

PROGRAMA DE EDUCACIÓN PARA EL DESARROLLO Y LA CONSERVACIÓN ESCUELA DE POSGRADO

Aporte de biomasa y reciclaje de nutrientes en seis sistemas agroforestales de café (Coffea arabica var. Caturra), con tres niveles de manejo

Tesis sometida a consideración de la Escuela de Posgrado, Programa de Educación para el Desarrollo y la Conservación del Centro Agronómico Tropical de Investigación y Enseñanza como requisito para optar por el grado de:

Magister Scientiae en Agroforestería Tropical

Por

Siyyid Alí Romero López

Turrialba, Costa Rica, 2006

Esta tesis ha sido aceptada en su presente forma por el Programa de Educación para el Desarrollo y la Conservación y la Escuela de Posgrado del CATIE, y aprobada por el Comité Consejero del estudiante como requisito parcial para optar por el grado de:

Magister Scientiae en Agroforestería Tropical

FIRMANTES:

Jeremy Haggar, Ph.D
Consejero Principal
Fernande Casanoves, Ph.D.
Miembro del Comité Consejero
Elías de Melo, M.Sc.
Miembro del Comité Consejero
A
Gabriela Doto M.
Gabriela Soto, M.Sc
Miembro del Comité Consejero
na Fapia
Arfa Tapia, M.Sc
Miembro del Comité Consejero
Glenn Galloway, Phr.D
Decano de la Escuela de Posgrado
O Torrando
Siyyid Alí Romero
Candidata

DEDICATORIA

A mi esposa Kenya Arroyo y a mis hijos Ana María y Siyyid Alí, gracias por su apoyo y compañía, por que fue un gran esfuerzo de una familia.

A mis padres, hermanos y sobrinos....

AGRADECIMIENTOS

Este proyecto de formación y fortalecimiento académico-profesional, no hubiera sido posible sin el oportuno apoyo del Servicio Alemán de Intercambio Académico (DAAD) y la Escuela de Posgrado del CATIE.

A mi profesor consejero PhD. Jeremy Haggar por su acertada dirección y gestión para el co-financiamiento del costo de la presente investigación.

Al PhD. Fernando Casanoves, por su acompañamiento constante y participación valiosa; de igual manera, a los otros miembros del comité académico M.Sc. Elías de Melo; M.Sc Ana Tapia, M.Sc Gabriela Soto por sus apreciables aportes.

Al personal de campo del ensayo de SAF de café del CATIE que fueron pilares importantes durante la fase de toma de datos.

A la familia Arias Arroyo, por su incondicional apoyo moral, espiritual y compañía en todo momento, pues hicieron que nuestra estadía en este país fuese más placentera.

El Autor

BIOGRAFÍA

El autor nació en Santa Rosa de Copán, Honduras el 17 de junio de 1976. Se graduó en la Escuela Nacional de Ciencias Forestales (ESNACIFOR), donde obtuvo el grado de Dasónomo en diciembre de 1997, posteriormente continúo estudios en la Universidad José Cecilio del Valle, donde obtuvo el grado de Licenciado en Ingienería Forestal en diciembre de 1999. Laboró en varios proyectos de conservación y manejo de recursos naturales en diferentes regiones de Honduras. El año 2005 ingresó al programa de posgrado en Agroforestería Tropical del CATIE, por el auspicio del DAAD y la Escuela de Posgrado del CATIE.

CONTENIDO

DED	ICATO	ORIA		III
AGR	ADEC	IMIENTO	OS	IV
BIO	GRAFÍ	A		V
CON	ITENII	00		VI
RES	UMEN			IX
SUM	IMAR	Y		X
ÍNDI	ICE DE	E CUADR	OS	XI
ÍNDI	ICE DE	E ANEXO	S	XIV
ÍNDI	ICE DE	E FIGURA	\S	XVII
LIST	A DE	UNIDAD	ES, ABREVIATURAS Y SIGLAS	XVIII
1	INTRO	ODUCCIÓ	ÓN	1
1.1	Obj	etivos del	estudio	2
1.	1.1	Objetivo	general	2
1.	1.2	Objetivo.	s específicos	2
1.2	Hip	ótesis del	estudio	3
2	MAR	CO CONC	CEPTUAL	4
2.1	Just	ificación.		4
2.2	Rev	risión de li	teratura	4
2.	2.1	Aspectos	generales del cultivo de café	4
2.	2.2	Fisiologí	ía de la producción de café	5
2.	2.3	Café al s	ol o bajo sombra	6
2.	2.4	La impor	rtancia de los sistemas agroforestales	9
2.	2.5	Ciclaje a	le nutrientes	10
2.	2.6	Aporte d	e biomasa y reciclaje de nutrientes	12
2.	2.7	Metodolo	ogías de investigación aplicadas a estudios afines	14
		2.2.7.1	Muestreo de biomasa del estrato árboles de sombra	14
		2.2.7.2	Muestreo de biomasa en arbustos de café	15
		2.2.7.3	Muestreo de hojarasca	15
		2.2.7.4	Muestreo de biomasa del estrato herbáceo	17
		2.2.7.5	Análisis de contenidos de nutrientes en la biomasa	18

	2.8 ıfé del (rísticas de las especies arbóreas asociadas en el ensayo de SAF de	18
	-	2.2.8.1	Poró (Erytrhina poeppigiana (Walp) D.F. Cook)	18
		2.2.8.2	Roble coral (Terminalia amazonia (J:F:Gmel) Exell)	18
		2.2.8.3	Cashá (Chloroleucon eurycyclum)	19
3	MATE	ERIALES	Y MÉTODOS	20
3.1	Des	cripción d	lel área de estudio	20
3.	1.1	Localiza	ción	20
3.	1.2	El suelo		20
3.	1.3	El clima		21
3.2	Des	cripción d	le los tratamientos, métodos de muestreo y análisis estadístico	21
3.	2.1	Descripe	ción de los tratamientos	21
3.	2.2	Método d	de muestreo	23
		3.2.2.1	Época de muestreo	23
	los arb	3.2.2.2 ustos de o	Cuantificación del aporte de biomasa (MS) en residuos de poda café	
		3.2.2.3	Cuantificación de la biomasa de la vegetación herbácea	24
	sombra	3.2.2.4	Cuantificación de la biomasa en residuos de poda del dosel 25	de
		3.2.2.5	Cuantificación de la biomasa de la hojarasca caída naturalmente	26
		3.2.2.6	Contenido y aporte de nutriente en la MS	27
3.	2.3	Análisis	estadístico	28
		3.2.3.1	Modelo estadístico	28
		3.2.3.2	Análisis de datos	28
4	RESU	LTADOS		29
4.1	Proc	ducción d	e biomasa en el estrato vegetación herbácea	29
4.2	Proc	ducción d	e biomasa en el estrato café	31
4.3	Proc	ducción d	e biomasa en el estrato árboles de sombra	33
4.4	Proc	ducción de	e biomasa en hojarasca	35
4.5	Proc	ducción d	e biomasa total sin hojarasca	36
4.6	Proc	ducción d	e biomasa total con hojarasca	38
4.7 los e	-		crientes de la biomasa de vegetación herbácea y de residuos de poda poles de sombra	
4.	7.1	Aporte d	le calcio	40
4.	7.2	Aporte d	e magnesio	43

4.	7.3	Aporte de potasio	46
4.	7.4	Aporte de fósforo	48
4.	7.5	Aporte de nitrógeno	51
4.8 los e		orte de nutrientes de la biomasa de vegetación herbácea y de residuos de poda café, árboles de sombra y hojarasca	
4.	8.1	Aporte de calcio	54
4.	8.2	Aporte de magnesio	56
4.	8.3	Aporte de potasio	58
4.	8.4	Aporte de fósforo	60
4.	8.5	Aporte de nitrógeno	62
5	DISCU	USIÓN	. 65
5.1	Apo	orte de biomasa	65
5.2	Con	itenido de nutrientes	70
5.3	Rec	iclaje de nutrientes	72
5.4	Efic	eiencia de la fertilización	75
5.5	Índi	ces de exportación	77
5.6	Efic	ziencia de uso de nutrientes	79
5	DISCU	USIÓN FINAL	. 82
7	CONC	CLUSIONES	. 84
3	RECO	MENDACIONES	. 86
)	BIBLI	OGRAFÍA	. 88
10	ANEX	708	94

RESUMEN

En un ensayo experimental de sistemas agroforestales (SAF) de café (Coffea arabica variedad Caturra) en Turrialba, Costa Rica, se cuantificó el aporte de biomasa (MS) y el reciclaje de nutrientes (Ca, Mg, K, P y N) en 15 tratamientos con sombra de tres especies arbóreas, dos leguminosas (una de servicio y una maderable) y un árbol maderable no fijador de nitrógeno (Erythrina poeppigiana (poró), Chloroleucon eurycyclum (cashá) y Terminalia amazonia (roble coral)) solas y/o combinadas, bajo tres niveles de manejo (alto convencional (AC), medio convencional (MC) y alto orgánico (MO)). Los tratamientos se establecieron en tres bloques con parcelas divididas con factorial incompleto; la parcela principal correspondió al tipo de sombra y la subparcela al nivel de manejo. Dentro de los SAF, para cada estrato (vegetación herbácea, café, árboles de sombra) y para la caída natural de hojarasca, se cuantificó el aporte de biomasa y el reciclaje de nutrientes. Para el estrato arbóreo se muestrearon cuatro árboles en grupo por tratamiento y por repetición, seleccionados aleatoriamente. En el estrato café se muestreó el 10% de la población plantada dentro del área útil de medición. En el estrato herbáceo se muestrearon cinco puntos de dos metros cuadrados cada uno (10 m²). Para el muestreo de la hojarasca se utilizaron seis trampas colectoras por tratamiento, distribuidas en 6 posiciones diferentes con respecto a la base de los árboles de sombra, seleccionadas de 12 posiciones potenciales. Los datos obtenidos fueron contrastados a través de un ANAVA y analizados sin y con hojarasca, debido a que la biomasa de hojarasca no fue evaluada en los tratamientos bajo MC. Al no encontrarse diferencias significativas a nivel de manejo, en el aporte de biomasa del estrato arbóreo ni en el aporte total de biomasa, se asumió que la hojarasca y nutrientes de los tratamientos bajo MC fue la misma que los tratamientos bajo MO. El manejo no afectó el aporte de biomasa ni el reciclaje de nutrientes. A nivel de sombra, los tratamientos con leguminosas superaron el aporte de biomasa y reciclaje de nutrientes frente a roble coral (14335 kg ha⁻¹ vs. 9034 kg ha⁻¹ de MS). En la comparación entre leguminosas, fueron los tratamientos con poró quienes superaron los valores de los tratamientos con cashá (19534 kg ha⁻¹ vs 9136 kg ha⁻¹ MS). El promedio total de nutrientes reciclados dentro de los SAF se mantuvo dentro de los niveles de fertilización propuestos por el Instituto del Café de Costa Rica (ICAFE, 1998) y al ser comparados con los ingresos de fertilización con su homólogo a nivel de manejo, la cantidad de nutrientes reciclados superaron las cantidades que ingresaron vía fertilización química y orgánica. Al estimar los índices de eficiencia de la fertilización y de exportación de nutrientes, se encontró que en todos los tratamientos, K fue el elemento potencialmente limitante para la producción de café y el de mayor exportación. Con base en los índices de exportación, en general, los tratamientos bajo MO y los tratamientos asociados con leguminosas podrían soportar un periodo más prolongado para mantener la productividad del cultivo en caso de bajar o cesar la fertilización. Los valores de eficiencia de uso de nutrientes indicaron que los tratamientos orgánicos y los asociados con poró mostraron ser más efectivos para el reciclaje de nutrientes, lo que sugiere mayor disponibilidad de ellos para el cultivo.

Palabras claves: Erythrina poeppigiana, Terminalia amazonia, Chloroleucon eurycyclum, Coffea arabica, vegetación herbácea, hojarasca, aporte de biomasa, aporte de nutrientes, manejo convencional, manejo orgánico, índice de eficiencia de la fertilización, índice de exportación, eficiencia de uso de nutrientes.

SUMMARY

In an experiment of agroforestry systems (AF)S of coffee (Coffee Arabiga variety Caturra) in Turrialba, Costa Rica, the contribution of biomass was quantified (MS) and the recicling of nutrients (Ca, Mg, K, P and N) in 15 treatments with shade of three arboreal species, two leguminous and a timber species (Erythrina poeppigiana (poró), Chloroleucon eurycyclum (cashá) and Terminalia amazonia (coral oak)) single and/or combined, under three management levels (high conventional (AC), moderte conventional (MC) and high organic (MO)). The treatments were replicated in three blocks with parcels divided within an incomplete factorial; the main parcel corresponded to the shade type and the subplot to the management level. Natural litter fall was measured for each stratum (herbaceous vegetation, coffee, shade trees) of each AFS together with the contribution of pruned biomass and the recycling of nutrients. For the arboreal stratum four trees were sampled for treatment in each repetition, selected randomly. In the coffee stratum 10% of the population was sampled inside the net plot. In the herbaceous stratum five points were sampled of two square meters each (10 m2). For the sampling of the litter six collecting traps were used per treatment, distributed in six different positions in relation to the base of the shade trees, selected from 12 potential positions. The data obtained were contrasted through an ANAVA and analyzed without and with litter, because the litter biomass was not evaluated in the treatments under MC. As no significant differences between managements were found in the contribution of biomass of the arboreal stratum neither in the total contribution of biomass, it was assumed that the litter and nutrients of the treatments under MC, was the same as that for the treatments under MO. In general management didn't affect the contribution of biomass nor the recycling of nutrients. Shade treatments with leguminous had a higher contribution of biomass and recycling of nutrients than coral oak (14,335 kg ha⁻¹ vs. 9,034 kg ha⁻¹ of MS). In the comparison among leguminous, the treatments with poró had higher values than the treatments with cashá (19,534 kg ha⁻¹ vs 9,136 kg ha⁻¹ MS). The total average of nutrients recycled inside the SAF was inside the fertilization levels proposed by the Institute of the Coffee of Costa Rica (ICAFE, 1998) and when compared with the fertilization revenues for each management, the quantity of recycled nutrients was greater than the quantities applied via chemical and organic fertilization. When estimating the indexes of efficiency of the fertilization and of export of nutrients, it was found that in all the treatments, K was the element potentially limiting for the production of coffee and most exported. Based on the export indexes, the treatments under MO and the treatments associated with leguminous could better sustain the productivity of the crop in the event of lowering or ceasing fertilization. The efficiency of use of nutrients indicated that the organic treatments and those associated with poró were more effective for the recycling of nutrients, which should have greater availability for the coffee.

Key words: *Erythrina poeppigiana, Terminalia amazonia, Chloroleucon eurycyclum, Coffea arabiga*, herbaceous vegetation, trash, contribution of biomass, contribution of nutrients, conventional handling, organic management, efficiency of the fertilization index, exportation index, nutrients use efficiency.

ÍNDICE DE CUADROS

Cuadro 1. Registros históricos promedios (1949-2005) de la estación meteorológica del
CATIE21
Cuadro 2. Resumen de tratamientos del ensayo de SAF de café en Turrialba, Costa Rica 22
Cuadro 3. Promedios de aporte de biomasa (kg ha ⁻¹ de materia seca) en el estrato vegetación
herbácea y valor de probabilidad (P) de contrastes de tratamientos en SAF de café en
Turrialba, Costa Rica (2006)
Cuadro 4. Promedios (kg ha ⁻¹) de contrastes y valor de probabilidad (P) para la diferencia de
tratamientos para las variables aporte de biomasa (MS) en residuos de poda en el
estrato café en SAF de café en Turrialba, Costa Rica (2006)
Cuadro 5. Promedios (kg ha ⁻¹) de contrastes y valor de probabilidad (P) para la diferencia de
tratamientos para las variables aporte de biomasa (MS) en residuos de poda en el
estrato árboles de sombra en SAF de café, en Turrialba, Costa Rica (2006)34
Cuadro 6. Promedios (kg ha ⁻¹) de contrastes y valor de probabilidad (P) para la diferencia de
tratamientos para las variables aporte de biomasa (MS) de hojarasca en SAF de café,
en Turrialba, Costa Rica (2006).
Cuadro 7. Promedios de aporte de totales (kg ha ⁻¹ de materia seca) de biomasa por estrato y
valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba,
Costa Rica (2006)
Cuadro 8. Promedios de aporte totales (kg ha ⁻¹ de materia seca) de biomasa por estrato y de
hojarasca y valor de probabilidad (P) de contrastes de tratamientos en SAF de café,
en Turrialba, Costa Rica (2006)
Cuadro 9. Medias del aporte de biomasa, incluida hojarasca, en SAF de café en Turrialba,
Costa Rica (2006)
Cuadro 10. Promedios de aporte de totales (kg ha ⁻¹) de Ca por estrato y valor de probabilidad
(P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006) . 41
Cuadro 11. Concentración de Ca (%) por componente de los diferentes estratos evaluados en
SAF de café. Turrialba. Costa Rica (2006)

Cuadro 12. Promedios de aporte de totales (kg ha ⁻¹) de Mg por estrato y valor de probabilidad
(P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006) . 44
Cuadro 13. Concentración de Mg (%) por componente de los diferentes estratos evaluados en
SAF de café, Turrialba, Costa Rica (2006)
Cuadro 14. Promedios de aporte de totales (kg ha ⁻¹) de K por estrato y valor de probabilidad
(P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006) . 47
Cuadro 15. Concentración de K (%) por componente de los diferentes estratos evaluados en
SAF de café, Turrialba, Costa Rica (2006)
Cuadro 16. Promedios de aporte de totales (kg ha ⁻¹) de P por estrato y valor de probabilidad (P)
de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006) 49
Cuadro 17. Concentración de P (%) por componente de los diferentes estratos evaluados en
SAF de café, Turrialba, Costa Rica (2006)
Cuadro 18. Promedios de aporte de totales (kg ha ⁻¹) de N por estrato y valor de probabilidad
(P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006) . 52
Cuadro 19. Concentración de N (%) por componente de los diferentes estratos evaluados en
SAF de café, Turrialba, Costa Rica (2006)
Cuadro 20. Promedios de aportes totales (kg ha ⁻¹) de Ca por estrato y hojarasca y valor de
probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa
Rica (2006)55
Cuadro 21. Concentración de Ca (%) en hojarasca en los diferentes componentes de los
estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)
Cuadro 22. Promedios de aportes totales (kg ha ⁻¹) de Mg por estrato y hojarasca y valor de
probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa
Rica (2006)
Cuadro 23. Concentración de Mg (%) en hojarasca en los diferentes componentes de los
estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)
Cuadro 24. Promedios de aporte de totales (kg ha ⁻¹) de K por estrato y hojarasca y valor de
probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa
Rica (2006)
Cuadro 25. Concentración de K (%) en hojarasca en los diferentes componentes de los estratos
evaluados en SAF de café, Turrialba, Costa Rica (2006)

Cuadro 26. Promedios de aporte de totales (kg ha ⁻¹) de P por estrato y hojarasca y valor	de
probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Co	sta
Rica (2006)	60
Cuadro 27. Concentración de P (%) en hojarasca en los diferentes componentes de los estratorios de la componente de los estratorios de la componente de los estratorios de la componente del componente de la comp	tos
evaluados en SAF de café, Turrialba, Costa Rica (2006)	62
Cuadro 28. Promedios de aporte de totales (kg ha ⁻¹) de N por estrato y hojarasca y valor	de
probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Co	sta
Rica (2006)	63
Cuadro 29. Concentración de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes componentes de los estratorios de N (%) en hojarasca en los diferentes	tos
evaluados en SAF de café, Turrialba, Costa Rica (2006)	64
Cuadro 30. Aportes promedio (kg ha ⁻¹) de materia seca en SAF de café, Turrialba, Costa Ri	ica
(2006)	66
Cuadro 31. Comparación de las entradas de nutrientes externos con el promedio de la	los
nutrientes reciclados por los SAF en Turrialba, Costa Rica (2006)	73
Cuadro 32. Resumen comparativo de aportes promedio (kg ha ⁻¹ año ⁻¹) de nutrientes en	el
estrato arbóreo de SAF de café en Turrialba, Costa Rica (2006)	74
Cuadro 33. Entradas y salidas de nutrientes (kg ha ⁻¹) en SAF de café, Turrialba, Costa R	ica
(2004–2005)	76
Cuadro 34. Índices de exportación de los nutrientes (%) que se reciclan en SAF de ca	fé,
Turrialba, Costa Rica (2006)	78
Cuadro 35. Valores promedios de eficiencia de uso de nutrientes (MG kg ⁻¹)en SAF de café	en
Turrialba, Costa Rica (2006)	80

ÍNDICE DE ANEXOS

Anexo 1. Listado de variables que fueron transformadas a rangos
Anexo 2. Aporte de biomasa (MS) del estrato herbáceo en SAF de café en Turrialba, Costa
Rica (2006)94
Anexo 3. Medias del aporte de biomasa en estrato café, en SAF de café en Turrialba, Costa
Rica (2006)
Anexo 4. Aporte de biomasa (MS) del estrato árboles de sombra en SAF de café en Turrialba,
Costa Rica (2006)95
Anexo 5. Biomasa (MS) de hojarasca caída de forma natural, acumulada durante 7,5 meses de
muestreo en SAF de café en Turrialba, Costa Rica (2006)
Anexo 6. Medias del aporte de biomasa por estrato, en SAF de café en Turrialba, Costa Rica
(2006)96
Anexo 7. Medias del aporte de biomasa por estrato y el aporte de hojarasca en SAF de café en
Turrialba, Costa Rica (2006)96
Anexo 8. Medias del aporte de Ca por estrato y el aporte de hojarasca en SAF de café en
Turrialba, Costa Rica (2006)
Anexo 9. Medias del aporte de Mg por estrato y el aporte de hojarasca en SAF de café en
Turrialba, Costa Rica (2006)
Anexo 10. Medias del aporte de K por estrato y el aporte de hojarasca en SAF de café en
Turrialba, Costa Rica (2006)
Anexo 11. Medias del aporte de P por estrato y el aporte de hojarasca en SAF de café en
Turrialba, Costa Rica (2006)
Anexo 12. Medias del aporte de N por estrato y el aporte de hojarasca en SAF de café en
Turrialba, Costa Rica (2006)
Anexo 13. Medias del aporte de Ca por estrato, en SAF de café en Turrialba, Costa Rica
(2006)
Anexo 14. Medias del aporte de Mg por estrato, en SAF de café en Turrialba, Costa Rica
(2006)

Anexo 15. Medias del aporte de K por estrato, en SAF de café en Turrialba, Costa Rica
(2006)
Anexo 16. Medias del aporte de P por estrato, en SAF de café en Turrialba, Costa Rica
(2006)
Anexo 17. Medias del aporte de N por estrato, en SAF de café en Turrialba, Costa Rica
(2006)
Anexo 18. Concentraciones de Ca (%) en biomasa de hojarasca caída de forma natural en SAF
de café, Turrialba, Costa Rica (2006)
Anexo 19. Concentraciones de Mg(%) en biomasa de hojarasca caída de forma natural en SAF
de café, Turrialba, Costa Rica
Anexo 20. Concentraciones de K (%) en biomasa de hojarasca caída de forma natural en SAF
de café, Turrialba, Costa Rica (2006)
Anexo 21. Concentraciones de P (%) en biomasa de hojarasca caída de forma natural en SAF
de café, Turrialba, Costa Rica (2006)
Anexo 22. Concentraciones de N (%) en biomasa de hojarasca caída de forma natural en SAF
de café, Turrialba, Costa Rica (2006)
Anexo 23. Concentraciones de Ca (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica
(2006)
Anexo 24. Concentraciones de Mg (%) en tejidos frescos en SAF de café, Turrialba, Costa
Rica (2006)
Anexo 25. Concentraciones de K (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica
(2006)
Anexo 26. Concentraciones de P (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica
(2006)
Anexo 27. Concentraciones de N (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica
(2006)
Anexo 28. Concentraciones de nutrientes (%) en frutos frescos en SAF de café, Turrialba,
Costa Rica (cosecha 2004)
Anexo 29. Índices de eficiencia (%) como proporción de los nutrientes que ingresaron por
fertilizaciones (2004-2005), en SAF de café en Turrialba, Costa Rica (2006) 106
Anexo 30. Índices de exportación (%) como proporción de los nutrientes que reciclan en los
SAF de café en Turrialba, Costa Rica (2006)

Anexo 31. Nutrientes reciclados (kg ha ⁻¹), entradas y salida	s en SAF de café en Turrialba
Costa Rica (2006)	108
Anexo 32. Eficiencia de uso de nutrientes (MG kg ⁻¹)en SAF	de café en Turrialba, Costa Rica
(2006)	109
Anexo 33. Aportes totales de biomasa y nutrientes (kg ha ⁻¹) en	SAF de café en Turrialba, Costa
Rica (2006)	110

ÍNDICE DE FIGURAS

Figura	1. Muestreo en tratamientos de una sola especie arbórea de sombra (a) y en tratamientos		
	con dos especies arbóreas de sombra (b)		
Figura	2. Distribución de trampas colectoras de hojarasca en tratamientos bajo manejo AC y		
	MO		

LISTA DE UNIDADES, ABREVIATURAS Y SIGLAS

AC: manejo alto convencional

EUN: eficiencia de uso de nutrientes

IE índice de exportación

MC: manejo medio convencional

MG: megagramos

MO: manejo orgánico intensivo o medio orgánico

MOS: materia orgánica del suelo

MS: materia seca

PPN: productividad primaria neta

PV: peso verde PS: peso seco

SAF: sistemas agroforestales

1 INTRODUCCIÓN

Investigaciones que han contrastado la productividad de sistemas diversificados y monocultivos, han concluido que la combinación de diferentes formas de vida tiene el potencial de ser biológicamente más productiva y más completa en el uso de recursos que los monocultivos (Haggar y Ewell 1997).

