimated is negatively correlated with the number of strata. Further research is needed to
establish the optimal relationship between the two.

7. Conclusions

The information content inherent in Landsat TM data is sufficient to map broad land cover
categories, such as forested and non-forested areas. The spectral separability of such broad
categories can be enhanced with NDVI and Tasseled Cap indexes under the assumption that
spectral differences among categories are maintained throughout space. This assumption is not of
general validity and can break down when the forest category includes subcategories such as
deciduous and evergreen forest or secondary succession categories,

For detailed vegetation studies, such as the discrimination of tropical secondary forests,
the assumption that vegetation categories maintain throughout space the same spectral patterns
that were observed in training fields becomes less likely to be true. Ecological knowledge about
the spatial variability of successional processes and the results of this research suggest that
spectral patterns of succession categories might be complicated by specific site conditions, the
history of site use, and other factors that are spatially variant. It appears, that the larger and
complex the area to be studied, less likely it will be that secondary succession stages might be
identified using spectral data alone.

Modeling the variance of site conditions in a GIS framework, appears thus to be a
necessary complement of spectral patterns analysis. The Bayesian classification used in this
research is an adequate approach to analyze spectral data and control site condition variability.
However, the use of this method is certainly more time and resources demanding than traditional
methods.

Nevertheless, the contribution that remote sensing research can make by providing refined
data on land use and land cover change for inventories of GHG emissions, global change research,
and other applications requires the adoption of more sophisticated data analysis methods
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Appendix
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Table 1.
Table 2.
Table 3.

Table 4

Classification scheme of secondary forests and its and its hypothesized relationship

CONTENTS

Classification consistency of 979 training sites (164,446 pixels)
using classification with modified prior probabilities

Classification consistency of 979 training sites (164,446 pixels)
using equal prior maximum likelihood classification

Classification accuracy of 252 control sites (15,206 pixels)
using classification with modified prior probabilities

Classification accuracy of 252 control sites (15,206 pixels)
using equal prior maximum likelihood classification

with spectral patterns
(Short manuscript)

The hypothesis of spectral separability’ a critique
(Short manuscript)
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Classification scheme of secondary forests
and its hypothesized relationship with spectral patterns

According to Finegan (1992) and Finegan (1996), where soil is not extremely degraded and
seed sources are nearby, secondary succession in the humid neotropical lowlands may be described
in terms of three phases:

Phase 1: During the first phase (initial succession) the abandoned land is colonized by
herbaceous and pioneer shrubs that in the neotropics occupy the site for 2 to 3 years (5 in Eastern
Amazonia, according to Moran et al., 1996) Short-lived and shade intolerant ploneer tree species
generally establish themselves at the beginning of the successional process, but do not dominate the
site at this early stage of succession. In the Atlantic Zone of Costa Rica, the first years of succession
can be dominated by Phytolacca riviniana, Piper auritum or Veronia patens. However, several
other species can also be present at this stage: Moran ef al (1996) found up to 88 species (trees,
shrubs and herbaceous) at their sample sites in Eastern Amazonia. In these sites, grasses and herbs,
such as Desmodium canum, Elephantopus mollis, and Acalypha arvensis, were found spatially
clumped and at high densities, while palms and pioneer shrubs, such as Lantana camara, Wulffia
baccata, Cyperus flavida, and Orbygnia phalerata, were more evenly distributed. Trregular spatial
distribution patterns of grasses and shrubs were also observed in this study.

The development of secondary vegetation changes the spectral response of abandoned
pastures: according to Mausel et al. (1993), greater vegetation density and increased chlorophyll
absorption make reflectance values in the visible portion of the spectrum lower than in clean pasture.
The near-IR values increase because of mesophyll reflectance, while the middle-IR values decrease
because of increased water absorption.

Phase 2: In the second phase of succession (intermediate succession) the first phase’s plant
community is replaced by a new tree community composed of a few dominant species that became
established during the first phase Typical tree species from this phase belong to the genera
Cecropia, Heliocarpus and Ochroma (America), Macaranga and Musanga (Africa and Asia) and
Trema, which is common on all three continents (Finegan, 1996). In less than 10 years, the height of
the trees can reach 20 meters. In Costa Rica this phase terminates after approximately 10 years
(Finegan and Sabogal, 1988a and 1988b), but in other regions (French Guyana) the tree population
only begins to decline after 20 or more years (Sarrailh ef al, 1990). The second phase tree
community disappears with increasing age because it can not regenerate under its own shade.
During this phase, and sometimes from the beginning of the succession, a new community of tree
species colonize the site. This community will then dominate the third phase of the succession.

According to Mausel ef al. (1993), the visible reflectance values in this second phase of
succession are similar to those from the first phase, but there is a higher green / red ratio because of
increased leaf biomass (chlorophyl! red / blue absorption and green reflectance). More shadow and
water are present at the site as vegetative development progresses, and this decreases near-IR and
especially middle-IR reflectance values (Mausel ef al., 1993).

Phase 3: The third phase of succession (advanced succession) begins with the growth of a
tree population that is more shade tolerant and long-living than the declining second phase plant
community This new tree population can reach 25-30 cm of Breast High Diameter (BHD) after 10-
15 years, and 50 cm of BHD after 25 years (Finegan and Sabogal, 1988a). Tree height can be the
same as that of primary forests in less than 30 years. While several families can be found almost
exclusively in primary forests (Leguminosae, Moraceae, Lauraceae, Annonaceae, in the neotropics,
and Chrysobalanceae, Sapotaceae, and Myristicaceae in South America) few families are typical to




advanced succession, among them are Vochysiaceae and Tiliaceae Most of the dominant species in
this phase belong to the genera Rollinia (Annonaceae), Cordia (Boraginaceae), Guazuma
(Ulmaceae), Stryphnodendron (Leguminosae), and Spondias (Anacardiaceae). Frequent species are:
Didymopancax morototoni  (Araliaceae), Goupia glabra (Celastraceae), Jacaranda copaia
(Bignoniaceae), Laetia procera (Flacourtiaceae) and Simaruba amara (Simarubaceae) (Finegan,
1996). Little is known about the destiny of advanced secondary succession, however, the species
that dominate this phase of succession are generally different, and not as shade tolerant, as those
found in primary forests This leads to the speculation, that at some point in the future, the advanced
secondary succession tree population will start to decline and to open the way to more shade tolerant
species, which may, or may not, be the same as the species in primary forests. Moran ef al. (1996)
found mature forest species in third phase succession forests such as: Neea floribunda, Cenostigma
tocantinym, and Bertholletia excelsa. 1t is likely that as they grow older, more primary forest species
will be found in advanced secondary successions.

According to Mausel ef al. (1993), the spectral characteristics of advanced succession forests
approach those of mature forests: visible band reflectance is lower, and green / red ratio higher
compared with early stages of succession. The IR band values continue to decline, probably as a
result of increased shadow, compared with younger successional forests However, primary forests
should have more variable spectral responses than advanced succession forests because of large
amounts of shadow and spectral traps caused by their complex multilayered and gapped vegetation
structure

This three-phase succession model described above provided the classification scheme for
the field-level discrimination of succession forest sites in the basal, premontane and low montane
tropical regions (sensu Holdridge ef al., 1971). During ground data collection, important differences
were observed between successional sites belonging to the same ecological phase of the succession
in terms of vegetation abundance, spatial distribution patterns of dominant species, dominant species
composition, and site humidity. Differences in terms of species composition, growth rates, and time-
frame, were also reported in other studies (Foody ef al, 1996; Uhl, 1987), and are probably not
uncommon even for successional processes that occur at nearby sites. For example, at their study
site near Manaus, Brazil, Foody et al (1996) distinguished two distinct successional pathways. The
taxa that composed each phase of the two pathways were different, especially in the early stages of
succession Sites that had been cleared and used briefly as pasture were dominated by Cecropiaceae
species, whereas Clusiaceae, Flacourtiaceae, and Melastomataceae species were found on sites that
had been cleared and burned, then used as pasture for several years. In this study, vegetation
inventories of the training sites were not carried out. Therefore, compositional sub-categories of
successional growth stages could not be separated objectively. Nevertheless, to prevent mixing
spectral patterns of differently featured successional pathways, the signatures of the training sites
were not merged prior to classification.