Particularmente, los agroecosistemas de café (*Coffea* spp.) con alta diversidad vegetal, son por lo general, menos productivos pero ciertamente más estables y sostenibles que los monocultivos, por el rol benéfico de los árboles de sombra para conservar la materia orgánica del suelo (MOS), elemento clave para mitigar numerosos problemas ambientales que enfrenta la productividad de los cultivos tropicales, pues ésta afecta sustancialmente la fertilidad biológica, química y física del suelo; de allí la importancia de implementar prácticas que favorezcan su conservación y que incrementen la eficiencia de los procesos biológicos como son la fijación biológica de nitrógeno y la simbiosis micorrítica para reducir el uso de fertilizantes y otros agroquímicos, y por ende incrementar las utilidades de los productores (Vaast y Snoeck 1999).

Las consecuencias ambientales negativas y la fragilidad económica del monocultivo del café, han hecho dudar sobre su pertinencia socioeconómica, lo que ha reenfocado la atención hacia el papel benéfico de los árboles de sombra y hacia sistemas basados en la asociación permanente para mejorar el ciclaje y la disponibilidad de nutrimentos, reducir sus pérdidas, disminuir la degradación del medio ambiente e incrementar la rentabilidad para los productores (Beer *et al.* 1998). El reciclaje de grandes cantidades de biomasa, ricas en nutrientes, es importante para suelos con bajos contenidos de materia orgánica, siendo los árboles de sombra claves para el mantenimiento de la productividad, de allí que la más importante característica de las especies arbóreas (excluyendo productos comerciales) para su asocio con café, es la alta productividad de biomasa bajo regímenes intensivos de podas y no la fijación de N (Beer 1988).

La continua y elevada aplicación de fertilizantes no parece ser una opción sostenible para los productores, ya que además de que los precios son muy elevados y contaminan los mantos acuíferos, la utilización de herbicidas contribuye al deterioro de los sistemas de producción cafetalera, promoviendo la erosión superficial del suelo y consecuentemente, la

pérdida de la materia orgánica y la lixiviación de nutrientes hacia las capas más profundas del suelo (Vaast y Snoeck 1999).

En décadas pasadas, diferentes investigaciones demostraron el potencial de los sistemas agroforestales (SAF) de café, para aportar biomasa y reciclar nutrientes (Ruso y Budoski 1986; Glober y Beer 1986, Fassbender *et al.* 1985); sin embargo, los esfuerzos, fueron focalizados solamente en cafetales bajo manejo convencional. En la actualidad, la creciente demanda por sistemas de producción más sostenibles y amigables con el ambiente, conlleva a la generación y validación de información que permita desarrollar pautas y/o criterios para maximizar el aprovechamiento de los recursos disponibles. En ese sentido el presente trabajo, fue dirigido a cuantificar la biomasa que aportan y los nutrientes que se reciclan en los distintos estratos de SAF de café bajo manejos convencionales y orgánicos.

1.1 Objetivos del estudio

1.1.1 Objetivo general

Cuantificar y comparar la producción de biomasa y aporte de nutrientes en seis sistemas agroforestales de café (*Coffea arabica* variedad Caturra) con sombra de árboles de *Erythrina poeppigiana* (poró), *Terminalia amazonia* (roble coral) y *Chloroleucon eurycyclum* (casha), solos o combinados y con tres niveles de manejo alto convencional (AC), medio convencional (MC) y alto orgánico (MO).

1.1.2 Objetivos específicos

Cuantificar y comparar la producción de biomasa y el aporte de nutrientes de los residuos de podas realizadas en árboles de café (en la época seca) y en árboles de sombra (poró, roble coral y casha), en seis sistemas agroforestales, bajo sombra de una especie arbórea (en tres sistemas) y dos especies arbóreas (en tres sistemas), con tres niveles de manejo (AC, MC y MO)

Cuantificar y comparar la biomasa y aporte de nutrientes de la hojarasca caída de forma natural de los árboles de sombra (poro, roble coral y casha) así como de los árboles de café, en seis sistemas agroforestales con doseles de sombra de una (tres sistemas) y dos especies (tres sistemas) arbóreas con dos niveles de manejo (AC y MO)

Cuantificar y comparar la producción de biomasa y aporte de nutrientes de la vegetación herbácea en seis sistemas agroforestales, con arreglos de árboles de sombra (poro, roble coral y casha) de unos (tres sistemas) y dos especies arbóreas (tres sistemas) con tres niveles de manejo (AC, MC y MO).

1.2 Hipótesis del estudio

- La biomasa y el reciclaje de nutrientes en los distintos sistemas agroforestales con diferentes niveles de manejo analizados no presentan diferencias significativas.
- La biomasa y el reciclaje de nutrientes en los sistemas agroforestales con doseles de sombra de especies leguminosas solas o combinadas con diferentes niveles de manejo analizados no presentan diferencias significativas.
- La biomasa y el reciclaje de nutrientes en los sistemas agroforestales con doseles de sombra de especies leguminosas y no leguminosas solos o combinados con diferentes niveles de manejo analizados no presentan diferencias significativas.
- La biomasa y el reciclaje de nutrientes en los sistemas agroforestales bajo manejo convencional y orgánico analizados no presentan diferencias significativas.

2 MARCO CONCEPTUAL

2.1 Justificación

Investigaciones realizadas por Montenegro (2005) en tres SAF de café (con poró, cashá y roble coral), bajo tres niveles de manejo, en las que se evaluó el aporte de biomasa y reciclaje de nutrientes, determinaron que los tratamientos con poró (sólo) bajo manejo MO y MC, presentaron mayores aportes de biomasa y nutrientes. Sugirió que estudios posteriores, deberían visualizar la evaluación del comportamiento esta especie en otras asociaciones y/o combinaciones, motivo por la cual se consideró desarrollar la presente investigación. Razones presupuestarias no permitieron la evaluación de todos los tratamientos del ensayo, por lo que los esfuerzos de este estudio se concentraron en los SAF bajo manejos alto convencional (AC), medio convencional (MC) y alto orgánico (MO). Los niveles de manejo fueron seleccionados, considerando que los niveles AC y MO, son los paquetes tecnológicos más conocidos e implementados, y los niveles MC por ser una nueva propuesta tecnológica.

2.2 Revisión de literatura

2.2.1 Aspectos generales del cultivo de café

El cultivo de café es un sistema productivo que ha sido objeto de muchas investigaciones, y esta tendencia continúa en la búsqueda de mejores alternativas para una producción sostenible a largo plazo. El café bajo sombra es una práctica común principalmente en Centro América, Colombia y México (Carvajal 1985). Estos agroecosistemas, en las últimas décadas, han perdido mucha de su diversidad biológica, como resultado de la implementación del uso de fertilizantes, control intensivo de malezas con herbicidas y eliminación de los árboles de sombra para elevar la productividad. No obstante, en los últimos años, los bajos precios del café, junto con los altos costos de producción del modelo y la demanda cada vez mayor de café orgánico, están revirtiendo esta situación (Muschler y Bonnemann, 1997).

Según Fischersworring y Robkamp (2001), para el buen desarrollo y producción del café, se requiere de un microclima fresco, en altitudes de 1200 a 2000 msnm, dependiendo de la latitud (trópico o subtrópico) con semi sombra y suficiente humedad propiciada por especies

arbóreas, de preferencia situados en suelos de buen drenaje, profundos, ricos en nutrientes (especialmente potasio y materia orgánica), con textura franca, con el fin de obtener producciones de mejor calidad. El ICAFE (1998) en Costa Rica, considera como condiciones climáticas ideales para este cultivo, zonas con temperaturas medias anuales entre 17°C y 23 °C precipitaciones medias anuales entre 1600 y 2800 mm año⁻¹, con una distribución anual mínima entre 145 y 245 días; aunque dichas condiciones, parecen no ser limitantes para la producción en zonas como Turrialba, donde se localizan plantaciones de café bajo condiciones más cálidas y con mayor precipitación, con resultados favorables.

2.2.2 Fisiología de la producción de café

La productividad de una planta, en términos ecofisiológicos, es la cantidad de materia orgánica acumulada en un período, en relación a una determinada área foliar. La productividad depende fundamentalmente de la fotosíntesis y por ende, requiere un suministro óptimo de agua, luz, temperatura y sales minerales, además de un adecuado funcionamiento del resto de los procesos fisiológicos de la planta, tales como: respiración, transpiración, síntesis de proteínas, absorción y traslado de agua, sales minerales y sustancias metabólicas, crecimiento y diferenciación, entre otros (Fournier 1988).

Según Cannell (1976), las plantas de café convierten el CO₂ y la energía solar en carbohidratos, los cuales son utilizados para la producción de frutos; es por tanto, que los factores que determinan la producción de café, son los que afectan el área foliar disponible para la absorción del CO₂ y la luz por unidad de área y la distribución de la materia seca en los frutos y otras partes de la planta. Además, considera que una manera de aumentar la productividad del cafeto, es incrementando el área de follaje iluminada adecuadamente por unidad de área cultivada; esto aumentaría el número de nudos y por tanto, el número de unidades florales. De igual manera, indica que las plantas de café tienen el potencial para producir un dosel grande y bien estructurado y que las plantas jóvenes invierten del 40 al 45% de su materia seca por año en la producción de nuevas hojas.

Fournier (1988), manifiesta que es importante determinar la sombra que produce un dosel, con capacidad de transmisión de luz y un adecuado índice de área foliar (IAF). Valencia (1973) sugiere que el IAF óptimo para la variedad de café Caturra es de ocho, y que este se puede obtener en tres años con 10000 plantas ha⁻¹, o en cuatro años con 5000 plantas ha⁻¹. Cannell (1976) indica que es importante que las ramas superiores de la planta sean erectas y

que las hojas se extiendan de manera vertical a una buena distancia, esto permite una arquitectura de la planta, en la que la mayoría de las hojas reciben sombra moderada y la radiación lumínica y térmica se aprovecha en gran área del follaje. Esto es un rasgo de importancia para las plantas que están adaptadas a la umbría, ya que sus hojas fotosintetizan más rápido en sombra que a pleno sol (Fournier 1988). Se estima que en condiciones favorables de tiempo, el área mínima foliar necesaria para mantener un fruto y permitir un crecimiento vegetativo satisfactorio para el año siguiente, es de alrededor de 20 cm² (Cannell 1971).

Fournier (1988) concluye que la temperatura y la luminosidad, son dos factores claves en la regulación de la fotosíntesis neta del café. Sin embargo, ambos factores no solo interaccionan entre si para definir el nivel óptimo de condiciones ambientales propicias para este proceso fisiológico, sino que en mucho su acción depende del estado hídrico de la planta.

2.2.3 Café al sol o bajo sombra

La producción de café a plena exposición solar o bajo sombra, ha sido objeto de discusión desde el siglo anterior (Beer et al. 1998). Pérez (1977) menciona que, según estudios llevados a cabo desde 1956 en los que se comparó la producción a pleno sol y con sombra regulada, combinando diferentes sistemas de siembra y de poda, demostraron que para las condiciones de Costa Rica, el cultivo al sol, en comparación con sombra balanceada, produjo apenas un 10% más de cosecha por hectárea; a pleno sol se encontró chasparria (*Cercospora coffeicola*) con mayor frecuencia y la mayor presencia de mala hierba aumentó el costo de manejo. En los agroecosistemas cafetaleros, el suelo es uno de los componentes fundamentales y entre sus propiedades químicas, el contenido de materia orgánica es de primordial importancia; las plantaciones a pleno sol acumulan, en términos generales, menos hojarasca que aquellas establecidas bajo sombra regulada, lo que hace que el suelo en las primeras sea más susceptible a la erosión y al crecimiento de malezas (Fournier 1988).

Montealegre (1954) analizó varias experiencias negativas de cultivo de café a pleno sol en diferentes sectores de Costa Rica, concluyendo que dichos fracasos se debieron a que el café es una especie que se desarrolla bajo la sombra y sólo en esas condiciones es posible obtener una planta sana, de alta producción y buena calidad, por un periodo más prolongado.

Un modelo hipotético de producción de café al sol o bajo sombra, razonado por Muschler (1997), sugiere que dichas modalidades de producción, estarán en función de la

fertilidad y la altitud sobre el nivel del mar; así, en las plantaciones localizadas en suelos sin limitaciones de nutrientes, humedad y sin barreras para enraizamiento, la máxima producción se inclina hacia la producción al sol; sin embargo, en plantaciones localizadas fuera de las condiciones óptimas (elevaciones menores), la producción al sol declina a causa del estrés por las altas temperaturas. Por otro lado, en sitios con elevaciones mayores, la producción al sol también declina, debido a temperaturas más bajas y, posiblemente, a daños por el viento. De igual manera, menciona que en condiciones sub-óptimas, la asociación con árboles para proyectar una sombra intermedia y moderar los extremos microclimáticos, puede aumentar la producción con respecto a los cafetales a pleno sol, siempre y cuando la competencia por nutrientes o agua no sea seria. Aunque la sombra en cafetales, en zonas óptimas, reduciría la producción, los beneficios ecológicos de los árboles asociados, a través del reciclaje de nutrientes y la adición de materia orgánica, causarían que la reducción en el sistema arbolado sea relativamente menor que en un cafetal al sol, por ende los árboles asumirían un rol más importante.

Acorde a Carvajal (1985), los sistemas intensivos de producción a pleno sol, demandan de un buen plan de fertilización que compense la mayor demanda de nutrimentos que tiene la planta al incrementar su producción. Para Turrialba, Costa Rica (zona sub-óptima de baja altitud), Ramírez (1993) reportó, en el promedio de ocho años de producción en parcelas de café sin fertilización bajo sombra de poró, rendimientos sobre el 60% más que las establecidas a pleno sol sin fertilización. En este mismo estudio ensayó diferentes niveles de fertilización en cafetales bajo sombra de poró y a pleno sol, no encontrando diferencias significativas entre tratamientos con bajas y altas dosis de fertilización, con sombra y sin ella, concluyendo que, donde hay altos niveles de fertilización química, el árbol de sombra pierde importancia como fuente de nutrientes, mientras que fertilizando con bajas dosis, el aporte de nutrientes proveniente de la sombra se torna muy importante, especialmente cuando el precio del café es muy bajo.

Carvajal (1985) menciona, que la mala calidad de café en Brasil se debe a que su cultivo se desarrolla a pleno sol. Muschler (2001) ensayó efectos de sombra sobre la calidad de café en Turrialba, encontrando mejores propiedades organolépticas, mayor peso fresco en frutos y proporciones de café pergamino oro de plantaciones bajo sombra abierta (40 a 60% de sombra) y/o sombra densa (> 80% de sombra), que en aquellos cosechados en plantaciones a pleno sol o en asocio con poró, podado tres veces por año.

Las condiciones que se generan en un SAF de café dependerán, en gran medida, de las especies arbóreas asociadas y el manejo. Así Gutiérrez y Vaast (2001), encontraron para la zona sub-óptima de Pérez Zeledón, Costa Rica, menor humedad en suelos de cafetales (convencionales) bajo sombra de *Terminalia ivorensis*, que en los establecidos bajo sombra de *Eucalyptus deglupta*, en ambos casos se observó disminución en la temperatura foliar de 2 a 4 °C, encontrando también que la conductividad estomática y la asimilación neta fueron mayores en plantaciones asociadas a *E. deglupta*, que aquellas bajo *T. ivorensis*.

En cafetales bajo manejo orgánico y convencional, Samayoa y Sánchez (2000), evaluaron importantes efectos de sombra en la incidencia de enfermedades, encontrando menores niveles de incidencia de chasparria (*Cercospora coffeicola*) en cafetales bajo manejo orgánico; sin embargo, ojo de gallo (*Mycena citricolor*) fue ligeramente mayor (aunque no limitante) bajo manejo orgánico que bajo manejo convencional. Roya (*Hemileia vastatrix*) y otras enfermedades fueron menos incidentes y no presentaron diferencias entre manejos, ellos concluyeron que la sombra debe mantenerse en un nivel que reduzca el daño de chasparria, pero que no incremente los daños causados por ojo de gallo.

Modelaciones de rentabilidad en SAF de café realizadas por Hernández *et al.* (1997) resultaron más favorables para la producción a pleno sol (sin considerar los efectos negativos en el ambiente), pero más sensibles a una caída de precio, comparada con los cafetales bajo sombra; sin embargo, para pequeños productores, con limitada capacidad de inversión y disponibilidad de mano de obra familiar, los sistemas asociados con árboles maderables (hasta 100 árboles ha⁻¹) constituyen la mejor alternativa. Lyngbaek *et al.* (1999) encontraron que la rentabilidad en las fincas con SAF de café orgánico, superaron ligeramente los costos de producción frente a las convencionales, aunque los rendimientos fueron 23% menores en los sistemas de producción orgánica, la poca diferencia fue asociada a una alta densidad de árboles sombra, manejo deficiente de poda en árboles y café, y bajos niveles de aplicación de insumos orgánicos.

La relativa importancia y los efectos generales de las diferentes interacciones entre los árboles de sombra y el cultivo del café, dependen de las condiciones del sitio (suelo-clima), selección de los componentes (especie-variedad-procedencia), características de las partes aéreas y subterráneas y prácticas de manejo, tanto de la sombra como del cultivo (Beer *et al.* 1998).

2.2.4 La importancia de los sistemas agroforestales

La promoción y el estudio formal de los SAF, como un sistema de uso de la tierra practicado desde tiempos inmemorables, tanto en el viejo como en el nuevo mundo, comenzaron a finales de los años 70 (Steppler y Nair 1987). Las bondades y servicios que estos sistemas prestan a los productores, aunado a la creciente preocupación internacional sobre temas ambientales, hace reconocer que los SAF poseen muchas ventajas sobre los monocultivos para responder a la demanda de una agricultura multifuncional, proveyendo de servicios medioambientales importantes, valores estéticos, zonas de amortiguamiento en áreas protegidas y áreas de recreación para turismo agroecológico (Beer *et al.* 2003).

Son conocidos los benefícios de los árboles en los sistemas de producción, ya que modifican el ambiente mediante sus raíces, ramas y hojas que a la vez forman una capa de hojarasca con grandes benefícios para el suelo; además, de que pueden generar ingresos adicionales por la producción de madera, leña y frutos (Muschler 2000). El impacto de los árboles sobre el suelo depende de las características de reciclaje de nutrientes, tales como la cantidad de hojarasca producida, su composición química y su tasa de descomposición (Montagnini *et al.* 1999). Los árboles o arbustos de raíces profundas, aumentan la disponibilidad de los nutrientes a través de la fijación biológica, el reciclaje de nutrientes desde las capas más profundas hacia la superficie del suelo (especialmente en zonas secas) y la acumulación de materia seca (Bornemizsa 1982, Beer 1988, Rao *et al.* 1998).

Beer (1988) considera que la capacidad de una especie arbórea para producir grandes cantidades de materia orgánica, a través de hojarasca y residuos de poda, puede ser más importante que la fijación de N₂ debido al efecto positivo en las propiedades químicas y físicas del suelo, especialmente en plantaciones que son fertilizadas. En Turrialba, Costa Rica se encontró que luego de diez años, posteriores a la conversión de un área de cultivo de caña de azúcar a SAF de cacao (*Theobroma cacao*) con poró y cacao con laurel (*Cordia alliodora*), el contenido de materia orgánica en el suelo se incrementó en alrededor del 21% y 9%, respectivamente (Beer *et al.* 1990). En áreas bajo barbechos herbáceos (leguminosas o no leguminosas), se ha encontrado que la mayor acumulación de material orgánico, el almacenamiento de nutrientes en la biomasa y la mayor densidad y distribución vertical de las raíces, ayudan a mantener las reservas de nutrientes, al reducir la lixiviación y/o al bombear nutrientes hacia la superficie del suelo de las capas más profundas (Beer *et al.* 2003).

Los aportes de hojarasca y los residuos de podas que cubren el suelo, reducen el impacto de las gotas de la lluvia, la velocidad de escorrentía y la erosión, mejoran la estructura, el contenido de N y la retención de nutrientes en el suelo, por ello la importancia de los árboles en asocio con cultivos perennes (Fassbender *et al.* 1991, Beer *et al.* 1998).

Los residuos vegetales generados en los agroecosistemas, son objeto de procesos de descomposición y mineralización, que liberan una serie de compuestos importantes para la nutrición de las plantas y posibilitan la disponibilidad de cantidades considerables de N, P, K, Ca, Mg y otros microelementos. En este proceso, se producen tanto sustancias inorgánicas (en forma de aniones y cationes) como sustancias orgánicas, que pueden ser objeto de nuevos procesos de resíntesis y polimerización, formando ácidos húmicos, con características y propiedades químicas específicas (Fassbender 1992). En el estrato herbáceo de los agroecosistemas, una vez cortadas las malezas y depositadas sobre la superficie del suelo, se descomponen y los nutrientes que fueron adsorbidos durante su crecimiento son devueltos al suelo y vuelven a estar disponibles para el agroecosistema (Aguilar y Staver 1997).

En SAF de café, Araya (1994) señaló que los niveles altos de materia orgánica en el suelo, permiten mantener poblaciones de nemátodos (*Meloidogyne* spp. y *Pratylenchus* spp.) por debajo de los niveles críticos. De igual manera, la reducción del estrés ambiental que provee la sombra, incrementa la tolerancia de las plantas de café a la infestación de esos nemátodos (OFICAFE 1978). Sin embargo, las diversas prácticas de manejo de los árboles de sombra y la selección de especies en SAF de café, afectan los niveles de fijación y disponibilidad de nitrógeno en las plantaciones (Nygren y Ramírez 1995). La clave en el incremento de la sustentabilidad de sistemas agrícolas, está en la incorporación de especies que poseen adaptaciones dirigidas a una mejor captura y conservación de nutrientes, mientras que al mismo tiempo producen una cosecha de valor económico o de subsistencia (Montagnini *et al.* 1999).

2.2.5 Ciclaje de nutrientes

Existen 16 nutrimentos que se consideran esenciales para el desarrollo vegetal, los que se utilizan en mayor cantidad son C, H, O, que se obtienen principalmente del agua y el aire. Como elementos mayores, la planta adsorbe del suelo N y K, aunque el N también puede ser fijado biológicamente de la atmósfera por algunas bacterias que se asocian a las plantas, el P generalmente se incluye dentro de este grupo porque, aunque se aplica en grandes cantidades,

el consumo de este por la planta es muy ineficiente. Como elementos medios se consideran el Ca, Mg y S y, como elementos esenciales, pero que se requieren en pequeñas cantidades (oligoelementos o micronutrimentos) están el Fe, Mn, Zn, Cu, B, Mo, Cl y Ni. Otros elementos (no esenciales), pero que en algunos casos pueden ser muy beneficiosos a las plantas son el Co, Si, Na, Ga y Va. También existen elementos que resultan tóxicos a las plantas porque dañan sus tejidos, como Al, Pb y Hg (Bertsch 1998).

Cada nutrimento tiene formas químicas particulares de adsorción, algunas catiónicas (N, K, Ca, Mg, Mn, Zn, Cu y Fe) y otras aniónicas (N, P, S, B, Mo y Cl). Es importante favorecer la presencia de dichas formas en el suelo, para propiciar una buena adsorción, y para que esta ocurra, además de los mecanismos fisiológicos de la membrana que interviene en la introducción de los nutrimentos del suelo a la raíz, son importantes otros procesos relacionados con la forma en que ellos se acercan desde los diferentes puntos del suelo (Bertsch 1998), de manera que los nutrientes sean provistos en sincronía con la necesidad de los cultivos (Palm 1995).

La mayor parte de los aspectos del ciclo de nutrientes es afectada directamente por la selección de las especies de sombra, que difieren en la producción de biomasa aérea, producción de raíces finas y porcentaje de descomposición de su biomasa (Palm 1995). El aporte de biomasa y nutrientes (especialmente hojas y ramas) depende, además de las especies involucradas, de las condiciones climáticas reinantes (Fassbender 1992). El manejo de sombra (especialmente poda) tiene un efecto crítico en el ciclo de nutrientes, ayuda al mantenimiento del microclima de la superficie del suelo de los cultivos y provee una herramienta para manipular el tiempo y la cantidad de nutrientes transferidos del árbol al suelo (Beer *et. al* 1998).

La disponibilidad de nutrientes para las plantas, está determinada por la proporción en que los nutrientes circulan dentro del sistema y la cantidad de insumos que éste recibe (Lampkin 2001). La composición bioquímica de los restos vegetales varía dentro de los límites, según su edad y funciones del órgano vegetal analizado. Los tejidos verdes son más ricos en carbohidratos y proteínas, mientras que los tejidos leñosos presentan mayores contenidos en compuestos fenólicos (ligninas) y celulosas (Fassbender 1992). Son los contenidos de polifenoles y ligninas factores adicionales que influencian la liberación de los nutrientes de la hojarasca y otros residuos vegetales, ya que ambos disminuyen la calidad de los materiales vegetales (Palm 1995).

Particularmente, los árboles de especies leguminosas de rápido crecimiento pueden acelerar la restauración de las reservas de N, P, y K en la capa superior del suelo, donde pueden ser aprovechados por el cultivo; sin embargo, no siempre reponen completamente las reservas de Ca y Mg (Szott y Palm 1996). Las plantas pueden tomar directamente algunos de estos componentes, tal vez por sus asociaciones con micorrizas, activándose en ellas procesos físiológicos o bioquímicos. Como consecuencia de esto, el crecimiento puede verse estimulado o regulado, o puede incluso ayudar a la resistencia de la planta frente a ataques de patógenos. Las sustancias húmicas actúan como intercambiadores de iones que, hasta cierto punto, regulan la nutrición de la planta. Los grupos de carboxilos que estas sustancias contienen se disocian para proporcionar cargas negativas, y generalmente, tienen el doble de carga que los minerales de la arcilla de manera que, aún una pequeña proporción de materia orgánica, podría contribuir significativamente a la capacidad de intercambio catiónico (Lampkin 2001).

2.2.6 Aporte de biomasa y reciclaje de nutrientes

En SAF de café, las frecuencias de poda del estrato arbóreo afectan la acumulación de biomasa y nutrientes que retornan al suelo; si las podas por año aumentan sucesivamente, decrece la acumulación de biomasa producida en la parte aérea, así como la caída natural de hojarasca y por ende, los nutrientes contenidos en esta (Ruso y Budowski 1986). Otro factor que afecta el aporte y ciclo de nutrientes es el tipo de asociación del estrato arbóreo y su densidad de plantación, Glover y Beer (1986) encontraron diferencias en los aportes de biomasa y nutrientes, al comparar SAF de café en asocio con poró y poró más laurel (*Cordia alliodora*).

Montenegro (2005), al evaluar la producción de biomasa y aporte de nutrientes en residuos de poda de árboles de sombra en tres SAF de café, bajo tres niveles de manejo, concluyó que el sistema de manejo y el tipo de sombra determinan el aporte y la tasa de liberación de nutrientes; encontró que los tratamientos con mayor aporte de biomasa (MS) y nutrientes fueron aquellos con sombra de poró bajo manejo medio convencional (MC) (11790 kg ha⁻¹ MS, 144 kg ha⁻¹ de N y 101 kg ha⁻¹ de K) y bajo manejo orgánico intensivo (MO) (10072 kg ha⁻¹ MS, 113 kg ha⁻¹ de N, y 90,8 kg ha⁻¹ de K).

Russo y Budowski (1986), evaluando tres frecuencias de poda en la producción de biomasa de poró en un SAF de café, encontraron que la producción de biomasa se ve

disminuida conforme se aumenta la frecuencia de poda al año. Los valores de producción de biomasa (MS) para una poda al año fueron 18470 kg ha⁻¹ año⁻¹, para dos podas al año 11800 kg ha⁻¹ año⁻¹ y para tres podas al año 7850 kg ha⁻¹ año⁻¹. El aporte total de N fue similar para las dos primeras frecuencias de poda, pero para tres podas al año fue muy baja (de 237,2 kg ha⁻¹año⁻¹ a 173,4 kg ha⁻¹año⁻¹). Berninger y Salas (2003) recomiendan ciclos de poda espaciados para propiciar la sostenibilidad de la producción de biomasa del sistema. Glover y Beer (1986), evaluando la producción de nutrientes de dos SAF de café, uno bajo sombra de poró y otro bajo laurel más poró, encontraron que los nutrientes que aportaron estos sistemas alcanzaron los valores de fertilización recomendados por el ICAFE para esa época.

Cardona y Sadeghian (2005) encontraron valores similares de biomasa de hojarasca en cafetales bajo sombra y a pleno sol, en dos localidades de Colombia, con condiciones ambientales contrastantes; la biomasa en los cafetales bajo sombra fue de 2200 y 1900 kg ha⁻¹ año⁻¹ respectivamente, y la biomasa en los cafetales a pleno sol fue de 1100 y 900 kg ha⁻¹ año⁻¹ respectivamente. No encontraron diferencias significativas en los aportes de nutrientes entre localidades para los cafetales bajo sombra; no obstante, los aportes de P y Mg si fueron significativos entre localidades para los cafetales a pleno sol.

La biomasa y nutrientes contenidos en el estrato herbáceo dependen, entre otros factores, del tipo de asociación en el SAF, Jiménez y Martínez (1979), evaluando la producción de materia orgánica en SAF de café con diferentes estructuras, encontraron que la biomasa en el estratoherbáceo fue inferior en SAF con sombra diversa (37,5 kg ha⁻¹), que la biomasa acumulada en SAF con dosel de una sola especie de sombra (1142 kg ha⁻¹) y que la biomasa acumulada a pleno sol (1851 kg ha⁻¹).

Aguilar (2001), evaluando el manejo selectivo de la ocurrencia natural de vegetación herbácea con la introducción de una leguminosa concluyó, que la presencia de mala cobertura en plantaciones de café parece no tener (o tiene poco) efecto en su rendimiento. Sugiere, a la vez que el retorno de materia orgánica, cuando se mantiene la cobertura de vegetación herbácea, podría mejorar, a largo plazo, la fertilidad del suelo.

Evaluando métodos de mantenimiento del suelo en un cafetal en Camerún, se encontró que los tratamientos bajo control químico (Roundup), tuvieron un efecto depresivo sobre la cosecha, en comparación con aquellos en los que se mantuvo con cuatro a seis cortes de vegetación herbácea al año (Bouharmont 1993). Aguilar *et al.* (1997), evaluando manejo selectivo de malezas bajo tratamientos químico-mecánico y mecánico en cafetales, con

Arachis pintoi y sin ella, concluyeron que es posible manejar la composición botánica de las malezas, y que el cambio se acelera cuando la composición inicial incluye hierbas de buena cobertura. La buena cobertura prosperó más en el sistema mecánico; sin embargo, con herbicidas predominó Arachis pintoi. Los cambios en la cobertura y las malezas también fueron asociados al desarrollo de los cafetos y al incremento en la sombra.

En un estudio, en el que se evaluó la acumulación y descomposición de biomasa en el estrato herbáceo, bajo tres niveles de manejo, se encontró que en general, bajo control mecánico-químico, se redujo la cantidad de biomasa y la mayor parte del tiempo el suelo permaneció libre de malezas. Bajo manejo convencional, la biomasa de malezas se redujo, observándose que las hierbas de buena cobertura colonizaron rápidamente los espacios dejados por las malezas. Bajo manejo selectivo de cobertura con aplicación de herbicida en los brotes de las malezas (chapodas), la buena cobertura devolvió una cantidad promedio de 11,8 kg ha⁻¹ año⁻¹ de N, 1,40 kg ha⁻¹ año⁻¹ de P y 14,7 kg ha⁻¹ año⁻¹ de K. Bajo manejo selectivo de cobertura y *Arachis pintoi* con chapodas, se reciclaron 16,0 kg ha⁻¹ año⁻¹ de N, 1,95 kg ha⁻¹ año⁻¹ de P y 19,9 kg ha⁻¹ año⁻¹ de K; siendo este último tratamiento más efectivo que el primero para reducir la biomasa de las malezas (Aguilar y Staver 1997).

2.2.7 Metodologías de investigación aplicadas a estudios afines

2.2.7.1 Muestreo de biomasa del estrato árboles de sombra

Salazar (1989) sugiere que una vez definido el tamaño de la parcela que se va a muestrear, se seleccione de cuatro a cinco árboles por parcela y dentro de ella, al azar un árbol por línea. Una vez podado el árbol, separar los residuos por componente (hojas y ramas) y registrar el peso verde de cada componente por cada árbol podado. Después de pesar el material proveniente de la poda, extraer una muestra de 500 g de ramas y 500 g de hojas por cada árbol; la muestra de ramas debería seccionarse en trozos de 10 cm. Cada muestra debería ser colocada en bolsas individuales, identificadas correctamente con el número del árbol muestreado, parcela y especie. Recomienda obtener el peso verde (PV) de las muestras en el campo, de lo contrario introducir las muestras en bolsas bien cerradas para evitar la pérdida de peso por deshidratación, hasta llevarlas al laboratorio para determinar el peso verde (PV) allí y luego el peso seco (PS) al horno.

Montenegro (2005) cuantificó el aporte de biomasa y nutrientes en residuos de podas del estrato arbóreo en SAF de café, tomando al azar un grupo de cuatro árboles por cada tratamiento evaluado. Los residuos de podas (ramas y hojas) fueron pesados *in situ*. Para la determinación del peso seco, se tomaron muestras compuestas por cada componente, en cada tratamiento, por cada repetición, mismas que fueron secadas al horno a 65 °C hasta peso constante.

Alpízar *et al.* (1986) cuantificaron la biomasa de ramas y hojas proveniente de la poda drástica de ocho árboles de poró (dos árboles por parcela de 18 m x 18 m), cuyo material fue clasificado en ramas y hojas y su PV registrado para cada componente. Una muestra de cada componente por árbol, fue secada al horno, obteniendo su contenido de humedad y el PS calculado por hectárea. Beer *et al.* (1990) sugieren clasificar, dentro del componente ramas a los troncos ≤ 10 cm en laurel.

2.2.7.2 Muestreo de biomasa en arbustos de café

Suárez (2002), para la cuantificación de la biomasa total de café, cortó 102 plantas y les midió su altura total y el diámetro del tronco a 15 cm del suelo. Posteriormente separó y pesó cada uno de sus componentes (tallo, hojas, ramas < 2 cm y ramas > 2 cm), así obtuvo el PV de cada sección. Seleccionó una muestra de aproximadamente 250 g por componente para obtener el PS y luego obtener la biomasa (MS) por componente y la biomasa total por planta. Rivera (1992) cuantificó la biomasa acumulada en una plantación luego de cuatro cosechas, esta fue podada a 30 cm del suelo, para ello estableció parcelas de muestreo de 240 plantas; cada arbusto fue separado en hojas, ramas y tallos, obteniendo una muestra por componente de cada arbusto, con el que obtuvo el PS por cada componente y por arbusto, luego el valor por hectárea.

2.2.7.3 Muestreo de hojarasca

Heuveldop *et al.* (1985) en SAF de café con laurel y con poró cuantificaron biomasa en hojarasca haciendo uso de seis trampas colectoras por parcela, las trampas fueron hechas de madera, medían 1 m por lado y 10 cm de profundidad, y en el fondo malla fina. En las parcelas las trampas fueron ubicadas a 10 cm sobre el nivel del suelo, instalándose 3 trampas a lo largo de una hilera de árboles de sombra y 3 a lo largo de dos hileras de cafetos. Las recolecciones fueron realizadas cada 7 días, el material colectado fue clasificado por

componente vegetal y por especie. Las flores de café y laurel se incluyeron en el compartimiento de las hojas. Se obtuvieron submuestras por componente y por especie, las que fueron secadas al horno a 70 °C.

Russo y Budowski (1986) en SAF de café con poró, cuantificaron el aporte de biomasa de hojarasca utilizando trampas similares a Heuveldop *et al.* (1985). La distribución de las trampas la realizaron de manera estratificada (4 posiciones potenciales), utilizando cuatro trampas por parcela: la primera en la base del árbol hasta 1 m, la segunda entre 1 y 2 m; la tercera entre 2 y 3 m; y la cuarta entre 3 y 4 m. Las colectas se realizaron cada 10 días y el material fue clasificado por componente. Posteriormente, fue pesado y se obtuvieron submuestras por componente, por especie, secadas al horno hasta peso constante, con el cual se obtuvo el factor (PS/PV) por componente, para la determinación de su PS.

Anderson e Ingram (1993) sugieren los siguientes aspectos en el proceso de muestreo:

- Colocar aleatoriamente las trampas de hojarasca (para otros materiales diferentes a ramas), en terrenos moderadamente homogéneos. En sitios con mayor variación topográfica, suelos y estructura vegetal, incluir 10 trampas por cada tramo de parcela, en un patrón estratificado aleatorio.
- Para reducir al 5% el coeficiente de variación, recomiendan usar al menos 20 trampas por sitio. En lugares muy heterogéneos, puede requerirse mayor número de trampas.
- Colectar hojarasca cada dos semanas (con mayor frecuencia en la estación lluviosa) y secarlas al aire. Colectas más frecuentes pueden ser necesarias para la hojarasca de rápida descomposición.
- Clasificar el material seco en:
 - Hojas (incluyendo pecíolo y raquis foliar)
 - Pequeña hojarasca arbórea (ramitas menores a 2 cm en diámetro y corteza)
 - Estructuras reproductivas (flores y frutos pueden ser diferenciados)
 - Residuos (fracción de tamiz menor a 5 mm).
 - Hojas de palma, folíolos, raquis menores a 2 cm y partes remanentes de raquis, pueden ser pesados y distribuidos separadamente.
 - Secar al horno las submuestras de hojarasca para obtener factores de corrección por contenido de humedad.

Expresar las fracciones de MS por componente en g m⁻² año⁻¹ o t ha⁻¹año⁻¹, con 95% de límite de confianza.

2.2.7.4 Muestreo de biomasa del estrato herbáceo

Para la cuantificación de biomasa en vegetación herbácea, una vez determinada el área de muestreo, la biomasa total es cortada, clasificada por especie, secada y pesada en submuestras. Se sugiere que el corte de la vegetación de la parcela se realice a 2 cm arriba del suelo para evitar cualquier contaminación. El tamaño de las parcela puede oscilar entre 0,5 x 0,5 m y 1 x 1 m. El tamaño de muestra (n) debe ser suficiente para reducir el error estándar (aproximadamente al 10% de la población), usualmente son suficientes 20 a 30 muestras por tratamiento, distribuidas entre las repeticiones. La localización de las muestras puede ser aleatoria, pero sistemática con un comienzo aleatorio es aceptable. Se recomienda secar todas las muestras lo más pronto posible para prevenir descomposición en ellas (Anderson e Ingram 1993).

Harmand *et al.* (2002) cuantificaron la producción de biomasa herbácea anual bajo diferentes tipos de barbechos, cuando la hierba del barbecho alcanzó su máximo desarrollo. Para esto hicieron uso de marcos de 2 m², se cortaron a nivel del suelo 10 muestras por tratamiento, distribuidas entre tres parcelas (28 x 28 m) o repeticiones de cada tratamiento. La vegetación que se encontraba dentro del área del cuadro fue clasificada, pesada (PV), tomando una submuestra por tratamiento para secar al horno hasta peso seco constante a 80 °C, para obtener el PS.

Aguilar y Staver (1997) cuantificaron la acumulación de biomasa y nutrientes en el estrato herbáceo de SAF de café bajo tres tratamientos: manejo convencional (chapodas y herbicidas); manejo selectivo de malezas de cobertura con chapodas; y manejo selectivo de malezas de cobertura y *Arachis pintoi* con chapodas. Las parcelas de muestreo tenían 400 m² de área, los tratamientos fueron distribuidos en bloques completos al azar. Se realizaron mediciones (8 por año) totales y parciales durante tres años. En cada muestreo total se tomaron 12 cuadrantes de 0,25 m² y para los muestreos parciales se tomaron seis cuadrantes de 1 m² por parcela. El muestreo total consistió en el corte desde la base del tallo de las malezas y coberturas dentro del cuadrante, y el muestreo selectivo fue alto o bajo cortando las malezas sin afectar las coberturas. Las malezas fueron identificadas, se determinó el peso seco, porcentajes de hojas y tallos de cada especie de malezas y se tomaron muestras para determinar su contenido de nitrógeno, fósforo y potasio, respectivamente.

2.2.7.5 Análisis de contenidos de nutrientes en la biomasa

Los diferentes estudios realizados para estimar los aportes de nutrientes han sido determinados en laboratorio, a través de análisis de tejido vegetal, en el cual se obtienen extractos de digestión para obtener las concentraciones de N por el método de semi-micro Kjeldahl; P se lo puede determinar por colorimetría; y K, Ca, Mg por espectrometría de absorción atómica (Díaz-Rumeu y Hunter 1978, Henríquez *et al.* 1995, Rodríguez y Rodríguez 2002). Para obtener los aportes de N, P, K, Ca y Mg por componente vegetal en cada estrato, se multiplicó la biomasa correspondiente de cada componente (kg ha⁻¹) por su concentración, así se obtuvo el aporte de cada nutriente por especie y parcela.

2.2.8 Características de las especies arbóreas asociadas en el ensayo de SAF de café del CATIE

2.2.8.1 Poró (Erytrhina poeppigiana (Walp) D.F. Cook)

Es una especie de América Tropical, distribuida desde Centroamérica hasta Bolivia, en altitudes de 600 a 1700 msnm y temperaturas promedias anuales entre 18 a 28 °C y precipitaciones promedias anuales de 1000 a 1300 mm. En Costa Rica es conocida como poró o poró gigante. Pertenece a la familia Fabaceae; alcanza alturas entre 20 y 25 m, y un DAP de 1,2 hasta 2 m. Comúnmente se encuentra en SAF como sombra de cafetales, debido a la capacidad que posee de fijar N, producir nódulos y la tolerancia a podas frecuentes durante periodos prolongados, características que permiten ajustar la sombra al cultivo principal. Para esta especie se reportó una biomasa (en materia seca) de 20,16 t ha⁻¹. Produce grandes cantidades de hojarasca rica en nitrógeno (4,1–4,9%), por ello, su valor en la conservación y mejora del suelo y la contribución a elevados y sostenibles rendimientos para los cultivos asociados (CATIE 2000, Cordero *et al.* 2003).

2.2.8.2 Roble coral (Terminalia amazonia (J:F:Gmel) Exell)

Esta especie se adapta a altitudes de 40 a 1200 msnm (CATIE 2000), con precipitaciones anuales de 2500 a 3000 mm y temperaturas superiores a los 28 °C. Crece en diferentes tipos de suelo (rojos y pobres) pero su crecimiento óptimo se da en suelos arcillosos a francos con pH de ácido a neutro (4 a 7). En América Central y Panamá se le conoce como roble coral, amarillón o amarillo real. Pertenece a la familia Combretaceae; alcanza alturas

entre los 50 a 70 m; un DAP entre 1 a 3 m, con fuste recto. En sitios de alta producción se ha obtenido un promedio de 11,8 m³ ha⁻¹ año⁻¹. Su madera es de buena calidad (Cordero *et al*. 2003), con múltiples usos en la industria e incluso para producir papel (CATIE 2000). Se ha reportado para esta especie 91,7 t ha⁻¹ de biomasa seca a los 10 años de edad, fijando 45,4 t ha⁻¹ de C (Cordero *et al*. 2003).

2.2.8.3 Cashá (Chloroleucon eurycyclum)

Las especies *Abarema idiopoda* (Blake) Barneby & Grimes, *Albizia idiopoda* (Blake) Brintton & Rose, *Pithecellobium idiopodium* S.F. Blake, *Pithecellobium idiopodum* Blake, *Pithecellobium pseudotamarindus* Standley, *Pithecellobium halogenes* Blake, *Pithecelobium idiopodum* Blake, *Pithecelobium idiopoda* Blake son conocidas como cashá (Cordero *et al.* 2003).

Se encuentra en México, Belice, Guatemala, Honduras, Nicaragua, Costa Rica y Panamá, en bosques tropicales húmedos, bosques nublados, semideciduos; en altitudes desde el nivel del mar hasta 1500 msnm (Cordero *et al.* 2003). Es una especie leguminosa fijadora de nitrógeno, que presenta características particulares como por ejemplo: sus raíces poseen propiedades insecticidas, el follaje denso con copa alta y abierta, color verde intenso y alto contenido de N. En cafetales es compatible con otros árboles de copas altas o bajas, ya sean compactas o abiertas, se acostumbra plantarla con otras especies de sombra y servicio. Requiere de poda de formación debido a sus ramificaciones irregulares o mal formadas. Esta especie tiene un alto valor comercial y por ende económico, debido a los diferentes usos de su madera y como leña (Cordero *et al.* 2003). No se ha encontrado reporte de esta especie en uso tradicional en asocio con café en fincas cafetaleras (Montenegro 2005).

3 MATERIALES Y MÉTODOS

3.1 Descripción del área de estudio

3.1.1 Localización

Como parte de un proceso de investigación que durará 20 años, el CATIE estableció en el año 2000, un ensayo de SAF de café en el Sector Bonilla Nº 2 de la finca experimental de Turrialba, Costa Rica, ubicado a 9º53'44" latitud Norte; 83º40'7" longitud Oeste, con una elevación de 600 msnm. El fin de este ensayo es estudiar las interacciones que surgen de las diferentes asociaciones, bajo diferentes tipos de manejo. El ensayo tiene un área de 9,2 ha, con una densidad de plantación de 5000 cafetos ha⁻¹, con espaciamiento de 2 m entre filas y 1 m entre arbustos. Los árboles para sombra (417 árboles ha⁻¹), se encuentran plantados dentro de las filas de café, a una distancia de 6 m entre árboles y 4 m entre surcos. El terreno, con relieve de poco declive, anteriormente estuvo dedicado al cultivo de caña de azúcar (De Melo *et al.* 2002).