Outside the humid lowlands, differences in the succession processes are evident not only at
the species level, but also in processes and patterns as well  For that reason, two additional
secondary succession models were adopted for the Costa Rican dry zone and for the mountain
regions, In the dry forest zone, seed dispersal and site colonization depend more on wind than
vertebrates (Janzen, 1988; Sabogal, 1992) Wind dispersed seeds fall close to their parent trees
(Harper, 1977, Howe and Smallwood, 1982), and this makes tree colonization of abandoned
pastures that are far from forest patches or remnant trees difficult and slower than in the humid
tropics. According to Janzen (1988), who investigated forest succession in the dry zone of Costa
Rica, the first colonizing tree population of abandoned dry zone pastures is composed of long-lived




wind-dispersed species. Therefore, the succession process in the dry zone lack an equivalent to the
second phase of the succession model present in the humid low-land tropics

A two-phase succession model is also described by Kappelle (1995) and Kappelle et al
(1996), who studied secondary successions in the high mountains of the Talamanca Range in Costa
Rica Above 2000 meters elevation, species that are typical for even higher elevations can be found
in early successional stages In addition, species typical of mature forests, such as Quercus,
Weinmannia, Drymis, Phoebe, Ocotea and others, can be found even in young successional forests.
These species already dominate the second phase of mountain secondary succession.

Successional forests in the mountain region of the study area were classified following the
two-phase model of Kappelle, while forests corresponding to the Janzen’s model were not found,
because the study area did not include the Costa Rican dry forest zone.
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The hypothesis of spectral separability: a critique

Vegetation classification using Landsat TM data is based on the theory that chiorophyll
absorbs red radiation, leaf mesophyll reflects near infra-red (IR) radiation, moisture reduces near-IR
and especially middle-IR reflectance, and shadows reduce reflectance in all wavelengths, especially
longer wavelengths Increased green leaf biomass should therefore be negatively correlated with
remotely sensed radiation in the red wavelengths, and positively correlated with the near-IR
wavelengths (Jensen, 1996).

Since leaf biomass is generally positively correlated with wood biomass, increased red
absorption and near-IR reflectance should be correlated with high biomass vegetation types, such as
forests (Foody and Curran, 1994). NDV], that expresses the contrasting patterns of green vegetation
in the red and near-IR wavelength portions of the spectrum, should therefore be particularly useful in
detecting green vegetation and green leaf biomass. However, chlorophyll content and mesophyll
structure are different among species, and may not correlate well with wood biomass, for example in
tropical regions that exhibit deciduous and evergreen forest types during the dry season. Increased
shadow cast by emerging trees, spectral traps caused by canopy gaps, and increased humidity
resulting from recent local rainfall or particular local soil conditions can reduce near-IR reflectance
as well. but are not necessarily correlated with vegetation biomass. The hypothesized relationship
between remotely sensed red and near-IR radiation and vegetation biomass could therefore vary in
space and time. Because even in the humid tropics some tree species drop some or all of their leaves
during the dry season (e g. Gmelina arborea), the assumption is also invalid after the wet season.
This is particularly important for remote sensing research in the humid tropics, since cloud-free
Landsat TM imagery is available only during the dry season. Scenes with exceptionally little cloud
coverage in a tropical region that is usually covered by clouds might have been acquired during a
period of exceptional drought. This may imply particular water stress conditions for the vegetation,
and possibly altered spectral patterns, at least for those sites that do not have a naturally or artificially
augmented water supply. Same stress conditions, such as drought, pests, disease, and leaf fall
caused by increased wind, fire, and other reasons, can also substantially alter the leaf / wood biomass
relationship and the corresponding spectral response in the visible and IR portions of the spectrum.
Nevertheless, the spectral classification of forest categories relies on the assumption that spectral
patterns observed at the patch level {eg in the training sites) are representative of the entire
population of spectral data for these categories within a particular scene.