3.1.2 El suelo

Los suelos se clasifican entre los órdenes Ultisol e Inceptisol. La parte Ultisol (parte baja de los bloques 1 y 3), se caracteriza por la acumulación de arcilla en el horizonte B y baja saturación de bases¹, con texturas entre franco y franco-arcilloso (primeros horizontes), caracterizados por ser químicamente pobres, de color rojizo, ácidos, lixiviados, sin reservas de minerales meteorizables, con saturación de bases menores al 35%, susceptibles a la compactación, comunes en clima húmedo y sin largas épocas secas. Estos suelos fijan P y complejos de Al y Fe, considerados poco favorables para el desarrollo de los cultivos, ya que son suelos de baja fertilidad (Niuwenhuyse 2005). La parte Inceptisol (parte baja de bloque 2) no presenta acumulación de arcilla. La principal limitante encontrada durante el establecimiento del ensayo fue el mal drenaje, que en capas inferiores (20 a 30 cm) presenta condiciones de redoximorfismo (De Melo *et al.* 2002).

¹ Dr. Paul McDaniels, Universidad de Idaho 2004

3.1.3 El clima

La zona en estudio se caracteriza por presentar un clima cálido y húmedo, de la cual se cuenta con registros históricos climatológicos a partir de 1949 (Cuadro 1).

Cuadro 1. Registros históricos promedios (1949–2005) de la estación meteorológica del CATIE

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Prom. anual
Precipitación (mm)	185,2	140.8	84.8	131,6	245,1	281,1	276,9	257,3	256,1	252,3	274,5	306,3	2692,2
Temperatura (°C).	20,5	20,8	21,5	22,1	22,6	22,5	22,2	22,2	22,4	22,2	21,7	20,9	21,8
Humedad (%)	87,6	86,5	85,3	86,0	87,9	89,0	89,7	89,2	88,5	88,9	89,7	89,1	88,1

Fuente: Registros históricos de la estación meteorológica del CATIE

Se nota que los meses con menor precipitación se comprenden entre enero y abril, siendo marzo el mes con menor cantidad de lluvia; el período presenta un rango de 15 a 18 días con lluvias (≥ 1 mm) por mes. Del período lluvioso, diciembre es el mes con mayor precipitación (306,3 mm), en este período se presentan de 21 a 25 días de lluvia por mes. La temperatura promedio anual se registra en 21,8 °C, siendo los meses lluviosos donde se presentan las más altas temperaturas. La humedad relativa promedio anual asciende a 88,1%, siendo los meses de enero a abril los que registran las mediciones más bajas, que oscilan entre 85,3 a 87,6%.

3.2 Descripción de los tratamientos, métodos de muestreo y análisis estadístico

3.2.1 Descripción de los tratamientos

El CATIE en colaboración con otras organizaciones de investigación, estableció a finales del año 2000 una red de ensayos de SAF de café en Nicaragua y Costa Rica, con el propósito de evaluar la sostenibilidad y el sinergismo en diferentes sistemas de producción para un período de 20 años. El objetivo de dichos ensayos es el estudio de las interacciones entre las diversas especies arbóreas en diferentes niveles y tipos de insumos para el manejo y la nutrición del café. En el ensayo de Turrialba, Costa Rica, la parcela principal la constituyen seis tipos de sombra, producto del asocio con tres especies arbóreas, una especie de servicio y de uso común en cafetales (poró) y dos especies maderables nativas de uso tradicional en

cafetales de la zona sur de Costa Rica (cashá y roble coral). Tres tratamientos se encuentran bajo monosombras y los tres restantes en asocio con dos especies arbóreas. La parcela principal está dividida en subparcelas de acuerdo al nivel de manejo (subtratamientos): convencional intensivo (AC), medio convencional (MC); orgánico intensivo (MO). En los sistemas de altos insumos los fertilizantes químicos son aplicados en niveles superiores a la cantidad de nutrientes exportados. En estos sistemas, la aplicación calendarizada de plaguicidas busca prevenir problemas de plagas. Por el contrario, el manejo orgánico del café es asistido a través de enmiendas orgánicas y control biológico de plagas (Haggar 2001). Los seis tratamientos evaluados están distribuidos en tres bloques; sin embargo, no todos los niveles de manejo se encuentran presentes en todas las asociaciones, lo que constituye un diseño factorial incompleto (Cuadro 2) (De Melo *et al.* 2002).

Cuadro 2. Resumen de tratamientos del ensayo de SAF de café en Turrialba, Costa Rica

Tipos de sombra	poró	roble coral	cashá	roble coral-casha	roble coral - poró	cashá -poró
Niveles de manejo (Sub tratamientos)	AC, MC, MO	AC, MC, MO	MC, MO	MC, MO	MC, MO	AC, MC, MO
Área efectiva de medición de sub parcela	36 x 10 m	18 x 18 m	18 x 18 m	24 x 18 m	24 x 18 m	24 x 18 m

Nota: AC: manejo alto convencional, MC: manejo medio convencional, MO: manejo medio orgánico

Los arbustos de café son podados selectivamente, al inicio de cada año, posterior a la cosecha de los frutos. Para la regulación de sombra, en poró se realizan dos podas de copa al año (una en enero y otra en junio o julio), en AC la poda es drástica (total); mientras que en MO y MC, un árbol se poda drásticamente y otro recibe poda regulada. En los árboles de cashá y roble coral, todos los tratamientos reciben una poda de formación entre abril y mayo.

El control de malezas en AC y MC se realiza cuatro veces al año con la aplicación de herbicidas; en los tratamientos AC el herbicida es asperjado en toda el área de los cafetos, mientras que en MC, solamente sobre la fila de café y en la calle se maneja con motoguadaña (aproximadamente 5 cm sobre el suelo). En los tratamientos en MO, el control es totalmente mecánico con motoguadaña a raíz del suelo sobre la fila y sobre la calle en caso de malezas. En MO y MC, en las calles se favorece el crecimiento de hierbas de buena cobertura, la cual se corta ligeramente solo para controlar su altura. El control mecánico de malezas se realiza con una frecuencia de cuatro veces al año.

En AC, la fertilización foliar se realiza con multiminerales dos veces al año, la fertilización al suelo con fórmula (18–5–15–6–2) 1000 kg ha⁻¹ (200 g cafeto⁻¹), fraccionado en

dos aplicaciones por año y 310 kg ha⁻¹ de nitrato o amonio (granulado) una vez al año (62 g cafeto⁻¹). En MO se aplica gallinaza como enmienda orgánica, a razón de 10 t ha⁻¹ (2 kg cafeto⁻¹), fraccionada en dos aplicaciones al año. Cabe mencionar que desde inicios del ensayo hasta el año 2003 se aplicó broza de café como enmienda orgánica, aplicándose en promedio 15 t ha⁻¹ año ⁻¹.

3.2.2 Método de muestreo

3.2.2.1 Época de muestreo

Para el muestreo se siguió el patrón de manejo de cada uno de los tratamientos del ensayo. El presente estudio inició el 12 de diciembre del 2005 y concluyó el 31 de julio del presente año.

La variable aporte de biomasa (MS) en el estrato café, fue evaluada al término de la cosecha de café (de enero a finales de febrero), medición que correspondió al muestreo de todo el año. El aporte de biomasa en el estrato árboles de sombra, fue evaluado de acuerdo a los regímenes de poda establecidos en el ensayo. Poró se podó dos veces al año, una vez a inicios de año y la segunda en junio, roble coral se podó en abril y cashá en mayo, una vez que se revistió de hojas nuevamente.

En el estrato herbáceo se realizaron tres muestreos, el primero en el mes de enero, el siguiente en abril y el último a inicios de junio, bajo el marco del control de malezas del ensayo, quedando muestreados tres intervenciones, de cuatro controles que se realizan durante el año.

La hojarasca se muestreó por un período de 7,5 meses, a partir del 12 de diciembre del 2005 y finalizando el 31 de julio. Los tratamientos asociados a cashá se muestrearon una vez por semana. Los tratamientos con poró y roble coral (solos o en asocio entre ellos), se muestrearon dos veces al mes.

3.2.2.2 Cuantificación del aporte de biomasa (MS) en residuos de poda de los arbustos de café

La medición del aporte de biomasa en el café se realizó de manera similar al proceso implementado para los residuos de poda en árboles de sombra. En cada repetición y cada tratamiento, se muestreó el 10% de los arbustos plantados (18 a 21 cafetos por repetición),

distribuidos dentro de todos los surcos comprendidos en el área de la subparcela. En cada surco, los cafetos fueron seleccionados aleatoriamente.

El material vegetal de poda de cada arbusto muestreado fue separado en hojas, ramas y troncos. El peso fresco fue registrado *in situ*, individualmente para cada componente por arbusto. Posteriormente, para cada componente arbustivo (hojas, ramas y tronco), se extrajeron muestras de aproximadamente 500 g, que se colocaron en bolsas plásticas para llevarlas al laboratorio. En laboratorio, luego de ser pesadas nuevamente en balanza electrónica, las muestras fueron colocadas en bolsas de papel y llevadas al horno a 65 °C, hasta peso seco constante. Al retirarlas del horno, las muestras de cada componente fueron pesadas para obtener PS.

La relación PS/PV por componente fue multiplicada por su respectivo peso fresco registrado en campo. Para obtener la MS ha⁻¹ se promedió la MS de cada componente y luego se multiplicó por la densidad de arbustos podados. La cantidad de cafetos podados, se obtuvo multiplicando la densidad de plantación de los cafetos (5000 arbustos ha⁻¹) por la relación número de arbustos podados dentro de la subparcela entre número de arbustos plantados dentro de la subparcela.

3.2.2.3 Cuantificación de la biomasa de la vegetación herbácea

El muestreo de la vegetación herbácea, consistió en una simulación del manejo realizado a dicho estrato, por nivel de manejo. En las tres repeticiones de cada tratamiento, se muestrearon 10 m², distribuidos en cinco puntos diferentes (2 m² por punto). Cada punto muestreado, estuvo comprendido entre cuatro cafetos dispuestos en dos filas. Los puntos fueron seleccionados aleatoriamente, para lo cual, se aleatorizaron las calles en las subparcelas en donde el número de calles fue mayor a cinco. De igual manera se aleatorizó el punto a muestrear, usando como referencia el número de cafetos plantados sobre el surco de la subparcela. El material cortado en cada punto de muestreo fue clasificado individualmente en tres grupos: malezas de hoja ancha, malezas de hoja angosta (entre las que se incluyeron a las de la familia ciperácea) y hierbas de buena cobertura (vegetación herbácea rastrera y de raíces poco profundas que se desea favorecer para proteger el suelo). Posteriormente est material fue pesado en laboratorio (registro de peso fresco). Cuando este material excedió los 500 g, se extrajo una muestra (aproximadamente 500 g) para la estimación de la relación PS/PV. En los casos en los que el material cortado de cada grupo fue menor a 500 g, este fue tomado también

como muestra. El cálculo de MS ha⁻¹, por grupo de vegetación herbácea, se estimó extrapolando (por regla de tres) los kg MS en 10 m² a una hectárea.

3.2.2.4 Cuantificación de la biomasa en residuos de poda del dosel de sombra

Para la medición de la biomasa se adaptaron las metodologías usadas por Salazar (1989) y Montenegro (2005). Para el muestreo en los árboles de sombra, en cada subparcela se seleccionó al azar un grupo de cuatro árboles (Figura 1a y 1b).

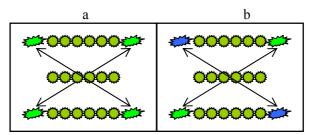


Figura 1. Muestreo en tratamientos de una sola especie arbórea de sombra (a) y en tratamientos con dos especies arbóreas de sombra (b).

En los tratamientos con arreglo de sombra de poró sólo, bajo MC y MO, dos de los árboles muestreados fueron con poda regulada y dos con poda drástica, dispuestos de manera diagonal (Figura 1a). Para los tratamientos con dos árboles de sombra, cada especie estuvo dispuesta de manera diagonal (Figura 1b). Cuando se encontró poró en asocio con otras especies, un árbol de poró fue muestreado con poda regulada y otro con poda drástica. Bajo AC, solo o en asocio, todos los árboles de poró fueron podados drásticamente.

Durante la operación de poda, en cada repetición por tratamiento, el material arrojado de cada árbol, fue clasificado en hojas (incluido el pecíolo) y ramas. Las ramas, a su vez, fueron separadas en ramas delgadas (≤ 2 cm en poró y ≤ 1 cm para cashá y roble coral) y ramas gruesas (≥ 2 cm en poró y ≥ 1 cm para cashá y roble coral). Posteriormente, (*in situ*), se pesaron hojas y ramas separadamente *in situ*, con el fin de obtener el peso fresco de la biomasa podada, por árbol. Por cada especie y componente arbóreo (hojas, ramas delgadas y ramas gruesas), se extrajeron muestras de aproximadamente 500 g, que se colocaron en bolsas plásticas para llevarlas al laboratorio.

En laboratorio, luego de ser pesadas nuevamente las muestras en balanza electrónica, fueron colocadas en bolsas de papel y llevadas al horno a 65 °C, hasta peso seco constante. Al retirarlas del horno, las muestras de cada componente fueron pesadas una vez más, para obtener la relación PS/PV. La relación por componente fue multiplicada por el peso fresco,

registrado en campo. Para obtener kg ha⁻¹ MS se promedió la MS de cada especie, por componente, y luego se multiplicó por su densidad de plantación. Se realizaron dos muestreos en árboles de poró y uno en árboles de cashá y roble coral, acorde a la frecuencia con que se aplican las labores de manejo para la regulación de sombra.

3.2.2.5 Cuantificación de la biomasa de la hojarasca caída naturalmente

Para esta medición se usaron trampas (cajas de madera) colectoras de hojarasca con un área de captura rectangular de 0,5 m² (1 m x 0,5 m de área interior) por 0,1 m de fondo en la cual se colocó malla de 1 mm² y elevadas a 0,20 m sobre el nivel del suelo. Se utilizaron seis trampas por subparcela (3 m² de muestreo), las cuales fueron distribuidas de manera estratificada de acuerdo al distanciamiento del árbol. Para ello se identificaron 12 posiciones potenciales de muestreo (Figura 2)².

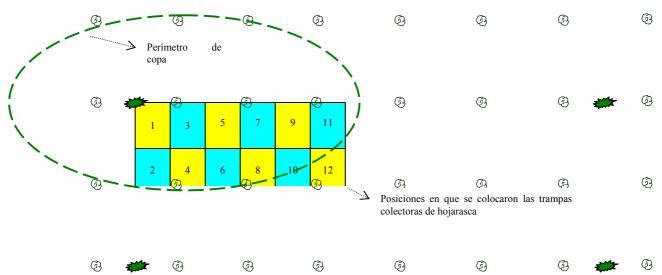


Figura 2. Distribución de trampas colectoras de hojarasca en tratamientos bajo manejo AC y MO.

En cada subparcela se seleccionaron al azar seis árboles (tres por especie en los tratamientos con dos especies), en los cuales se ubicaron dichas trampas. En las subparcelas localizadas en los bloques 1 y 3 se utilizaron las posiciones 1, 4, 5, 8, 9, 12; y en las subparcelas del bloque 2, con los mismos tratamientos, se utilizaron las posiciones 2, 3, 6, 7,

26

² Haggar 2005. Sugerencia para la distribución de trampas en subparcelas, Nicaragua-CATIE, comunicación personal vía electrónica.

10, 11. Las trampas se colocaron con el eje corto paralelo al surco de café y el eje largo en dirección al centro de la calle. Se muestreó solo en los tratamientos con AC y MO.

El material vegetal de cada trampa por repetición, fue clasificado por componente (hojas, ramas delgadas, ramas gruesas, flores y frutos) y por especie. En campo, las muestras por componente, fueron almacenadas en bolsas plásticas, hasta llevarlas al laboratorio y ser ingresadas al horno (65 °C) en bolsas de papel hasta peso seco constante. Posteriormente cada una de las muestras, fueron pesadas al ser retiradas del horno. La estimación de kg MS ha⁻¹ por componente arbustivo por especie, se obtuvo extrapolando (regla de tres) los kg MS ha⁻¹ colectados en 3 m² a una hectárea. La frecuencia de muestreo fue semanal para los tratamientos con sombra de cashá (solo o combinado) y quincenal, para los tratamientos con poró y roble coral (solos o combinados). El muestreo se desarrolló del 12 de diciembre de 2005 al 30 de julio de 2006 (7,5 meses).

3.2.2.6 Contenido y aporte de nutriente en la MS

Para el análisis del contenido de nutrientes se utilizaron muestras compuestas por cada componente en café, árboles de sombra, vegetación herbácea y hojarasca de todos los muestreos realizados en cada repetición de cada tratamiento.

Los análisis químicos de los tejidos fueron realizados en el laboratorio de suelos, tejido vegetal y agua del CATIE. Los elementos analizados en los diferentes componentes vegetales fueron N, P, K, Ca y Mg. El método de análisis fue el de digestión húmeda con mezcla de ácido nítrico-perclórico 5:1. Los elementos Ca, Mg y K fueron determinados por absorción atómica, P por el método colorimétrico del extracto de digestión nítrico-perclórica; y N total por combustión. El aporte de nutrientes se determinó multiplicando la concentración de cada elemento por la biomasa (kg ha⁻¹ MS) correspondiente. Es importante mencionar que los nutrientes reciclados en los residuos de poda de los estratos café y arbóreo corresponden a un año de muestreo. En el estrato herbáceo se realzan cuatro intervenciones al año, de éstas solo fueron muestreadas tres en este estudio, por lo cual el reciclaje de nutrientes corresponde únicamente a este periodo. El reciclaje de nutrientes de la biomasa de hojarasca corresponde a un periodo de 7,5 meses.

3.2.3 Análisis estadístico

3.2.3.1 Modelo estadístico

El diseño experimental para efectos de esta investigación fue en parcelas divididas, con tres repeticiones en bloques. En las parcelas principales y en subparcelas se encuentran los subtratamientos en forma desbalanceada. A continuación se detalla el modelo estadístico utilizado:

$$Y_{ijk} = \mu + S_i + B_j + SB_{ij} + M_k + SM_{ik} + \varepsilon_{ijk}$$

- Y_{ijk}= es la variable respuesta
- μ = media general
- S_i= es el efecto del i-ésimo nivel de sombra
- B_i= efecto del j-ésimo bloque
- SB_{ii}= es el término del error "A"
- M_k= es el efecto del k-ésimo manejo
- SM_{ik}= es el efecto de la interacción entre sombra y manejo
- ε_{ijk} = es el término del error "B" independiente ~N $(0, \sigma^2)$.

3.2.3.2 Análisis de datos

Las variables evaluadas fueron, aporte de biomasa (MS) y aporte de nutrientes (Ca, Mg, K, P y N) en residuos de poda de café, de vegetación herbácea, de árboles de sombra y hojarasca caída naturalmente. Los datos correspondientes dentro de cada variable, fueron analizados mediante técnica de contrastes a través de un ANAVA para un diseño de parcelas divididas en bloques completos al azar, con arreglo factorial incompleto. Se utilizó el programa de análisis estadístico InfoStat (2002). Las variables que no cumplieron los supuestos de normalidad y homogeneidad de varianzas, fueron transformadas a rangos (Anexo 1). Dado que la biomasa y reciclaje de nutrientes de la hojarasca se evaluó solamente en los tratamientos bajo AC y MO, se realizaron análisis estadísticos en forma separada para los tratamientos con hojarasca y sin ella.

4 RESULTADOS

4.1 Producción de biomasa en el estrato vegetación herbácea

El análisis de la variable aporte de biomasa (kg ha⁻¹ de materia seca), en el estrato vegetación herbácea, reflejó diferencias significativas para los componentes malezas de hoja angosta, hierbas de buena cobertura y aporte total de biomasa (Cuadro 3).

Cuadro 3. Promedios de aporte de biomasa (kg ha⁻¹de materia seca) en el estrato vegetación herbácea y valor de probabilidad (P) de contrastes de tratamientos en SAF de café en Turrialba, Costa Rica (2006)

	Contrastes	Hierbas de ho	ja ancha	Hierbas de hoj	a angosta	Hierbas de cobertu		Aporte to	otal
		Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media
	MO+MC		183	.0.0001	269	.0.001	98,9	.0.001	550
1	AC	ns	179	<0,0001	14,9	<0,0001	7,84	<0,0001	202
_	MC		172	0.1247	195	-0.0001	30,9	0.0000	399
2	MO	ns	193	0,1247	342	<0,0001	167	0,0888	702
	ER (MO/MC)+AB		151		220		82,5		453
3	(MO/MC)	ns		0,0006		0,0211	82,3	0,0006	
	TR (MO/MC)		317		520		96,0		933
4	ER (MO/MC)	ns	132	<0,0001	62,2	<0,0001	13,0	<0,0001	208
_	AB (MO/MC)		170	<0,0001	377	<0,0001	152	<0,0001	699
	ABER (MO/MC)		114		66,0		77,9		258
5	ABTR	ns		0.0042		0,5546		0,0089	
	(MO/MC)+TRER		181	0,0012	293	2,22.12	127	0,000>	601
	(MO/MC)		210		161		220		000
6	ABTR (MO/MC)	ns	218	0,0004	461	0,0003	220	<0,0001	898
	TRER (MO/MC)		145	· ·	125	· ·	34,7		305
7	TR (AC)	ns	106 317	<0,0001	7,17	0,0001	9,33	<0,0001	123
	TR (MO/MC)		198	·	520		96,0		933 225
8	ER (AC)	ns		0,3051	18	0,8029	8,70	0,5992	
	ER (MO/MC)		132	,	62		13,0		208
9	TR (MC)	ns	173	0,1174	313	0,0431	41,5	0,0517	527
	TR (MO)		461	,	727	-,	151		1338
10	ER (MC)	ns	168	0,7979	83	0,0635	0,97	0,1468	252
	ER (MO)		97	,	42	,	25,0	,	164
11	AB (MC)	ns	183 156	0,2298	291	0,0042	39,4	0,1236	514
	AB (MO)		156	·	463		264,8	-	884
12	ER (MO/MC)+TR (MO/MC)	ns	225	0,2067	291	0,5973	54,5	0,0330	570
12	TRER (MO/MC)	-	145	0,2007	125	0,3973	34,7	0,0550	305
	AB (MO/MC)+TR						34,/		
13	(MO/MC)	ns	244	0,9167	448	0,4223	124	0,6628	816
13	ABTR (MO/MC)		218	0,7107	461	0,4223	220	0,0020	898
-	AB (MO/MC)+ER								
14	(MO/MC)	ns	151	0.0880	220	0,4516	82,5	0,0866	453
	ABER (MO/MC)		114	-,- 500	66,0	-,	77,9	-,- 500	258
	Tratamientos	0,0872		<0,0001	,0	<0,0001	,>	<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). ns no significativo. Valores resaltados en **negrilla** indican significancia (P<0.05).

A nivel de manejo, el promedio de los tratamientos bajo MC y MO superaron el aporte de biomasa de vegetación herbácea, frente a los tratamientos bajo AC (Contrastes 1 y 7; Cuadro 3). En los tratamientos con poró solo, el efecto no fue significativo al comparar los tratamientos bajo AC frente al promedio de los aportes bajo MC y MO (Contraste 8, Cuadro 3).

Aunque no se reflejaron diferencias significativas al comparar las medias de los aportes totales de biomasa de vegetación herbácea en los tratamientos bajo MO frente a los tratamientos bajo MC, si se encontraron diferencias significativas entre tratamientos en los aportes del componente hierbas de buena cobertura, en el cual en general los tratamientos bajo MO superaron a los tratamientos bajo MC (Contrastes 2, 9 y 11, Cuadro 3). Estos niveles de manejo, comparados dentro de la especie poró solo, no reflejaron diferencias significativas (Contraste 10, Cuadro 3).

Se encontraron mayores aportes de biomasa de vegetación herbácea en los tratamientos con roble coral (solo o combinado), al compararlos con tratamientos de leguminosas (solas o asociadas entre ellas) (Contrastes 3 y 5, Cuadro 3). Se reflejó menor aporte de biomasa de vegetación herbácea en los tratamientos con poró (solo o asociado con la especie maderable), en comparación con cashá (sola o asociada con roble coral) (Contrastes 4 y 6, Cuadro 3).

Al comparar las medias de aporte de biomasa de vegetación herbácea del promedio de dos tratamientos de una sola especie, versus las medias de la asociación de ambas, se encontró diferencia significativa para el aporte total de biomasa en los tratamientos con poró más roble coral, frente a la asociación de ambas bajo el mismo manejo, cuyos valores fueron menores cuando estas se encuentran asociadas (Contraste 12, Cuadro 3). Similar condición, aunque no significativa, se encontró para las comparaciones de medias de aportes totales de biomasa en los tratamientos con cashá más poró, versus la asociación de ambas especies en los mismos niveles de manejo (Contraste 14). Las comparaciones de medias de aportes totales de biomasa, no fueron significativas para el promedio de los tratamientos con cashá más roble coral (Contraste 13, Cuadro 3).

Se notó que, en general, las diferencias significativas entre tratamientos para la variable biomasa total del estrato vegetación herbácea, estuvieron asociadas a las diferencias encontradas en el aporte del componente malezas de hoja angosta (Contrates 1, 3, 4, 5, 6 y 7, Cuadro 3). Dentro del componente malezas de hoja ancha, no se encontraron diferencias significativas entre tratamientos (P=0,0872) (Cuadro 3).

En general, se encontró que en promedio, el 50,9% de la biomasa aportada correspondió a malezas de hoja ancha, 35,2% a malezas de hoja angosta y 13,9% a hierbas de buena cobertura (Anexo 2).

4.2 Producción de biomasa en el estrato café

El análisis de los componentes del estrato café para la variable aporte de biomasa (kg ha⁻¹ de materia seca), presentó diferencias significativas entre los tratamientos, para todos los componentes (Cuadro 4).

A nivel de manejo, el promedio de los aportes totales de biomasa en el estrato café los tratamientos bajo AC superaron al de los tratamientos bajo MC y MO (Contraste 1; Cuadro 4). Sin embargo, no se reflejan diferencias significativas cuando estos niveles de manejo son comparados dentro de la misma especie (Contrastes 7 y 8, Cuadro 4).

Las medias de los aportes totales de biomasa del estrato café de los tratamientos bajo MC superaron a las medias de los tratamientos bajo MO (Contrastes 2 y 11, Cuadro 4). No se encontraron diferencias significativas bajo estos mismos niveles de manejo para las comparaciones dentro de las especies poró y roble coral (Contrastes 9 y 10, Cuadro 4).

Al comparar el aporte de biomasa en el estrato café bajo los tratamientos con roble coral (solo o en asocio con una leguminosa), frente a las leguminosas, no se encontraron diferencias significativas (Contrastes 3 y 5, Cuadro 4). La comparación entre las dos leguminosas solas fue consistente con la comparación de ellas en asocio con roble coral, siendo mayor los aportes del estrato café en los tratamientos con poró (Contrastes 4 y 6, Cuadro 4).

No se encontraron diferencias significativas al comparar las medias de aporte de biomasa del estrato café del promedio del dos tratamientos de una sola especie, versus las medias de la asociación de ambas, bajo el mismo manejo (Contrastes 12, 13 y 14, Cuadro 4). Se notó que las diferencias significativas encontradas en los aportes de biomasa del componente troncos, tuvieron influencia en las diferencias entre tratamientos para la variable aporte total de biomasa del estrato café (Contrastes 1, 2, 4, 6 y 11, Cuadro 4).

Para la variable porcentaje de cafetos podados, no se registraron diferencias significativas al comparar el promedio de los tratamientos bajo MO y MC frente a AC (Contrastes 1, 7 y 8, Cuadro 4). Al comparar las medias de los tratamientos bajo MC frente a

MO se reflejan diferencias significativas, encontrándose mayor porcentaje de cafetos podados en los tratamientos bajo MC (Contrastes 2, 9 y 11, Cuadro 4).

Cuadro 4. Promedios (kg ha⁻¹) de contrastes y valor de probabilidad (P) para la diferencia de tratamientos para las variables aporte de biomasa (MS) en residuos de poda en el estrato café en SAF de café en Turrialba, Costa Rica (2006)

	Contrastes	% C	P	Tronc	os	Ram	as	Ноја	as	Tota	ıl
	Contrastes	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO+MC	0,0748	64,8	0,0103	1173	0,0004	991	0,0754	304	0,0035	2468
	AC		75,5	-,-	1654	-,	1607	,	386	- ,	3648
2	MC MO	<0,0001	79,2 50,3	0,0025	1434 913	0,0150	1168 813	0,8320	286 322	0,0167	2888 2047
3	ER (MO/MC)+AB (MO/MC)	0,5388	63,7	0,8613	1200	0,8904	1044	0,6718	352	0,7945	2596
	TR (MO/MC)		68,6		1159		1016		291		2466
4	ER (MO/MC)	0,5224	66,6	0,0272	1516	0,0478	1290	0,0003	536	0,0144	3342
4	AB (MO/MC)	0,3224	60,8	0,0272	884	0,0478	799	0,0003	167	0,0144	1850
	ABER (MO/MC)		65,6		1310		1048		303		2661
5	ABTR (MO/MC)+TRER (MO/MC)	0,7876	63,5	0,3481	1086	0,4642	895	0,6391	263	0,4071	2244
6	ABTR (MO/MC) TRER (MO/MC)	0,0961	55,7 71,2	0,0204	753 1419	0,1115	700 1090	0,0633	189 336	0,0445	1642 2846
7	TR (AC) TR (MO/MC)	0,2444	81,7 68,6	0,0619	1804 1159	0,0153	1767 1016	0,9317	261 291	0,0613	3832 2466
8	ER (AC) ER (MO/MC)	0,2916	78,5 66,6	0,3946	1802 1516	0,1251	1750 1290	0,6843	551 536	0,2865	4104 3342
9	TR (MC) TR (MO)	0,0174	84,7 52,5	0,3435	1343 974	0,5178	1126 906	>0,9999	264 319	0,5152	2733 2199
10	ER (MC) ER (MO)	0,9349	67,2 66,1	0,2697	1731 1300	0,4594	1416 1164	0,2267	461 612	0,5165	3608 3077
11	AB (MC) AB (MO)	0,0001	89,7 31,9	0,0393	1298 470	0,0304	1182 415	0,3963	200 134	0,0497	2680 1020
12	ER (MO/MC)+TR (MO/MC)	0,6466	67,6	0,7304	1337	0,7632	1153	0,6828	414	0,9067	2904
	TRER (MO/MC)		71,2		1419		1090		336		2846
13	AB (MO/MC)+TR (MO/MC)	0,2595	64,7	0,2614	1022	0,3225	907	0,7735	229	0,3062	2158
	ABTR (MO/MC)		55,7		753		700		189		1642
14	AB (MO/MC)+ER (MO/MC)	0,8125	63,7	0,6441	1200	0,9866	1044	0,9275	352	0,8976	2596
	ABER (MO/MC)		65,6		1310		1048		303		2661
	Tratamientos	0,0009	1.	0,0118	14	0,0094	CD E 4	0,0196	. ,	0,0152	,

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral), CP=cafetos podados. Valores resaltados en negrilla indican significancia (P<0.05).

Los componentes troncos y ramas, en general, presentaron la misma tendencia que los valores totales del estrato café, tanto a nivel de manejo como a nivel de sombra (Contrastes 1 al 11, Cuadro 4). Para el componente hojas se encontró significancia únicamente en la comparación entre leguminosas solas (bajo MO y MC), en el cual el aporte de biomasa con poró superó al de los tratamientos con cashá (Contraste 4, Cuadro 4).

El componente troncos aportó en promedio 46,7% de la biomasa total del estrato café, 41,2% el componente ramas y 12,1% el componente hojas (Anexo 3).

4.3 Producción de biomasa en el estrato árboles de sombra

El análisis del estrato árboles de sombra para la variable aporte de biomasa (kg ha⁻¹ de materia seca), presentó diferencias significativas entre tratamientos para todos sus componentes, a excepción de frutos (Cuadro 5). El efecto del manejo no reflejó diferencias significativas al comparar el promedio del aporte total de biomasa del estrato árboles de sombra de los tratamientos bajo MC y MO, frente al promedio de los tratamientos bajo AC (Contrastes 1, 7 y 8, Cuadro 5). Sin embargo, se reflejaron diferencias significativas para las comparaciones dentro del componente hojas, en el cual los tratamientos bajo AC superaron el aporte de MC y MO (Contraste 1, Cuadro 5). De igual manera, no fue significativo el efecto del manejo al comparar las medias de los tratamientos bajo MC frente a las medias de los tratamientos bajo MO (Contrastes 2, 9, 10 y 11, Cuadro 5).

Se encontró que los aportes de biomasa del promedio de los tratamientos con poró y cashá bajo MC y MO fueron significativamente mayores que el promedio de los tratamientos con roble coral solo, bajo los mismos niveles de manejo (Contraste 3, Cuadro 5). Similar condición, aunque no significativa se encontró para la comparación de la asociación de ambas leguminosas frente al promedio de las asociaciones con roble coral-cashá y roble coral-poró bajo los mismos niveles de manejo (Contraste 5, Cuadro 5). Se reflejó mayor aporte de biomasa en los tratamientos con poró (solo o asociado con roble coral), al comparárselos con cashá (solo o en asocio con roble coral) (Contrastes 4 y 6, Cuadro 5).

La comparación de medias de aporte de biomasa del estrato árboles de sombra, del promedio de dos tratamientos de una sola especie, versus las medias de la asociación de ambas, fue significativamente mayor para los tratamientos de las asociaciones poró-roble coral y cashá-roble coral, frente al promedio de las dos especies, en cada caso, bajo los mismos niveles de manejo (Contrastes 12 y 13, Cuadro 5). Similar condición, aunque no significativa, se encontró para las comparaciones con cashá y poró bajo los mismos niveles de manejo (Contraste 14, Cuadro 5).

Cuadro 5. Promedios (kg ha⁻¹) de contrastes y valor de probabilidad (P) para la diferencia de tratamientos para las variables aporte de biomasa (MS) en residuos de poda en el estrato árboles de sombra en SAF de café, en Turrialba, Costa Rica (2006)

TR (MO) 0,0698 441 0,4354 365 0,4322 149 >0,9999 0,00 ns 0,00 0,2882 955 10 ER (MC) 0,4305 3863 0,8446 1745 0,4655 5820 20,9999 0,00 ns 0,00 0,4317 11427 7837													ı	
MO-MC		Contrastes	Но	ojas	Ramas	delgadas	Ramas	gruesas	Flo	res	Fru	itos	То	tal
Table Tabl			Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
MC	1	MO+MC	0.0204	1594	0.2279		0.9360	2892	0.4401	1,60	nc	0,72	0.7572	5391
Tend	1	AC	0,0294	1971	0,3376	675	0,8309	2843	0,4491	0,29	115	0,00	0,7373	5489
NO	2	_	0.5100	1666	0.8855		\n 0000		0.3081	0,60	ne	0,62	0.8000	5385
MO/MC/+AB MO/M		MO	0,3190	1521	0,0033	887	~0,9999	2986	0,3961	2,59	115	0,81	0,8900	5398
TR (MO/MC)	3	(MO/MC)+AB	0.0037	1040	0.0177	072	<0,0001	2264	0,0858	0.41	ns	0.06	<0,0001	6086
Section Column		` ′	- ,		- , -				ĺ			- ,	<u> </u>	1.41.4
AB MO/MC		, ,										- ,		
ABER (MO/MC) ABTR	4	,	<0,0001		0,0001		0,0001		0,0046		ns		<0,0001	
ABTR (MO/MC)		. ,								- , -		- , -		
ABTR (MO/MC) TRER	5	ABTR (MO/MC)+TRER	0,1349		0,3905		0,0702		0,3641		ns		0,1359	
TRER (MO/MC)				1050		933		2769		7.37		2.72		4762
Transierit Tra	6	TRER (MO/MC)	0,0011		0,1901		0,0418		<0,0001		ns		0,0382	
TR (MO/MC)		TR (AC)	0.5504		0.4500	535	0.6060	431		0.00		0.00	0.040.5	1659
Transientos Series Serie	7	TR (MO/MC)	0,5794		0,4709		0,6963		>0,9999	0,00	ns	0,00	0,8195	1414
Transientos Series Serie		ER (AC)	0.2204	3430	0.1161	827	0.2105	5740	. 0 0000	0,00		0,00	0.2640	9997
TR (MC)	8	ER (MO/MC)	0,2204	3156	0,1161		0,2105	5015	>0,9999	0,00	ns	0,00	0,3648	9632
TR (MO)		TR (MC)	0.0600	818	0.4254	552	0.4222		- 0 0000	0,00		0,00	0.2002	1874
Tratamientos Colorador C	9	TR (MO)	0,0698	441	0,4354	365	0,4322	149	>0,9999	0,00	ns	0,00	0,2882	955
Text	10	ER (MC)	0.4205	3863	0.0446	1745	0.4655	5820	> 0 0000	0,00		0,00	0.4217	11427
Tatamientos Column Tatamientos Column Tatamientos Column Tatamientos Column Tatamientos Column Col	10	ER (MO)	0,4305		0,8446	1178	0,4655		>0,9999	0,00	ns	0,00	0,431/	7837
Tatamientos Column Tatamientos Column Tatamientos Column Tatamientos Column Tatamientos Column Col		AB (MC)	0.4007	609	0.6111	532	0.2415	1787	0.7046	0,63		0,17	0.5350	2929
12 (MO/MC)+TR (MO/MC) 0,0350 1893 0,1210 960 0,0045 2671 >0,9999 0,00 ns 0,00 0,0088 5523 TRER (MO/MC) TRER (MO/MC) 2206 969 3734 0,004 0,00 0,00 6909 AB (MO/MC)+TR (MO/MC) 0,0573 586 0,0147 471 0,0032 920 0,0005 0,41 ns 0,06 0,0023 1977 ABTR (MO/MC)+ER (MO/MC) 0,0496 1849 0,0979 973 0,0339 3264 0,0558 0,41 ns 0,06 0,0637 6086 ABER (MO/MC) 1978,166 1116 3993 1,38 1,46 7090 Tratamientos <0,0001 0,0034 <0,0001 0,0002 0,0704 <0,0001	11	AB (MO)	0,4986	473	0,6111	437	0,3415	1239	0,/946	1,02	ns	0,08	0,5558	2150
AB (MO/MC)+TR (MO/MC) ABTR (MO/MC) AB (MO/MC)+ER (MO/MC) AB (MO/M	12	(MO/MC)+TR (MO/MC)	0,0350		0,1210		0,0045		>0,9999		ns		0,0088	
13 (MO/MC)+TR (MO/MC) 0,0573 586 0,0147 471 0,0032 920 0,0005 0,41 ns 0,06 0,0023 1977 ABTR (MO/MC) 1050 933 2769 7,37 2,72 4762 AB (MO/MC)+ER (MO/MC) 1849 0,0979 973 0,0339 3264 0,0558 0,41 ns 0,06 0,0637 6086 ABER (MO/MC) 1978,166 1116 3993 1,38 1,46 7090 Tratamientos <0,0001		. ,		2206		969		3734		0,00		0,00		6909
AB (MO/MC)+ER (MO/MC) ABER (MO/MC) Tratamientos <0,0001	13	(MO/MC)+TR (MO/MC)	0,0573		0,0147		0,0032		0,0005		ns		0,0023	
14 (MO/MC)+ER (MO/MC) 0,0496 1849 0,0979 973 0,0339 3264 0,0558 0,41 ns 0,06 0,0637 6086 ABER (MO/MC) 1978,166 1116 3993 1,38 1,46 7090 Tratamientos <0,0001		. ,		1050		933		2769		7,37		2,72		4762
Tratamientos <0,0001 0,0034 <0,0001 0,0002 0,0704 <0,0001	14	(MO/MC)+ER (MO/MC)	0,0496		0,0979		0,0339		0,0558		ns		0,0637	
		, ,		1978,166		1116		3993		1,38		1,46		7090
			,										-,	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P <0.05).

Se notó que, en general, las diferencias significativas entre tratamientos para la variable aporte total de biomasa en el estrato árboles de sombra, tuvieron la influencia de la contribución de los componentes ramas gruesas y hojas (Contrastes 3, 4, 6 y 12, Cuadro 5). En promedio, el componente ramas gruesas aportó el 53,3% a la biomasa total del estrato, seguido por el componente hojas que contribuyó con el 30,8%, mientras que el componente ramas delgadas aportó con 15,9%, flores y frutos aportaron en conjunto 0,03% (registrados solamente en los árboles de cashá) (Anexo 4).

En general, en los tratamientos combinados con cashá, esta especie aportó, en promedio 45,7% de la biomasa total del estrato. En los tratamientos combinados con poró, este árbol aportó en promedio 83,1% de la biomasa total del estrato. Mientras que en los tratamientos combinados con roble coral, este aportó 13,9% de la biomasa total del estrato (Anexo 4).

4.4 Producción de biomasa en hojarasca

El análisis de la variable aporte de biomasa en hojarasca (kg ha⁻¹ de MS), presentó diferencias significativas sólo para los componentes hojas, flores y aporte total de biomasa (Cuadro 6).

Cuadro 6. Promedios (kg ha⁻¹) de contrastes y valor de probabilidad (P) para la diferencia de tratamientos para las variables aporte de biomasa (MS) de hojarasca en SAF de café, en Turrialba, Costa Rica (2006).

	Contractor	Hoj	as	Ramas d	elgadas	Ramas	gruesas	Flor	es	Frut	tos	Tot	al
	Contrastes	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media
1	MO	<0.0001	4820	ns	59,5	ns	20,8	0,4699	30,7	ns	192	<0,0001	5123
1	AC	~0,0001	3453	115	64,9	115	0,00	0,4099	23,9	115	118	~0,0001	3660
	AB (MO) +		4890		49,3		0,00		35,3		225		5199
2	ER (MO)	0,0550		ns	77,3	ns		0,0235		ns		0,0428	
	TR (MO)		4057		41,0		0,00		9,67		95,6		4203
3	AB (MO)	0,0002	3768	ns	37,6	ns	0,00	0,0005	60,4	ns	181	0,0004	4047
,	ER (MO)	0,0002	6013	113	61,0	113	0,00	0,0003	10,1	113	268	0,0004	6352
	ABER (MO)		5092		80,2		110		20,9		211		5514
4	ABTR	0,8123		ns		ns		0,3432		ns		0,6590	
١.	(MO)+TRER	0,0123	4995	115	68,7	115	7,28	0,5152	41,6	115	198	0,0570	5311
	(MO)												
5	ABTR (MO)	<0,0001	3640	ns	71,1	ns	0,00	<0,0001	79,4	ns	202	0,0001	3993
	TRER (MO)	-0,0001	6350	110	66,3		14,6	-0,0001	3,67	110	194	0,0001	6629
6	TR (AC)	0,5326	4354	ns	95,0	ns	0,00	0,0617	3,22	ns	60,8	0,5624	4513
Ŭ	TR (MO)	0,0020	4057	110	41,0		0,00	0,0017	9,67	110	95,6	0,002.	4203
7	ER (AC)	<0,0001	2797	ns	46,8	ns	0,00	0,2226	17,9	ns	169	<0,0001	3031
	ER (MO)	-0,0001	6013	113	61,0	113	0,00	0,2220	10,1	113	268	-0,0001	6352
	TRER (MO)		6350		66,3		14,6		3,67		194		6629
8	TR (MO) +	0,0048	5035	ns	51,0	ns	0,00	0,0684	9,89	ns	182	0,0087	5278
	ER (MO)		3033		31,0		0,00		7,69		102		32/6
Ι,	Tratamientos	<0,0001		0,6762		0,5937		<0,0001		0,0814		<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

El efecto del manejo, fue significativamente mayor al comparar los tratamientos bajo MO frente a AC (Contrastes 1 y 7). No se encontró diferencia significativa para las comparaciones dentro de los tratamientos con roble coral solo (Contrastes 6, Cuadro 6).

Se encontró que los aportes totales de biomasa del promedio de los tratamientos con poró y cashá bajo MO fueron significativamente mayores que el promedio de los tratamientos con roble coral solo, bajo el mismo nivel de manejo (Contraste 2, Cuadro 6). Similar

condición, aunque no significativa se encontró para la comparación de la asociación de ambas leguminosas frente al promedio de las asociaciones con roble coral-cashá y roble coral-poró bajo el mismo nivel de manejo (Contraste 4, Cuadro 6).

Se reflejó consistencia al encontrar mayores aportes totales de biomasa de hojarasca en los tratamientos con poró (solo o en asocio con roble coral) (Contrastes 3 y 5, Cuadro 6). Al comparar el promedio de dos tratamientos frente a la asociación de ambas especies, bajo el mismo nivel de manejo, reflejó significativamente mayores aportes en los tratamientos asociados (Contraste 8, Cuadro 6).

En promedio, el aporte a la biomasa total de hojarasca, correspondió en un 94% al componente hojas, frutos 3,7% y ramas (delgadas y gruesas juntas) aportaron 1,6%, flores y frutos aportaron en conjunto 0,9% (Anexo 5). En general, el aporte promedio de la hojarasca del estrato café fue de 44,6%. En los tratamientos en los que se combinó dos especies arbóreas con café, cashá contribuyó, en promedio con 27% de la biomasa de hojarasca, poró aportó en promedio con un 40,3% y roble coral representó aproximadamente el 18,5% de la biomasa (Anexo 5). En los tratamientos con una especie arbórea combinada con café, cashá aportó en promedio 43,8% de la biomasa de hojarasca, poró aportó en promedio con 46,7% y roble coral contribuyó aproximadamente con el 60,6% de la biomasa total de hojarasca (Anexo 5).

En general, las diferencias significativas entre tratamientos para la variable biomasa total, estuvieron asociadas a las contribuciones significativas en el componente hojas (Contrastes 1, 3, 5, 7 y 8). No se encontraron diferencias significativas entre tratamientos para los aportes de biomasa en los componentes ramas delgadas (P=0,6762), ramas gruesas (P=0,5937) y frutos (P=0,014) (Cuadro 6).

4.5 Producción de biomasa total sin hojarasca

El análisis global del aporte total de biomasa (kg ha⁻¹de MS) en los estratos café, vegetación herbácea y árboles de sombra reflejó diferencias significativas entre tratamientos para todos los estratos evaluados (Cuadro 7). A nivel de manejo, no se evidenciaron diferencias significativas para los aportes totales de biomasa de los SAF en las comparaciones de medias para el promedio de los tratamientos bajo MC y MO, frente a las medias de los tratamientos bajo AC (Contrastes 1, 7 y 8, Cuadro 7). De igual manera, la comparación de medias para los tratamientos bajo MC frente a las medias de los tratamientos bajo MO,

tampoco reflejó diferencias entre tratamientos en los aportes totales de biomasa de los SAF evaluados (Contrastes 2, 9, 10 y 11, Cuadro 7).

Cuadro 7. Promedios de aporte de totales (kg ha⁻¹de materia seca) de biomasa por estrato y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006).