Ecological theory describes the successional process in terms of discrete phases that have
distinctive structural and compositional characteristics (Saldarriga ef al, 1988; Janzen, 1988,
Kappelle, 1995; Finegan, 1996). Such discrete phase models are appealing for mapping purposes,
since they relate ecological phase transitions to increases in leaf and wood biomass (Uhl, et al,
1988: Brown and Lugo, 1990), canopy roughness (Foody et al., 1996, Tucker, ef al, 1998), and
changes in species composition (Finegan, 1992 and 1996) that should result in different patterns of
spectral response. However, the nature of secondary succession is transitional both within and
between succession categories Spatial variations in composition and structure between forest
patches at the same successional phase have been shown to have different spectral responses even
between sites located closely together (Foody e al, 1996). In studies covering large tropical
regions, it is unlikely that sufficient ground data can be made available to classify within class
variations in ecologically meaningful and spectrally separable sub-categories In addition, spectral
changes of secondary forests should be continuous, rather than abrupt, if they relate to increases in
leaf biomass, wood biomass, canopy roughness, and changes in species composition. Sharp spectral
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boundaries between successional categories are therefore unlikely to exist, even if the average mean
values of the spectral data observed for the training sites may be statistically different. However,
abrupt changes in the spectral response of a particular secondary forest site might occur after a few
days of drought, local rainfall, fire, and other factors that are not related to the features observed for
ecological classification of the vegetation.

Sharp boundaries between successional stages are also difficult to draw in the field,
especially when looking at the patch size required for signature extraction. The patch size required
for the development of training statistics for Landsat TM data is of 5.68 ha following the rule of
thumb of 10 pixels per band (Jenzen, 1996). Under the conditions found in central Costa Rica, rather
than homogeneous sites, secondary vegetation patiches of that size often present a mixture of
different secondary growth stages and other land cover categories. Their spectral complexity is
sometimes increased by the presence of unevenly distributed remnant trees from the original forest,
abandoned herbaceous and ligneous species established by the landowner, living fences, and, in
rugged terrain, variations in sun illumination. Training statistics developed from such sites are too
noisy to be useful for discriminating secondary succession stages. On the other hand, signatures
extracted from training sites selected for their atypical homogeneity of the vegetation and
topography are unlikely to represent the true spectral data distributions present in the whole scene.

Despite these problems, a high level of consistency can be achieved in the ecological
classification of secondary vegetation sites at the field level. Trained personnel observe different
features of the vegetation to classify the site, and with some practice, visual field level classification
can be achieved consistently. In contrast, speciral data describe only one feature of the forest. They
may, or may not, be correlated with ecological variables observed for field-level vegetation
classification (Foody and Curran, 1994). Few studies have managed to record detailed ground data
as well as remotely sensed data on the same date, to test for a correlation between the two data sets
(Box, et al., 1989; Cook, et al, 1989, Foody and Curran, 1994; Tucker, ef al, 1998). When this
did occur, correlations observed were generally weak (Foody and Curran, 1994) But most remote
sensing research in tropical regions assumes that spectral differences among forest categories are:
inherent to the categories, consistently maintained throughout space, and accurately captured by the
remote sensor. The use of spectral data enhancement techniques, such NDVI and Tasseled Cap
transformation, is based on these three assumptions. Therefore, these techniques might be useful for
remotely sensed data sets — and more likely in small subsets (which is often the case of hypothesis
testing in remote sensing research) — where these assumptions hold true. How these assumptions can
be verified before classification has as yet not been addressed. However, if the categories of interest
do not have distinctive spectral patterns, or their signatures can be separated only under particular
site conditions, spectral data enhancement techniques would not be useful for classifying the entire
data set without previous scene stratification and signature weighting
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