Mohmail Mohm		Contratas	Vegetación	herbácea	Caf	řé	Árboles de	sombra	Aporte	total
Table Tabl		Contrates	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
AC 202 3648 5489 9339 9336 2047 2048 2047 2047 2047 2047 2047 2048 2047 2048 204	1	MO+MC	<0.0001		0.0035	2468	0.7573		0.2312	8409
Mo	1	AC	<0,0001	202	0,0055	3648	0,7373	5489	0,2312	9339
MO	2	MC	0 0000	399	0.0167	2888	0.8000	5385	0.6000	8672
MO/MC M	2	MO	0,000	702	0,0107	2047	0,8900	5398	0,0988	8147
AB BR MO/MC AB MO/MC MO/MC AB MO/MC MO/MC AB MO/MC MO/MC AB MO/MC AB MO/MC AB MO/MC AB MO/MC AB MO/MC AB MO/MC MO/MC AB MO/MC AB MO/MC AB MO/MC AB MO/MC AB	3	· /	0,0006		0,7945	2596	<0,0001		0,0039	9136
AB (MO/MC)		TR (MO/MC)		933		2466		1414		4813
AB (MO/MC)	1	ER (MO/MC)	~0.0001	208	0.0144	3342	<0.0001	9632	<0.0001	13182
5 ABTR (MO/MC) 0,0089 601 0,4071 2244 0,1359 5836 0,1118 8681 6 ABTR (MO/MC) <0,0001 898 0,0445 1642 0,0382 4762 0,0157 7302 7 TR (AC) <0,0001 123 0,0613 3832 0,8195 1659 0,5847 4813 8 ER (AC) 0,5992 225 0,2865 4104 0,3648 9997 0,4139 14326 9 TR (MC) 0,5992 225 0,2865 4104 0,3648 9997 0,4139 14326 9 TR (MC) 0,5992 225 0,2865 4104 0,3648 9997 0,4139 14326 9 TR (MC) 0,0517 527 0,5152 2733 0,2882 1874 0,766 4493 10 ER (MC) 0,1468 252 0,5165 3608 0,4317 11427 0,7046 15288 ER (MO) AB (MO)	4	AB (MO/MC)	\0,0001	699	0,0144	1850	<0,0001	2540	<0,0001	5089
Mo/MC M		ABER (MO/MC)		258		2661		7090		10009
6 TRER (MO/MC) <0,0001	5		0,0089	601	0,4071	2244	0,1359	5836	0,1118	8681
TRER (MO/MC) 305 2846 6909 10060 7 TR (AC) -0,0001 123 0,0613 3832 0,8195 1659 0,5847 5614 8 ER (AC) 0,5992 225 0,2865 4104 0,3648 9997 0,4139 13182 9 TR (MC) 0,0517 527 0,5152 2733 0,2882 1874 0,7760 5134 10 ER (MC) 0,1468 252 0,5165 3608 0,4317 7837 0,7046 15288 11 AB (MC) 0,1236 514 0,0497 2680 0,5358 2929 0,1253 6124 AB (MO/MC) 0,0330 570 0,9067 2904 0,0088 5523 0,0768 8998 13 MO/MC) 0,6628 816 0,3062 2158 0,0023 1977 0,0798 4951 14 AB (MO/MC) 0,0866 453 0,8976 2596 0,0637 6086		ABTR (MO/MC)	<0.0001	898	0.0445	1642	0.0202	4762	0.0157	7302
TR (MO/MC)	6	TRER (MO/MC)	<0,0001	305	0,0445	2846	0,0382	6909	0,0157	10060
TR (MO/MC)	7	TR (AC)	-0.0001	123	0.0612	3832	0.0105	1659	0.5047	5614
8 ER (MO/MC) 0,5992 208 0,2865 3342 0,3648 9632 0,4139 13182 9 TR (MC) 0,0517 527 0,5152 2733 0,2882 1874 0,7760 5134 10 ER (MC) 0,1468 252 0,5165 3608 0,4317 11427 0,7046 15288 11 AB (MC) 0,1236 514 0,0497 2680 0,5358 2929 0,1253 6124 4055 AB (MO) 0,0330 570 0,9067 2904 0,0088 5523 0,0768 8998 13 AB (MO/MC)+TR (MO/MC) 0,6628 816 0,3062 2158 0,0023 1977 0,0798 4951 14 AB (MO/MC)+ER (MO/MC) 0,0866 453 0,8976 2596 0,0637 6086 0,0683 9136 14 ABER (MO/MC) 0,0866 258 258 2661 7090 0,0683 10009	/	TR (MO/MC)	<0,0001	933	0,0613	2466	0,8195	1414	0,5847	4813
FR (MO/MC)	0	ER (AC)	0.5002	225	0.2065	4104	0.2640	9997	0.4120	14326
TR (MC) 0,0517 527 0,5152 2733 0,2882 1874 0,7760 5134 10 ER (MC) 0,1468 252 0,5165 3608 0,4317 11427 0,7046 15288 11 AB (MC) 0,1236 514 0,0497 2680 0,5358 2929 0,1253 6124 12 ER (MO/MC)+TR (MO/MC) 0,0330 570 0,9067 2904 0,0088 5523 0,0768 8998 13 AB (MO/MC)+TR (MO/MC) 0,6628 816 0,3062 2158 0,0023 1977 0,0798 4951 14 AB (MO/MC)+ER (MO/MC) 0,0866 453 0,8976 2596 0,0637 6086 0,0683 9136 14 ABER (MO/MC) 258 0,8976 2596 0,0637 7090 0,0683 9136	8	ER (MO/MC)	0,5992	208	0,2865	3342	0,3648	9632	1 0,2312 5 0,6988 6 0,0039 4 0,0001 0 0,1118 2 0,0157 9 0,5847 7 0,4139 4 0,7760 7 0,7046 9 0,1253 3 0,0768 7 0,0798 6 0,0683 0 0,0683	13182
TR (MO)	_	TR (MC)	0.0515	527	0.5150	2733	0.2002	1874	0.7760	5134
Total Tota	9	TR (MO)	0,0517	1338	0,5152	2199	0,2882	955	0,7760	4493
Text	1.0	ER (MC)	0.1460	252	0.5165	3608	0.4215	11427	0.7046	15288
Term	10	ER (MO)	0,1468	164	0,5165	3077	0,431/	7837	0,7046	11077
Term		AB (MC)	0.122.5	514	0.040=	2680	0.5050	2929	0.4252	6124
12 (MO/MC) 0,0330 570 0,9067 2904 0,0088 5523 0,0768 8998 13 AB (MO/MC)+TR (MO/MC) 0,6628 816 0,3062 2158 0,0023 1977 0,0798 4951 14 AB (MO/MC)+ER (MO/MC) 898 1642 4762 7302 14 AB (MO/MC)+ER (MO/MC) 0,0866 453 0,8976 2596 0,0637 6086 0,0683 9136 ABER (MO/MC) 258 2661 7090 10009	11	AB (MO)	0,1236	884	0,0497	1020	0,5358	2150	0,1253	4055
13 AB (MO/MC)+TR (MO/MC) 0,6628 816 0,3062 2158 0,0023 1977 0,0798 4951 14 AB (MO/MC) (MO/MC) 898 1642 4762 7302 14 AB (MO/MC)+ER (MO/MC) (MO/MC) 0,0866 453 (MO/MC) (MO/MC) 2596 (MO/MC) (MO/MC) 0,0637 6086 (MO/MC) (MO/MC) (MO/MC) 0,0683 9136 (MO/MC) (MO/MC) (MO/MC) (MO/MC) (MO/MC) (MO/MC) 10009	12		0,0330	570	0,9067	2904	0,0088	5523	0,0768	8998
13 (MO/MC) 0,6628 816 0,3062 2138 0,0023 1977 0,0798 4931 14 (MO/MC) AB (MO/MC)+ER (MO/MC) 0,0866 453 0,8976 2596 0,0637 6086 0,0683 9136 ABER (MO/MC) 258 2661 7090 10009			,	305	,	2846	,	6909		10060
14 (MO/MC) / ABER (MO/MC) 0,0866 453 / 0,8976 2596 / 0,0637 6086 / 0,0683 9136 / 0009 ABER (MO/MC) 258 2661 7090 10009	13		0,6628		0,3062		0,0023		0,0798	
14 (MO/MC) 0,0866 453 (0,8976) 2596 (0,0637) 0,0683 (0,0683) 9136 (0,009) ABER (MO/MC) 258 2661 7090 100009		(/		898		1642		4762		7302
	14	` /	0,0866		0,8976		0,0637	6086	0,0683	9136
Tratamientos <0,0001 0,0152 <0,0001 <0,0001		ABER (MO/MC)		258		2661		7090		10009
		Tratamientos	<0,0001		0,0152		<0,0001		<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Se encontró que los aportes de biomasa de los SAF con roble coral sólo, bajo MC y MO, fueron significativamente menores frente a las medias del promedio de los tratamientos con las dos leguminosas bajo los mismos niveles de manejo (Contraste 3, Cuadro 7). Similar condición, aunque no significativa, se encontró para la comparación de medias del promedio de los tratamientos de los asocios roble coral-cashá y roble coral-poró frente a las medias de

los tratamientos de la asociación de ambas leguminosas bajo los mismo niveles de manejo (Contraste 5, Cuadro 7).

Se reflejó consistencia al encontrar mayores aportes de biomasa en los tratamientos con poró (solo o asociado con roble coral), frente a los tratamientos con cashá (solo o en asocio con roble coral) (Contrastes 4 y 6, Cuadro 7). Los aportes totales de biomasa de los SAF evaluados, no fueron significativos al comparar las medias del promedio de dos tratamientos de una sola especie versus las medias de los tratamientos de la asociación de ambas bajos los mismos niveles de manejo (Contrastes 12, 13 y 14, Cuadro 7).

En general, los tratamientos asociados con poró registraron los más altos valores de aporte de biomasa total (Contrastes 3, 4, y 6, Cuadro 7). Las diferencias significativas entre tratamientos para la variable aporte total de biomasa de los tratamientos en los que se compara a poró (solo o combinado) frente a otra especie (sola o combinada sin poró), tuvieron alta contribución del estrato árboles de sombra (Contrastes 3, 4 y 6, Cuadro 7)

En general, el estrato árboles de sombra aportó con 57,7% de la biomasa total de los SAF evaluados. El estrato café contribuyó con 34,6%, y el estrato vegetación herbácea con 7,7% de la biomasa total (Anexo 6).

4.6 Producción de biomasa total con hojarasca

La biomasa que aportan los diferentes estratos, unidos a la contribución de la hojarasca caída de forma natural (cultivo-árboles de sombra), presentaron diferencias significativas entre tratamientos para todos los estratos (Cuadro 8). Tomando en cuenta que los tratamientos en donde se consideró la biomasa de hojarasca están incluidos dentro de los tratamientos en los que se excluyó su aporte, es de notar que su contribución a la biomasa de los estratos café, vegetación herbácea y árboles de sombra, es la misma en los dos casos.

Al incluir la hojarasca, varían los porcentajes de contribución de los estratos a la biomasa total, al igual que se incrementa el valor de la biomasa total de los tratamientos evaluados (Cuadro 9 y Anexo 7). En general los tratamientos bajo AC frente a los MO, no presentaron una tendencia a nivel de manejo y estrato, que permita generalizar los resultados encontrados (Contrastes 1, 6 y 7, Cuadro 8). La comparación de los aportes totales de biomasa de los SAF evaluados sin y con hojarasca, reflejaron consistencia a nivel de manejo, sin

encontrarse diferencias significativas entre tratamientos, aunque la contribución de hojarasca entre tratamientos fue significativa (Cuadros 7 y 8).

Cuadro 8. Promedios de aporte totales (kg ha⁻¹de materia seca) de biomasa por estrato y de hojarasca y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	,	Vegetación	herbácea	Ca	ıfé	Árboles d	e sombra	Hoja	rasca	Aport	e total
	Contrastes	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO	0,0002	702	0,0021	2047	0,6298	5398	<0,0001	5123	0,7841	13270
1	AC	0,0002	202	0,0021	3648	0,0298	5489	<0,0001	3660	0,7841	12999
2	AB (MO) +	0.0047	524	0,8441	2048	0.0010	4993	0.0430	5199	0,1459	12765
2	ER (MO) TR (MO)	0,0047	1338	0,8441	2199	0,0010	955	0,0428	4203	0,1439	8696
-			884		1020				4203		8102
3	AB (MO)	0,0005		0,0314		0,0051	2150	0,0004		0,0023	
	ER (MO)		164		3077		7837		6352	•	17428
	ABER (MO)		259		2530		6575		5514		14878
4	ABTR	0,0722		0,3050		0,6559		0,6590		0,7221	
7	(MO)+TRER		782	0,3030	1729	0,0337	7435	0,0370	5311	0,7221	15258
	(MO)										
5	ABTR (MO)	0.0144	1150	0.1220	1039	0.1077	6608	0.0001	3993	0.0004	12791
3	TRER (MO)	0,0144	414	0,1330	2419	0,1877	8262	0,0001	6629	0,0604	17724
-	TR (AC)	-0.0001	123	0.0705	3832	0.2004	1659	0.5624	4513	0.4060	10126
6	TR (MO)	<0,0001	1338	0,0795	2199	0,3894	955	0,5624	4203	0,4960	8696
_	ER (AC)	0.207	225	0.2550	4104	0.1252	9997	-0.0001	3031	0.0452	17357
1	ER (MO)	0,2967	164	0,2559	3077	0,1353	7837	<0,0001	6352	0,9453	17428
	TRER (MO)		414		2419		8262		6629		17724
8	TR (MO) +	0,5422	7.51	0,7759	2620	0,0046	1207	0,0087	5270	0,0891	12072
	ER (MO)	,	751		2638		4396		5278		13062
	Tratamiento	0,0002		0,0272		0,0001		<0,0001		0,0098	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P <0.05).

Aunque en el análisis de aportes totales de biomasa por estrato incluyendo la contribución de la hojarasca, se encontraron diferencias significativas entre tratamientos, estas no reflejaron significancia en el aporte total de biomasa de los SAF, a excepción de los tratamientos orgánicos con poró sólo frente a cashá (Contraste 3, Cuadro 8).

Al visualizar las comparaciones de los contrastes de los aportes de biomasa total sin y con hojarasca (Cuadros 7 y 8), se notó que los tratamientos asociados con poró (solo o combinado) mantienen la tendencia a presentar siempre los valores más altos de aporte de biomasa (Contrastes 3, 4 y 6, Cuadro 7 y Contraste 3, Cuadro 8, respectivamente).

Son consistentes los SAF evaluados sin y con la contribución de la hojarasca, al no encontrarse diferencias entre tratamientos cuando se comparan el promedio de dos tratamientos de una especie frente a las medias de los tratamientos de la asociación de ambas especies (Contraste 8, Cuadro 8).

El aporte de biomasa de la hojarasca a los tratamientos, fue relativamente alto, pues sus valores de contribución fluctúan entre el 17,5% y 50% (Cuadro 9). Se encontró, en general que

de la biomasa total de los SAF, la contribución del estrato árboles de sombra superó ligeramente en promedio al aporte de biomasa de la hojarasca (37,9%). El estrato café aportó en promedio 20,2% y el estrato vegetación herbácea 5% de la biomasa total de los SAF (Cuadro 9).

Cuadro 9. Medias del aporte de biomasa, incluida hojarasca, en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	Vegetac	ción herbácea		Café	Árboles	s de sombra	Н	ojarasca	Tot	tal MS
	1 ratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MO)	10,9	884	12,6	1020	26,5	2150	50,0	4047	100	8102
2	ABER (AC)	2,25	259	26,1	3007	41,8	4812	29,8	3436	100	11513
3	ABER (MO)	1,74	259	17,0	2530	44,2	6575	37,1	5514	100	14878
4	ABTR (MO)	8,99	1150	8,13	1039	51,7	6608	31,2	3993	100	12791
5	ER (AC)	1,30	225	23,6	4104	57,6	9997	17,5	3031	100	17357
6	ER (MO)	0,94	164	17,7	3077	45,0	7837	36,4	6352	100	17428
7	TR (AC)	1,21	123	37,8	3832	16,4	1659	44,6	4513	100	10126
8	TR (MO)	15,4	1338	25,3	2199	11,0	955	48,3	4203	100	8696
9	TRER (MO)	2,34	414	13,7	2419	46,6	8262	37,4	6629	100	17724
	Promedio general	5,01	535	20,2	2581	37,9	5428	36,9	4635	100	13180

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral).

4.7 Aporte de nutrientes de la biomasa de vegetación herbácea y de residuos de poda de los estratos café y árboles de sombra

4.7.1 Aporte de calcio

El análisis global del aporte total de Ca (kg ha⁻¹) en los estratos vegetación herbácea, café, árboles de sombra y aporte total reflejó diferencias significativas entre tratamientos (Cuadro 10). A nivel de manejo los aportes totales de Ca de los SAF, no reflejaron diferencias significativas para las comparaciones del promedio de los tratamientos bajo MC y MO, frente a las medias de los tratamientos bajo AC (Contrastes 1, 7 y 8, Cuadro 10). Sin embargo, se reflejó efecto de manejo dentro de los estratos vegetación herbácea y café; en el primero, las medias de los tratamientos bajo MC y MO superaron significativamente a las medias de los tratamientos bajo AC (Contrastes 1 y 7, Cuadro 10), mientras que en el estrato café las medias de los tratamientos bajo AC superaron a las medias de los tratamientos bajo MC y MO (Contraste 1, Cuadro 10). Dentro de los tratamientos con poró (sólo) no se encontraron diferencias significativas en el aporte total de los SAF ni en los diferentes estratos (Contraste 8, Cuadro 10).

Cuadro 10. Promedios de aporte de totales (kg ha⁻¹) de Ca por estrato y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Contrastes	Vegetación h	erbácea		Café	Árboles de so	ombra	Aporte to	al SAF
	Contrastes	Valor P	Media	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO+MC	<0,0001	6,36	0.0097	22,4	0,2724	44,2	0,7671	73,0
1	AC	<0,0001	1,58	0,0077	31,7	., .	35,0	0,7071	68,2
2	MC	<0,0001	3,30	0,0062	26,8	0,8363	43,5	0,8684	73,6
	MO	<0,0001	9,43	0,0062	18,0	,,,,,,	44,9	0,0004	72,3
3	ER (MO/MC)+AB (MO/MC)	0,0001	5,47	0,9896	23,3	0,0027	43,4	0,2452	72,1
	TR (MO/MC)		9,27		23,3		20,4		53,0
4	ER (MO/MC)	<0,0001	1,83	0,0262	29,3	<0,0001	64,6	0,0005	95,8
	AB (MO/MC)	<0,0001	9,10	0,0202	17,2	,	22,2	0,0003	48,5
	ABER (MO/MC)		3,67		23,6		60,1		87,4
5	ABTR (MO/MC)+TRER (MO/MC)	0,0401	7,16	0,4820	20,4	0,0387	49,0	0,0605	76,6
6	ABTR (MO/MC)	<0,0001	10,7	0,0764	15,7	0,0205	45,9	0,0385	72,3
0	TRER (MO/MC)	<0,0001	3,61	0,0764	25,2	0,0203	52,1	0,0385	80,9
7	TR (AC)	-0.0001	0,74	0,4024	28,7	0,7480	18,6	0.2001	48,0
/	TR (MO/MC)	<0,0001	9,27	0,4024	23,3	0,7 100	20,4	0,3891	53,0
0	ER (AC)	0.0625	1,90	0.1645	38,4	0,8838	54,1	0.5740	94,4
8	ER (MO/MC)	0,9635	1,83	0,1645	29,3	0,0050	64,6	0,5749	95,8
	TR (MC)	0.040-	4,69	0.2002	26,5	0,0453	26,9	0.5440	58,1
9	TR (MO)	0,0135	13,9	0,3903	20,1	0,0433	13,8	0,5440	47,8
1.0	ER (MC)	0.6026	1,68	0.4602	32,1	0,5785	78,7	0.7456	112,4
10	ER (MO)	0,6926	1.99	0,4603	26,6	0,5765	50,6	0,7456	79,2
<u> </u>	AB (MC)		3,78		25,8	0,7233	24,6	0.0540	54,2
11	AB (MO)	0,0008	14.4	0,0266	8.64	0,7233	19.8	0,3543	42,8
12	ER (MO/MC)+TR (MO/MC)	0,0689	5,55	0,8034	26,3	0,0184	42,5	0,1972	74,4
	TRER (MO/MC)		3,61		25,2		52,1		80,9
13	AB (MO/MC)+TR (MO/MC)	0,3055	9,19	0,3159	20,3	0,0167	21,3	0,2937	50,7
	ABTR (MO/MC)		10,7		15,7		45,9		72,3
14	AB (MO/MC)+ER (MO/MC)	0,8463	5,47	0,9344	23,3	0,0050	43,4	0,0162	72,1
<u> </u>	ABER (MO/MC)		3,67		23,6		60,1		87,4
L	Tratamientos	<0,0001		0,0209		<0,0001		0,0017	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Al comparar las medias de los aportes totales de Ca de los SAF de los tratamientos bajo MC, versus las medias de los tratamientos bajo MO, no se encontraron diferencias significativas (Contrastes 2, 9, 10 y 11, Cuadro 10). Sin embargo, dentro del estrato herbáceo, se encontró que las medias de los tratamientos bajo MO superaron a las medias de los tratamientos bajo MC (Contrastes 2, 9 y 11, Cuadro 10). En el estrato café, las medias de los aportes de Ca de los tratamientos bajo MC superaron a los aportes en los tratamientos bajo MO (Contrastes 2 y 11, Cuadro 10). En el estrato árboles de sombra, el manejo marcó diferencia únicamente en los tratamientos con roble coral solo; en los cuales, las medias de los tratamientos bajo MC superaron el aporte de Ca frente a los tratamientos bajo MO (Contraste

9, Cuadro 10). En los tratamientos con poró solo, el efecto del manejo no produjo diferencias significativas en el aporte de Ca (Contraste 10, Cuadro 10).

Los aportes totales de Ca para las comparaciones de los tratamientos con leguminosas frente a los tratamientos con roble coral (Contrastes 3 y 5, Cuadro 10) no presentaron diferencias significativas; sin embargo, dentro del estrato herbáceo fueron significativamente menores para las medias de los tratamientos con dos leguminosas (o el asocio de ellas); por el contrario, dentro del estrato arbóreo, fueron significativamente menores las medias de los tratamientos con roble coral (solo o asociado con leguminosas).

Se encontraron mayores aportes totales de Ca en los tratamientos con poró, al compararlo frente a los tratamientos con cashá (Contrastes 4 y 6, Cuadro 10), situación también observada dentro de los estratos café (Contraste 4) y árboles de sombra (Contrastes 4 y 6, Cuadro 10); mientras que en las comparaciones dentro del estrato herbáceo, fueron los tratamientos con cashá quienes superaron los aportes de Ca, frente a los tratamientos con poró (Contrastes 4 y 6, Cuadro 10).

Al contrastar los aportes totales de Ca de los SAF, las medias de dos tratamientos de una sola especie leguminosa, fueron significativamente menores que las medias de los tratamientos de la asociación de ambas leguminosas (Contraste 14, Cuadro 10); similar tendencia se encontró en el estrato arbóreo (Contrastes 12, 13 y 14, Cuadro 10). Los aportes totales de Ca, para las comparaciones de los tratamientos de poró con roble coral y cashá con roble coral no fueron significativas (Contrastes 12 y 13, Cuadro 10).

En general, los tratamientos asociados con poró registraron los más altos valores de aportes totales de Ca (Contrastes 4 y 6, Cuadro 10). Las diferencias significativas en el aporte total de Ca de los SAF, tuvieron alta contribución del estrato árboles de sombra (Contrastes 4 y 6, Cuadro 10). En general, el estrato árboles de sombra aportó en promedio 55,6% del Ca total de los SAF evaluados, el estrato café 35,5% y el estrato vegetación herbácea 8,9% (Anexo 13).

Las concentraciones de Ca (%) en los tejidos de los componentes en los diferentes estratos presentaron variaciones dentro y entre componentes (Cuadro 11). En el estrato vegetación herbácea, las hierbas de buena cobertura presentaron las más altas concentraciones de Ca, seguido por malezas de hoja ancha y gramíneas. Dentro del estrato café, las más altas concentraciones de Ca se registraron dentro del componente hojas, seguido por ramas y troncos. En el estrato arbóreo las más altas concentraciones de Ca se encontraron en el

componente hojas, seguido por ramas delgadas y ramas gruesas en las especies poró y roble coral; en cashá las más altas concentraciones se registraron en el componente ramas delgadas, seguido por ramas gruesas, hojas, frutos y flores. Roble coral fue la especie que presentó las más altas concentraciones de este elemento en sus tejidos (Cuadro 11).

Cuadro 11. Concentración de Ca (%) por componente de los diferentes estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración	Vegeta	ción he	rbácea		Café				AB				ER		1,99 1,77	TR	
Concentracion	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
Promedio	1,14	0,48	1,98	1,20	1,16	0,59	0,85	1,00	0,83	0,35	0,58	1,40	0,81	0,25	1,84	1,14	0,55
Max	1,55	0,59	3,68	1,36	1,27	0,74	1,09	1,14	1,00	0,44	0,74	1,98	0,97	0,33	1,99	1,77	0,82
Min	0,62	0,29	0,65	1,00	0,94	0,45	0,65	0,89	0,61	0,20	0,47	1,00	0,59	0,20	1,68	0,64	0,42

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas; BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

4.7.2 Aporte de magnesio

El análisis global del aporte total de Mg (kg ha⁻¹) en los estratos vegetación herbácea, café, árboles de sombra y aporte total reflejó diferencias significativas entre tratamientos (Cuadro 12). Al comparar las medias de los tratamientos bajo MC y MO frente a las medias de los tratamientos bajo AC, el manejo no marcó diferencias significativas en los aportes totales de Mg de los SAF (Contrastes 1, 7 y 8, Cuadro 12); Sin embargo, dentro del estrato herbáceo las medias de los tratamientos bajo MC y MO superaron significativamente a las medias de los tratamientos bajo AC (Contrastes 1 y 7, Cuadro 12). En el estrato café las medias de los tratamientos bajo AC, superaron significativamente a las medias de los tratamientos bajo MC y MO (Contraste 1, Cuadro 12). Dentro de los tratamientos con poró solo, el manejo no reflejó diferencias en los aportes totales ni en los estratos (Contraste 8, Cuadro 12).

Las comparaciones de aportes totales de Mg de los SAF, para las medias de los tratamientos bajo MC, versus las medias de los tratamientos bajo MO, no presentaron diferencias significativas (Contrastes 2, 9, 10 y 11, Cuadro 12). Sin embargo, en el estrato herbáceo, los aportes medios de Mg en los tratamientos bajo MO superaron significativamente a las medias de los tratamientos bajo MC (Contrastes 2, 9 y 11, Cuadro 12). En el estrato árboles de sombra, las medias de los aportes totales de Mg de los tratamientos con roble coral solo bajo MC superaron los aportes promedios de los tratamientos bajo MO (Contraste 9, Cuadro 12). Dentro de los tratamientos con poró solo, los aportes de Mg no fueron significativos (Contraste 10, Cuadro 12).

Cuadro 12. Promedios de aporte de totales (kg ha⁻¹) de Mg por estrato y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Contractor	Vegetación h	erbácea		Café	Árboles d	e sombra	Aporte	total
	Contrastes	Valor P	Media	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO+MC	-0.0001	2,38	0.0022	3,43	0,0645	7,75	0,2536	13,6
1	AC	<0,0001	0,81	0,0032	5,16	0,0645	9,62	0,2536	15,6
2	MC	0.0120	1,65	0,0733	3,88	0.2010	8,33	0,4547	13,9
2	MO	0,0130	3,12	0,0733	2,99	0,3019	7,17	0,4547	13,3
	ER (MO/MC)+AB		2.04		2 77		0.21		15,0
3	(MO/MC)	0,0005	2,04	0,4705	3,77	0,0003	9,21	0,0130	13,0
	TR (MO/MC)		3,81		3,24		2,10		9,15
4	ER (MO/MC)	<0,0001	0,86	0,0013	5,24	<0,0001	16,1	<0,0001	22,2
4	AB (MO/MC)	<0,0001	3,22	0,0013	2,29	<0,0001	2,32	<0,0001	7,83
	ABER (MO/MC)		1,21		3,45		10,9		15,5
5	ABTR	0,0074		0,7122		0,1054		0,1348	
3	(MO/MC)+TRER	0,0074	2,60	0,7122	3,19	0,1034	7,56	0,1346	13,3
	(MO/MC)								
6	ABTR (MO/MC)	<0,0001	3,95	0,0294	2,24	0,0192	5,16	0,0222	11,3
U	TRER (MO/MC)	<0,0001	1,25	0,0294	4,14	0,0192	9,96	0,0222	15,4
7	TR (AC)	<0,0001	0,45	0,2850	4,35	0,5929	2,45	0,0924	7,25
/	TR (MO/MC)	<0,0001	3,81	0,2830	3,24	0,3929	2,10	0,0924	9,15
8	ER (AC)	0,6536	0,88	0,2025	6,57	0,5478	15,9	0,3078	23,3
0	ER (MO/MC)	0,0550	0,86	0,2023	5,24	0,5478	16,1	0,5078	22,2
9	TR (MC)	0,0095	2,03	0,7626	3,42	0,0343	2,93	0,3610	8,4
,	TR (MO)	0,0093	5,59	0,7020	3,06	0,0343	1,27	0,3010	9,9
10	ER (MC)	0,1448	1,04	0,8164	5,38	0,5629	19,0	0,6876	25,4
10	ER (MO)	0,1446	0,68	0,6104	5,11	0,3029	13,2	0,0870	19,0
11	AB (MC)	0,0351	2,10	0,1104	3,25	0,4881	2,64	0,9541	7,99
11	AB (MO)	0,0351	4,34	0,1104	1,32	0,4001	2,00	0,9341	7,66
	ER (MO/MC)+TR		2,33		4,24		9,10		15,7
12	(MO/MC)	0,0182	2,33	0,8839	4,24	0,0661	9,10	0,2749	13,7
	TRER (MO/MC)		1,25		4,14		9,96		15,4
	AB (MO/MC)+TR		3,51		2,76		2,21	_	8,49
13	(MO/MC)	0,3299	3,31	0,4691	2,76	0,0048	2,21	0,0263	8,49
	ABTR (MO/MC)		3,95		2,24		5,16		11,3
	AB (MO/MC)+ER		2,04		3,77		9,21	_	15,0
14	(MO/MC)	0,1019	2,04	0,6678	3,//	0,0445	9,21	0,0621	13,0
	ABER (MO/MC)		1,21		3,45		10,9		15,5
	Tratamientos	<0,0001		0,0052	•	<0,0001	·	<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: *Erythrina poeppigiana* (poró), AB: *Chloroleucon eurycyclum* (*Abarema idiopota*, cashá), TR: *Terminalia amazonia* (roble coral). Valores resaltados en **negrilla** indican significancia (P<0.05).

El aporte total de Mg de los SAF fue significativamente mayor en los tratamientos con leguminosas al compararlas con roble coral, presentándose la misma tendencia en las comparaciones dentro del estrato arbóreo (Contraste 3, Cuadro 12); mientras que en el estrato herbáceo fueron significativamente mayores los aportes de Mg en los tratamientos con roble coral (Contrastes 3 y 5, Cuadro 12). Al comparar el aporte total de Mg del asocio de las leguminosas, frente al promedio con roble coral asociado con leguminosas no se encontró diferencias significativas (Contraste 5, Cuadro 12).

Al comparar los aportes totales de Mg, tanto a nivel de SAF como dentro de los estratos café y árboles de sombra, las medias de los tratamientos con poró, superaron significativamente a las medias de los tratamientos con cashá (Contrastes 4 y 6, Cuadro 12);

mientras que en el estrato herbáceo, las medias de los tratamientos con cashá superaron a las medias de los tratamientos con poró (Contrastes 4 y 6, Cuadro 12).

Los aportes totales de Mg de las medias de dos tratamientos de una especie, fueron significativamente menores que las medias de la asociación de ambas especies (Contraste 13, Cuadro 12); tendencia observada también dentro del estrato arbóreo (Contrastes 13 y 14, Cuadro 12); mientras que en el estrato herbáceo, fue significativamente mayor el aporte promedio de los tratamientos de una sola especie (Contraste 12, Cuadro 12). Las comparaciones de aporte total de Mg de los tratamientos de poró con roble coral y cashá con poró no fueron significativas (Contrastes 12 y 14, Cuadro 12).

En general, los tratamientos asociados con poró registraron los más altos valores de aportes totales de Mg (Contrastes 3, 4 y 6, Cuadro 12). Las diferencias significativas entre tratamientos para el aporte total de Mg tuvieron alta contribución del estrato árboles de sombra (Contrastes 3, 4, 6 y 13, Cuadro 12). El estrato arbóreo aportó en promedio 51,6% del Mg total de los SAF; el estrato café contribuyó con 29,2% y el estrato vegetación herbácea con 19,2% del total (Anexo 14).

Las concentraciones de Mg (%) en los tejidos fueron similares dentro de cada uno de los componentes de los estratos, pero diferentes entre los componentes (Cuadro 13). En el estrato vegetación herbácea, el componente hierbas de buena cobertura presentó las más altas concentraciones de Mg, seguido por malezas de hoja ancha y gramíneas. En el estrato café, fue el componente hojas quien presentó las más altas concentraciones de Mg, seguido por ramas y troncos. En el estrato árboles de sombra, en general fue el componente hojas quien presentó las más altas concentraciones de Mg, seguido por ramas delgadas y ramas gruesas, exceptuando cashá, en el cual, flores y frutos precedieron a hojas, dejando por último a ramas delgadas y gruesas (Cuadro 13).

Cuadro 13. Concentración de Mg (%) por componente de los diferentes estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración	Vegetación herbácea			Café			AB					ER			TR		
Concentracion	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
Promedio	0,41	0,40	0,50	0,35	0,16	0,07	0,26	0,07	0,05	0,17	0,12	0,29	0,20	0,09	0,21	0,14	0,08
Max	0,47	0,48	0,72	0,42	0,18	0,08	0,28	0,08	0,07	0,22	0,13	0,36	0,30	0,15	0,23	0,17	0,10
Min	0,33	0,33	0,21	0,30	0,13	0,06	0,23	0,06	0,04	0,13	0,09	0,23	0,14	0,07	0,17	0,11	0,07

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas; BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

4.7.3 Aporte de potasio

El análisis global del aporte total de K (kg ha⁻¹) en los estratos vegetación herbácea, café, árboles de sombra y aporte total, reflejó diferencias significativas entre tratamientos para todos los estratos evaluados (Cuadro 14). El efecto del manejo fue significativo únicamente para las comparaciones con roble coral (solo), en los cuales los aportes totales de K de los SAF fueron significativamente mayores en los tratamientos bajo MC y MO frente a las medias de los tratamientos bajo AC (Contraste 7, Cuadro 14). Esta tendencia también fue observada para las comparaciones dentro del estrato herbáceo (Contrastes 1 y 7, Cuadro 14). El estrato café presentó diferencias significativamente mayores en los tratamientos bajo AC, frente a los tratamientos bajo MO y MC (Contraste 1). Las comparaciones en los tratamientos con poró (solo) no tuvieron efecto del manejo en el aporte total ni en los estratos (Contraste 8, Cuadro 14).

Los aportes totales de K de las medias de los tratamientos bajo MO, fueron significativamente mayores que las medias de los tratamientos bajo MC (Contrastes 2 y 9, Cuadro 14), tendencia también encontrada en el estrato vegetación herbácea (Contraste 2, Cuadro 14). Las comparaciones entre los tratamientos con las especies cashá y poró (solos) no tuvieron efecto significativo del manejo en los estratos ni en el aporte total (Contrastes 10 y 11, Cuadro 14).

Fueron significativamente mayores los aportes totales de K en los SAF de los tratamientos con leguminosas frente a los tratamientos con roble coral (Contraste 3, Cuadro 14); tendencia observada también en las comparaciones dentro del estrato arbóreo; mientras que en el estrato herbáceo, fueron los tratamientos con roble coral quienes superaron los aportes de K (Contrastes 3 y 5, Cuadro 14). No se encontraron diferencias significativas para el aporte total de K, al comparar el asocio de las dos leguminosas, frente al promedio de las leguminosas asociadas con roble coral (Contraste 5, Cuadro 14).

Las medias de los aportes totales de K de los tratamientos con poró, superaron significativamente a las medias de los tratamientos con cashá (Contrastes 4 y 6, Cuadro 14); tendencia similar se encontró en los estratos árboles de sombra (Contrastes 4 y 6, Cuadro 14) y café (Contraste 4, Cuadro 14); mientras que en el estrato herbáceo, fueron significativamente mayores los aportes de los tratamientos con cashá (Contrastes 4 y 6, Cuadro 14).

Cuadro 14. Promedios de aporte de totales (kg ha⁻¹) de K por estrato y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Control	Vegetación h	erbácea		Café	Árboles d	e sombra	Aporte	total
	Contrastes	Valor P	Media	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO+MC	<0,0001	19,5	0,0029	24,8	0,9013	60,0	0,9535	104
1	AC	<0,0001	5,70	0,0029	37,0	0,9013	63,0	0,9333	106
2	MC	0,0076	13,2	0,1465	27,3	0,8245	57,1	0,0164	98
	MO	0,0076	25,9	0,1403	22,3	0,6243	62,9	0,0104	111
3	ER (MO/MC)+AB (MO/MC)	0,0002	14,9	0,7127	26,1	<0,0001	73,1	0,0185	114
	TR (MO/MC)		35,0		24,2		10,0		69,3
4	ER (MO/MC)	<0,0001	6,65	0,0028	35,6	<0,0001	128	<0,0001	170
	AB (MO/MC)	-0,0001	23,2	0,0020	16,5	0,0001	18,0	-0,0001	57,7
	ABER (MO/MC)		9,03		27,4	_	75,7		112
5	ABTR (MO/MC)+TRER (MO/MC)	0,0248	21,6	0,3446	22,5	0,4399	64,1	0,3514	108
6	ABTR (MO/MC)	<0,0001	33,7	0,0506	16,6	0,0003	35,1	0.0025	85,3
0	TRER (MO/MC)	<0,0001	9,52	0,0306	28,5	0,0003	93,2	0,0035	131
7	TR (AC)	<0,0001	3,39	0,1250	35,5	0,8753	10,8	0,0223	49,7
/	TR (MO/MC)	<0,0001	35,0	0,1230	24,2	0,8733	10,0	0,0223	69,3
8	ER (AC)	>0.9999	6,11	0,1751	45,5	0,7539	120	0,2435	171
0	ER (MO/MC)	~0,9999	6,65	0,1/31	35,6	0,/339	128	0,2433	170
9	TR (MC)	0.0527	18,7	0.6712	26,0	0.1111	13,8	0.0220	58,5
9	TR (MO)	0,0527	51,4	0,6712	22,4	0,1111	6,3	0,0320	80,1
10	ER (MC)	0,6983	7,46	0,9134	35,2	>0,9999	141	0,8983	183
10	ER (MO)	0,0983	5,85	0,9134	36,1	~0,9999	116	0,8983	158
11	AB (MC)	0,0783	16,1	0,1735	22,3	0.5070	20,8	0,7495	59,3
11	AB (MO)	0,0783	30,2	0,1/33	10,8	0,5878	15,2	0,7495	56,2
12	ER (MO/MC)+TR (MO/MC)	0,0048	20,8	0,7743	29,9	0,0006	69,1	0,0649	120
	TRER (MO/MC)		9,52		28,5		93,2		131
13	AB (MO/MC)+TR (MO/MC)	0,5108	29,1	0,4550	20,4	0,0023	14,0	0,0106	63,5
	ABTR (MO/MC)		33,7		16,6		35,1		85,3
14	AB (MO/MC)+ER (MO/MC)	0,1613	14,9	0,8030	26,1	0,2497	73,1	0,0523	114
	ABER (MO/MC)		9,03		27,4		75,7		112
	Tratamientos	<0,0001		0,0118		<0,0001		<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05)

Los aportes totales de K del promedio de dos tratamientos de una sola especie fueron significativamente menores que las medias de los tratamientos de la asociación de ambas (Contraste 13), tendencia también encontrada en el estrato arbóreo (Contrastes 12 y 13, Cuadro 14). En el estrato herbáceo, los aportes del promedio de los tratamientos fueron mayores a los aportes de la asociación de las especies (Contraste 12, Cuadro 14). Las comparaciones del aporte total de K de los tratamientos de poró con roble coral y cashá con poró no reflejaron diferencias significativas (Contrastes 12 y 14, Cuadro 14).

En general, los tratamientos asociados con poró registraron los más altos valores de aporte total de K (Contrastes 3, 4 y 6, Cuadro 14). Las diferencias significativas entre tratamientos para el aporte total de K, tuvieron alta contribución del estrato árboles de sombra

(Contrastes 3, 4, 6 y 13, Cuadro 14). El estrato arbóreo, aportó en promedio con 50% del K total de los SAF; el estrato café contribuyó con 29,3% y el estrato vegetación herbácea con 20,7% del total (Anexo 15).

Las concentraciones de K (%) en los tejidos fueron similares dentro de cada uno de los componentes de los estratos evaluados, pero diferentes entre los componentes (Cuadro 15). En el estrato vegetación herbácea, el componente hierbas de buena cobertura presentó las más altas concentraciones de K, seguido por gramíneas y malezas de hoja ancha. En el estrato café, fue el componente hojas quien presentó las más altas concentraciones de K, seguido por ramas y troncos. En el estrato árboles de sombra, se encontró que en cashá fue el componente hojas quien presentó las más altas concentraciones de K, seguido por flores, ramas delgadas, frutos y ramas gruesas. En poró fue el componente ramas delgadas quien, en general presentó las mayores concentraciones de K, seguida por hojas y ramas gruesas. En roble coral fue ramas gruesas el componente con mayor concentración de K, seguido por los componentes ramas delgadas y hojas. En general, dentro del estrato arbóreo, la mayor concentración de K se encontró en poró (Cuadro 15).

Cuadro 15. Concentración de K (%) por componente de los diferentes estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración	Vegetación herbácea			Café			AB					ER			TR		
Concentracion	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
Promedio	2,99	3,72	4,12	2,36	1,05	0,64	1,21	0,81	0,58	1,28	0,70	1,51	1,82	1,04	0,64	0,67	0,69
Max	3,84	4,88	5,69	2,56	1,22	0,75	1,28	0,90	0,68	1,93	0,97	1,80	2,24	1,28	0,73	0,81	0,77
Min	2,43	3,02	1,82	2,17	0,77	0,48	1,12	0,75	0,50	0,67	0,45	1,18	1,32	0,78	0,57	0,57	0,57

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas; BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos

4.7.4 Aporte de fósforo

El análisis global del aporte total de P (kg ha⁻¹) por estrato, reflejó diferencias significativas entre tratamientos para los estratos vegetación herbácea y árboles de sombra, al igual que para el aporte total de los SAF evaluados, no así en el estrato café (P=0,0797) (Cuadro 16). Al comparar las medias de los tratamientos bajo MC y MO, frente a las medias de los tratamientos bajo AC, el manejo no marcó diferencias significativas en los aportes totales de P de los SAF (Contrastes 1, 7 y 8, Cuadro 16). En las comparaciones dentro del estrato vegetación herbácea, fueron mayores las medias de los aportes de los tratamientos bajo MO y MC, frente a las medias de los tratamientos bajo AC (Contrastes 1 y 7, Cuadro 16).

Los aportes totales de P de las medias de los tratamientos bajo MO frente a las medias de los tratamientos bajo MC no reflejaron diferencias significativas (Contrastes 2, 9, 10 y 11, Cuadro 16); sin embargo, en el estrato vegetación herbácea se encontró mayor aporte de P en los tratamientos bajo MO, frente a las medias de los tratamientos bajo MC (Contrastes 2 y 11, Cuadro 16).

Cuadro 16. Promedios de aporte de totales (kg ha⁻¹) de P por estrato y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Contractor	Vegetación h	erbácea		Café	Árboles d	e sombra	Aporte	total
	Contrastes	Valor P	Media	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO+MC	-0.0001	1,87		2,44	0.6212	10,5	0.5200	14,8
1	AC	<0,0001	0,49	ns	3,63	0,6212	10,0	0,5399	14,2
2	MC	0.0017	1,23		2,64	0.4774	9,85	0.0692	13,7
2	MO	0,0017	2,51	ns	2,25	0,4774	11,1	0,0683	15,9
3	ER (MO/MC)+AB (MO/MC)	0,0003	1,48	ns	2,46	<0,0001	12,6	0,0003	16,5
	TR (MO/MC)	,	3,14		2,86	,	1,86	,	7,86
_	ER (MO/MC)	0.0004	0,54		2,92	0.0004	20,7	0.0001	24,1
4	AB (MO/MC)	<0,0001	2,42	ns	2,00	<0,0001	4,48	<0,0001	8,9
	ABER (MO/MC)		0,85		2,50		12,6		16,0
5	ABTR (MO/MC)+TRER (MO/MC)	0,0149	2,14	ns	2,19	0,4335	11,6	0,5079	15,9
	ABTR (MO/MC)	0.0004	3,41		1,62		7,83	0.0141	12,9
6	TRER (MO/MC)	<0,0001	0,86	ns	2,77	0,0055	15,4	0,0121	19,0
_	TR (AC)	.0.001	0,24		4,09	0.5225	1,51	0.1612	5,84
7	TR (MO/MC)	<0,0001	3,14	ns	2,86	0,5325	1,86	0,1612	7,86
8	ER (AC)	0.0226	0,59		3,77	0.7909	19,3	0,5826	23,7
8	ER (MO/MC)	0,8326	0,54	ns	2,92	0,7808	20,7	0,3826	24,1
9	TR (MC)	0,0128	1,66	***	3,02	0,4715	2,31	0,2668	6,99
9	TR (MO)	0,0128	4,63	ns	2,69	0,4/13	1,40	0,2008	8,7
10	ER (MC)	0,2770	0,64	***	2,72	>0,9999	22,3	0,9552	25,7
10	ER (MO)	0,2770	0,44	ns	3,12	<i>></i> 0,9999	19,0	0,9332	22,6
11	AB (MC)	0,0409	1,65	ns	2,65	0,4358	5,31	0,4344	9,6
11	AB (MO)	0,0409	3,19	115	1,35	0,4336	3,65	0,4344	8,2
12	ER (MO/MC)+TR (MO/MC)	0,0067	1,84	ns	2,89	0,0036	11,3	0,0197	16,0
12	TRER (MO/MC)	0,0007	0,86	115	2,77	0,0030	15,4	0,0197	19,0
	AB (MO/MC)+TR		0,80		2,11		13,4		19,0
13	(MO/MC)	0,3000	2,78	ns	2,43	0,0056	3,17	0,0151	8,4
	ABTR (MO/MC)		3,41		1,62		7,8		12,9
14	AB (MO/MC)+ER (MO/MC)	0,1587	1,48	ns	2,46	0,3661	12,6	0,2667	16,5
	ABER (MO/MC)	,	0,85		2,50		12,6	,	16,0
	Tratamientos	<0,0001	*	0,0797	,	<0,0001	ŕ	<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Fueron significativamente mayores los aportes totales de P en los SAF de los tratamientos con leguminosas frente a los tratamientos con roble coral; tendencia similar encontrada en el estrato arbóreo (Contraste 3, Cuadro 16); mientras que en el estrato herbáceo, fueron los tratamientos con roble coral quienes presentaron mayores valores (Contrastes 3 y 5, Cuadro 16). Las comparaciones para el aporte total de P de la asociación de dos leguminosas,

frente al promedio de la asociación de las leguminosas con roble coral no fueron significativas (Contraste 5, Cuadro 16).

Al comparar los aportes totales de P, las medias de los tratamientos con poró, superaron significativamente a las medias de los tratamientos con cashá; tendencia que se observó también en el estrato árboles de sombra; mientras que en el estrato herbáceo fueron significativamente mayores los aportes de los tratamientos con cashá (Contrastes 4 y 6, Cuadro 16).

Los aportes totales de P del promedio de dos tratamientos de una sola especie, fueron significativamente menores que las medias de los tratamientos de la asociación de ambas; similar condición se encontró dentro del estrato arbóreo (Contrastes 12 y 13, Cuadro 16); mientras que en el estrato herbáceo, fueron los aportes del promedio de dos tratamientos quienes superaron los aportes medios de los tratamientos en asocio (Contraste 12, Cuadro 16). Bajo estas condiciones, las comparaciones de cashá con poró no fueron significativas (Contraste 14, Cuadro 16).

En general, los tratamientos asociados con poró registraron los más altos aportes totales de P (Contrastes 3, 4 y 6, Cuadro 16). Las diferencias significativas entre tratamientos para el aporte total de P tuvieron alta contribución del estrato árboles de sombra (Contrastes 3, 4, 6, 12 y 13, Cuadro 16). El estrato arbóreo aportó, en promedio, con 62,3% del P total del SAF, el estrato café 23% y el estrato vegetación herbácea 14,7% del total (Anexo 16).

Las concentraciones de P (%) en los tejidos fueron similares dentro de cada uno de los componentes de los estratos evaluados, pero diferentes entre los componentes (Cuadro 17). En el estrato vegetación herbácea, el componente hierbas de buena cobertura presentó las más altas concentraciones de P, seguido por gramíneas y malezas de hoja ancha. En el estrato café, fue el componente hojas quien presentó las más altas concentraciones de P, seguido por ramas y troncos. En el estrato árboles de sombra, se encontró que en cashá fue el componente flores quien presentó las más altas concentraciones de P, seguido por hojas, ramas delgadas, ramas gruesas y frutos. En poró y roble coral fue el componente hojas quien en general presentó las mayores concentraciones de P, seguido por ramas delgadas y ramas gruesas. En general, la mayor concentración de P se encontró en poró (Cuadro 17).

Cuadro 17. Concentración de P (%) por componente de los diferentes estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración	Vegetación herbácea			Café			AB					ER			TR		
Concentracion	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
Promedio	0,29	0,30	0,35	0,18	0,10	0,08	0,19	0,19	0,14	0,28	0,17	0,32	0,25	0,13	0,17	0,13	0,11
Max	0,40	0,37	0,44	0,21	0,14	0,11	0,22	0,21	0,17	0,43	0,20	0,37	0,33	0,17	0,20	0,17	0,13
Min	0,19	0,22	0,23	0,15	0,07	0,06	0,18	0,15	0,12	0,22	0,12	0,30	0,16	0,09	0,12	0,07	0,07

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas; BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos

4.7.5 Aporte de nitrógeno

El análisis global del aporte total de N (kg ha⁻¹), reflejó diferencias significativas entre tratamientos para los estratos vegetación herbácea, café, árboles de sombra y aporte total de los SAF evaluados (Cuadro 18).

Al comparar las medias de los tratamientos bajo MC y MO, frente a las medias de los tratamientos bajo AC, el manejo no marcó diferencias significativas en los aportes totales de N de los SAF (Contrastes 1, 7 y 8, Cuadro 18). En el estrato vegetación herbácea, se encontró mayores aportes en los tratamientos bajo MO y MC frente a los tratamientos bajo AC (Contrastes 1 y 7, Cuadro 18). Dentro del estrato café, las comparaciones de las medias de los tratamientos bajo AC, fueron significativamente mayores frente a las medias de los tratamientos bajo MO y MC (Contraste 1, Cuadro 18). El manejo no marcó diferencias significativas en los aportes para las comparaciones en los tratamientos con poró (solo) (Contraste 8, Cuadro 18).

La comparación de los aportes totales de N de las medias de los tratamientos bajo MO, frente a las medias de los tratamientos bajo MC, no fue significativa (Contrastes 2, 9, 10 y 11, Cuadro 18); sin embargo, en las comparaciones dentro del estrato herbáceo, las medias de los tratamientos bajo MO superaron significativamente a las medias de los tratamientos bajo MC (Contraste 2, Cuadro 18). El manejo no marcó diferencias significativas en los aportes de N para las comparaciones dentro de las especies roble coral, poró y cashá (Contrastes 9, 10 y 11, Cuadro 18).

Cuadro 18. Promedios de aporte de totales (kg ha⁻¹) de N por estrato y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Control	Vegetación h	erbácea		Café	Árboles d	e sombra	Aporte	total
	Contrastes	Valor P	Media	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO+MC	<0,0001	16,5	0,0039	38,0	0,5445	121	0,4483	176
1	AC	<0,0001	6,62	0,0039	56,6	0,3443	134	0,4483	197
2	MC	0,0280	11,8	0,1033	42,5	0,8208	125	0,7679	179
	MO	0,0280	21,2	0,1033	33,6	0,8208	118	0,7079	173
	ER (MO/MC)+AB		13,9		40,5		147		201
3	(MO/MC)	0,0010		0,5470		<0,0001		<0,0001	
	TR (MO/MC)		25,7		35,7		15,5		76,9
4	ER (MO/MC)	<0,0001	7,23	0.0019	56,2	<0,0001	236	<0.0001	299
-	AB (MO/MC)	<0,0001	20,5	0,0019	24,8	<0,0001	58,4	~0,0001	104
	ABER (MO/MC)		9,23		40,5		168		218
5	ABTR	0,0168		0,5369		0,0854		0,1099	
,	(MO/MC)+TRER	0,0100	18,2	0,3307	35,5	0,0654	125	0,1077	178
	(MO/MC)								
6	ABTR (MO/MC)	<0.0001	26,4	0,0383	25,5	0,0489	98,3	0.0483	150
	TRER (MO/MC)	<0,0001	10,1	0,0303	45,5	0,0407	151	0,0403	206
7	TR (AC)	<0,0001	3,72	0,1032	54,5	0,8476	17,6	0,7972	75,9
	TR (MO/MC)	<0,0001	25,7	0,1032	35,7	0,0470	15,5	0,7772	76,9
8	ER (AC)	0.8069	7,78	0,3778	66,3	0,3248	254	0,2937	328
0	ER (MO/MC)	0,8009	7,23	0,3776	56,2	0,3246	236	0,2937	299
9	TR (MC)	0.0688	14,9	0,9385	36,2	0,3779	21,0	0,5788	72,1
	TR (MO)	0,0000	36,5	0,7363	35,2	0,3777	10,0	0,5766	81,6
10	ER (MC)	0,2103	8,50	0,5375	60,2	0,6182	281	0,6172	349
10	ER (MO)	0,2103	5,97	0,3373	52,2	0,0162	191	0,0172	249
11	AB (MC)	0,0608	14,2	0,1618	34,1	0,6980	65,9	0,3765	114
11	AB (MO)	0,0008	26,8	0,1016	15,5	0,0980	50,8	0,3703	93,1
	ER (MO/MC)+TR		16,5		45,9		126		188
12	(MO/MC)	0,0330	· ·	0,9525		0,0189	-	0,0380	
	TRER (MO/MC)		10,1		45,5		151		206
	AB (MO/MC)+TR		23,1		30,2		36,9		90,3
13	(MO/MC)	0,5382		0,5612		0,0064	· · ·	0,0074	
	ABTR (MO/MC)		26,4		25,5		98,3		150
	AB (MO/MC)+ER		13,9		40,5		147		201
14	(MO/MC)	0,1396		0,9971		0,1018		0,1053	
	ABER (MO/MC)		9,23		40,5		168		218
	Tratamientos	<0,0001		0,0136		<0,0001		<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Los aportes totales de N de los SAF de los tratamientos con leguminosas, fueron significativamente mayores que los tratamientos con roble coral, tendencia también observada en el estrato arbóreo (Contraste 3, Cuadro 18); mientras que en el estrato herbáceo fueron significativamente mayores los aportes de N en los tratamientos con roble coral (Contrastes 3 y 5, Cuadro 18). Los aportes totales de N, no fueron significativos para las comparaciones de la asociación de las leguminosas frente al promedio de las leguminosas asociadas con roble coral (Contraste 5, Cuadro 18).

Al comparar los aportes totales de N, las medias de los tratamientos con poró superaron significativamente a las medias de los tratamientos con cashá (Contrastes 4 y 6, Cuadro 18), tendencia que se mantuvo para los estratos café y árboles de sombra; mientras que

en el estrato herbáceo, los aportes mayores se encontraron en los tratamientos con cashá (Contrastes 4 y 6, Cuadro 18).

Los aportes totales de N del promedio de dos tratamientos de una sola especie fueron menores que las medias de los tratamientos de la asociación de ambas, tendencia encontrada también dentro del estrato arbóreo (Contrastes 12 y 13, Cuadro 18). En el estrato herbáceo, los aportes de N fueron significativamente mayores en el promedio de los tratamientos de una sola especie (Contraste 12, Cuadro 18). El aporte total de N en las comparaciones de cashá con poró no tuvo diferencias significativas (Contraste 14, Cuadro 18).

En general, los tratamientos asociados con poró registraron los más altos aportes totales de N (Contrastes 3, 4 y 6, Cuadro 18). Las diferencias significativas entre tratamientos para el aporte total de N, tuvieron alta contribución del estrato árboles de sombra (Contrastes 3, 4, 6, 12 y 13, Cuadro 18). El estrato arbóreo aportó en promedio el 60,5% del N total de los SAF; el estrato café 27,8% y el estrato vegetación herbácea 11,7% del total (Anexo 17).

Las concentraciones de N (%) en los tejidos fueron similares dentro de cada uno de los componentes de los estratos evaluados, pero diferentes entre los componentes (Cuadro 19). En el estrato vegetación herbácea, el componente hierbas de buena cobertura presentó las más altas concentraciones de N, seguido por malezas de hoja ancha y gramíneas. En el estrato café, fue el componente hojas quien presentó las más altas concentraciones de N, seguido por ramas y troncos. En el estrato árboles de sombra, se encontró que en cashá fue el componente hojas quien presentó las más altas concentraciones de N, seguido por flores, frutos, ramas delgadas y ramas gruesas. En poró y roble coral fue el componente hojas quien en general presentó las mayores concentraciones de N, seguido por ramas delgadas y ramas gruesas. En general, la mayor concentración de N se encontró en cashá (Cuadro 19).

Cuadro 19. Concentración de N (%) por componente de los diferentes estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración	Vegetación herbácea			Café			AB					ER			TR		
Concentración	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
Promedio	3,40	2,76	3,34	3,34	1,72	0,93	5,24	2,07	1,64	5,21	4,53	5,21	1,63	0,94	1,77	0,64	0,43
Max	3,95	3,55	4,46	3,55	1,95	1,07	5,59	2,33	1,86	6,39	5,06	5,47	1,80	1,02	1,82	0,84	0,46
Min	2,61	2,27	2,02	3,19	1,44	0,75	4,94	1,72	1,30	4,12	3,98	4,84	1,36	0,80	1,69	0,50	0,39

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas; BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

4.8 Aporte de nutrientes de la biomasa de vegetación herbácea y de residuos de poda de los estratos café, árboles de sombra y hojarasca

4.8.1 Aporte de calcio

El análisis global del aporte total de Ca (kg ha⁻¹) en los estratos vegetación herbácea, café, árboles de sombra, en la hojarasca y en el aporte total, reflejó diferencias significativas entre tratamientos (Cuadro 20). A nivel de manejo, los aportes totales de Ca de los SAF evaluados, reflejaron diferencias significativas mayores para las comparaciones de medias de los tratamientos bajo MO frente a las medias de los tratamientos bajo AC (Contraste 1, Cuadro 20). No hubo efecto del manejo en estas comparaciones dentro de las especies roble coral y poró (Contrastes 6 y 7, Cuadro 20). Sin embargo se notó efecto de manejo dentro de los estratos café (Contraste 1, Cuadro 20), vegetación herbácea (Contrastes 1 y 6, Cuadro 20) y en el aporte de hojarasca (Contrastes 1 y 7, Cuadro 20); en los dos últimos, el promedio de los tratamientos bajo MO superaron significativamente a las medias de los tratamientos bajo AC. En el estrato café las medias de los tratamientos bajo MO (Cuadro 20).

Los aportes totales de Ca para las comparaciones de los tratamientos con leguminosas frente a los tratamientos con roble coral no fueron significativos (Contrastes 2 y 4, Cuadro 20); sin embargo, en el estrato árboles de sombra el aporte de Ca fue significativamente mayor en los tratamientos con leguminosas (Contraste 2, Cuadro 20); mientras que en el estrato herbáceo, el aporte de Ca fue significativamente mayor en los tratamientos con roble coral (Contrastes 2 y 4, Cuadro 20).

Los aportes totales de Ca de los SAF de los tratamientos con poró fueron significativamente mayores que los tratamientos con cashá; tendencia también observada en el aporte de hojarasca (Contrastes 3 y 5, Cuadro 20) y en los estratos árboles de sombra y café (Contraste 3, Cuadro 20); mientras que en el estrato herbáceo, fueron significativamente mayores las medias de los tratamientos con cashá (Contrastes 3 y 5, Cuadro 20).

Cuadro 20. Promedios de aportes totales (kg ha⁻¹) de Ca por estrato y hojarasca y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Contrastes	Vegetación	herbácea	Ca	ıfé	Árboles d	e sombra	Hojai	asca	Aporto	e total
	Contrastes	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO	<0.0001	9,43	0,0026	18,0	0,2492	44,9	<0,0001	109	0,0406	182
1	AC	<0,0001	1,58	0,0020	31,7	0,2492	35,0	<0,0001	68,7	0,0400	137
	AB (MO) +		8,20		17,6		35,2		105		166
2	ER (MO)	0,0187	0,20	0,7099	17,0	0,0026	33,2	0,4000	103	0,9304	100
	TR (MO)		13,9		20,1		13,8		97,6		145
3	AB (MO)	0,0001	14,4	0,0326	8,6	0,0054	19,8	<0,0001	62,7	0,0005	106
3	ER (MO)	0,0001	1,99	0,0320	26,6	0,0034	50,6	~0,0001	148	0,0003	227
	ABER (MO)		5,09		21,5		59,3		121		207
4	ABTR	0,0211		0,3775		0,4373		0,4034		0,6322	
7	(MO)+TRER	0,0211	10,6	0,3773	15,5	0,4373	63,0	0,4054	113	0,0322	202
	(MO)										
5	ABTR (MO)	0,0012	15,5	0,1457	9,6	0,1866	67,6	<0,0001	66,2	0,0062	159
3	TRER (MO)	0,0012	5,69	0,1437	21,4	0,1000	58,3	~0,0001	160	0,0002	245
6	TR (AC)	0,0001	0,74	0,2805	28,7	0,2860	18,6	0,5683	91,5	0,7059	140
0	TR (MO)	0,0001	13,9	0,2803	20,1	0,2800	13,8	0,3083	97,6	0,7039	145
7	ER (AC)	0,9742	1,90	0,1446	38,4	0,8563	54,1	<0.0001	59,0	0,0838	153
'	ER (MO)	0,9742	1,99	0,1440	26,6	0,8303	50,6	<0,0001	148	0,0838	227
	TRER (MO)		5,69		21,4		58,3		160		245
8	TR (MO) +	0,3177	7.02	0,7669	22.4	0,0026	22.2	0,0008	100	0,0746	106
	ER (MO)		7,92		23,4		32,2		123		186
	Tratamientos	<0,0001		0,0301		0,0002		<0,0001		0,0026	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05)

La comparación de los aportes totales de Ca de los SAF de las medias de dos tratamientos de una sola especie frente a las medias de los tratamientos de la asociación de ambas no fue significativa (Contraste 8, Cuadro 20); sin embargo, dentro del estrato arbóreo y en el aporte de la hojarasca, fueron significativamente mayores las medias de los tratamientos en asocio (Contraste 8, Cuadro 20).

En general, los tratamientos asociados con poró registraron los más altos valores de aportes totales de Ca (Contrastes 3 y 5, Cuadro 20). Las diferencias significativas encontradas en el aporte total de Ca de los SAF tuvieron alta contribución de la hojarasca (Contrastes 1, 3 y 5, Cuadro 20). El aporte de hojarasca representó el 56,5% del Ca total de los SAF; el estrato árboles de sombra aportó en promedio el 24,6 %, el estrato café 14,2 % y el estrato vegetación herbácea 4,70 % (Anexo 8).

En general, las concentraciones de Ca (%) de los tejidos analizados en la biomasa de hojarasca (Cuadros 21), fueron ligeramente mayores al ser comparados con sus homólogos en los residuos de poda (Cuadro 11), manteniéndose las tendencias encontradas en las concentraciones de las especies en pie.

Cuadro 21. Concentración de Ca (%) en hojarasca en los diferentes componentes de los estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración		Ca	ıfé			Cas	shá			Po	ró		Roble	coral
Concentración	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
Promedio	1,76	1,27	0,64	0,32	1,51	2,42	0,51	0,58	2,65	1,72	0,74	0,35	2,50	1,61
Max	2,14	1,44	0,82	0,43	1,58	2,42	0,54	0,69	3,07	2,41	0,74	0,35	2,64	1,86
Min	1.46	0.89	0.41	0.26	1.41	2.42	0.46	0.51	2.06	1.08	0.74	0.35	2.35	1.20

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas, BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

4.8.2 Aporte de magnesio

El análisis global del aporte total de Mg (kg ha⁻¹) en los estratos vegetación herbácea, café, árboles de sombra, hojarasca y aporte total, reflejó diferencias significativas entre tratamientos (Cuadro 22). Al comparar las medias de los tratamientos bajo MO, frente a las medias de los tratamientos bajo AC, el manejo no marcó diferencias significativas en los aportes totales de Mg de los SAF (Contrastes 1, 6 y 7, Cuadro 22); Sin embargo, dentro del estrato herbáceo las medias de los tratamientos bajo MO superaron significativamente a las medias de los tratamientos bajo AC (Contrastes 1 y 6, Cuadro 22). En el estrato café y árboles de sombra, las medias de los tratamientos bajo AC, superaron significativamente a las medias de los tratamientos bajo MO (Contraste 1, Cuadro 22). En el aporte de hojarasca, se encontró significancia en los tratamientos con poró, en el cual las medias de los tratamientos bajo MO superaron a las medias de los tratamientos bajo AC (Contraste 7, Cuadro 22).

El aporte total de Mg en los SAF fue mayor en el promedio de dos tratamientos con leguminosas que en los tratamientos con roble coral, presentándose la misma tendencia en las comparaciones dentro del estrato arbóreo (Contraste 2, Cuadro 22); mientras que en el estrato herbáceo, fueron significativamente mayores los aportes de Mg en los tratamientos con roble coral (Contraste 2, Cuadro 22). No se encontraron diferencias significativas al comparar los aportes de Mg del asocio de las leguminosas, frente a los tratamientos con roble coral (Contraste 4, Cuadro 22).

Al comparar los aportes totales de Mg, las medias de los tratamientos con poró, superaron significativamente a las medias de los tratamientos con cashá, tendencia también observada en los aportes de hojarasca (Contrates 3 y 5, Cuadro 22) y en el estrato café (Contraste 3, Cuadro 22); mientras que en el estrato herbáceo, fue significativamente mayor el aporte de Mg de los tratamientos con cashá (Contrastes 3 y 5, Cuadro 22).

Cuadro 22. Promedios de aportes totales (kg ha⁻¹) de Mg por estrato y hojarasca y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	CONTRASTES	Vegetación	herbácea	Ca	ıfé	Árboles d	e sombra	Hoja	rasca	Aporto	e total
`	ONTRASTES	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO AC	<0,0001	3,12 0,81	0,0023	2,99 5,16	0,0200	7,17 9,62	0,0542	13,8 11,6	0,9608	27,1 27,1
2	AB (MO) + ER (MO)	0,0037	2,51	0,8854	3,21	0,0010	7,59	0,0629	15,2	0,0139	28,5
	TR (MO)		5,59		3,06		1,27		10,9	,	20,8
3	AB (MO)	0,0001	4,34	0,0061	1,32	0,0002	2,00	<0,0001	9,54	<0,0001	17,2
	ER (MO)	0,0001	0,68	0,0001	5,11	0,0002	13,2	<0,0001	20,8	<0,0001	39,7
	ABER (MO)		1,31		3,32		8,79		15,2		28,7
4	ABTR (MO)+TRER	0,0723	3,40	0,4709	2,56	0,5592	8,90	0,1171	13,1	0,8188	28,0
	(MO)										
5	ABTR (MO)	0,0042	5,06	0,0765	1,43	0,5440	7,33	0,0001	8,74	0,0039	22,6
	TRER (MO)	0,0042	1,73	0,0703	3,69	0,5110	10,5	0,0001	17,5	0,0057	33,4
6	TR (AC)	<0.0001	0,45	0,2998	4,35	0,0981	2,45	0,4985	12,0	0,6419	19,2
Ľ	TR (MO)	-0,0001	5,59	0,2770	3,06	0,0701	1,27	0,1703	10,9	0,0119	20,8
7	ER (AC)	0,4480	0,88	0,2405	6,57	0,2329	15,9	0,0014	12,2	0,2146	35,6
,	ER (MO)	0,4400	0,68	0,2703	5,11	0,2327	13,2	0,0014	20,8	0,2140	39,7
	TRER (MO)		1,73		3,69		10,5		17,5		33,4
8	TR (MO) + ER (MO)	0,2916	3,13	0,7100	4,08	0,0532	7,22	0,1171	15,8	0,2711	30,3
	Tratamientos	<0,0001	i d 1:	0,0092		<0,0001		0,0001		<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Los aportes totales de Mg de las medias de dos tratamientos de una sola especie, frente a las medias de la asociación de ambas bajo los mismos niveles de manejo, no presentaron diferencias significativas (Contraste 8, Cuadro 22).

En general, los tratamientos asociados con poró registraron los más altos valores de aportes totales de Mg (Contrastes 3, y 5, Cuadro 22). Las diferencias significativas entre tratamientos para el aporte total de Mg tuvieron alta contribución de la hojarasca (Contrastes 3 y 5, Cuadro 22). La hojarasca contribuyó con 48,9% del aporte total del SAF, el estrato arbóreo aportó en promedio 26,9%, el estrato café contribuyó con 13,6% y el estrato vegetación herbácea con 10,6% del total (Anexo 9).

En general, las concentraciones de Mg (%) en los tejidos de los componentes en la biomasa de hojarasca (Cuadro 23) fueron similares al ser comparadas con sus homólogos en los residuos de poda (Cuadro 13), manteniéndose las tendencias encontradas en las concentraciones de las especies en pie.

Cuadro 23. Concentración de Mg (%) en hojarasca en los diferentes componentes de los estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración		Ca	ıfé			Cas	shá			Po	ró		Roble	coral
Concentración	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
Promedio	0,36	0,19	0,25	0,19	0,12	0,18	0,13	0,11	0,33	0,21	0,07	0,30	0,21	0,17
Max	0,40	0,22	0,28	0,22	0,15	0,18	0,13	0,12	0,49	0,39	0,07	0,30	0,23	0,21
Min	0.33	0.13	0.22	0.17	0.09	0.18	0.12	0.09	0.24	0.08	0.07	0.30	0.19	0.12

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas, BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

4.8.3 Aporte de potasio

El análisis global del aporte total de K (kg ha⁻¹) en los estratos vegetación herbácea, café, árboles de sombra, en la hojarasca y en el aporte total, reflejó diferencias significativas entre tratamientos (Cuadro 24). El efecto del manejo no fue significativo al comparar las medias de aporte total de K de los tratamientos bajo MO, frente a las medias de los tratamientos bajo AC (Contrastes 1, 6 y 7, Cuadro 24). Sin embargo, los aportes de K fueron significativamente mayores para las comparaciones dentro del estrato herbáceo (Contrastes 1 y 6, Cuadro 24) y en los aportes de hojarasca (Contrastes 1 y 7, Cuadro 24) en los tratamientos bajo MO, frente a los tratamientos bajo AC. En el estrato café, fueron las medias de los tratamientos bajo AC quienes superaron las medias de los tratamientos bajo MO (Contraste 1, Cuadro 24).

Fueron significativamente mayores los aportes totales de K en los SAF de los tratamientos con leguminosas, frente a los tratamientos con roble coral, tendencia también encontrada en las comparaciones dentro del estrato arbóreo (Contrastes 2, Cuadro 24) y en el aporte de hojarasca (Contrastes 2 y 4, Cuadro 24). En el estrato herbáceo, el aporte de K fue significativamente mayor en los tratamientos con roble coral (Contraste 2, Cuadro 24). La comparación del aporte total de K entre el asocio de las leguminosas, frente al promedio de los tratamientos con leguminosas asociadas con roble coral no presentó diferencias significativas (Contraste 4, Cuadro 24).

Al comparar los aportes totales de K, las medias de los tratamientos con poró superaron significativamente a las medias de los tratamientos con cashá, tendencia similar se encontró en el estrato árboles de sombra, en el aporte de hojarasca (Contrastes 3 y 5, Cuadro 24) y en el estrato café (Contraste 3, Cuadro 24); mientras que en el estrato herbáceo, fueron significativamente mayores los aportes de K de los tratamientos con cashá (Contrastes 3 y 5, Cuadro 24).

Cuadro 24. Promedios de aporte de totales (kg ha⁻¹) de K por estrato y hojarasca y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Contrastes	Vegetación	herbácea	Ca	ıfé	Árboles d	e sombra	Hojai	rasca	To	tal
	Contrastes	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO	<0,0001	25,9	0,0039	22,3	0,8999	62,9	<0,0001	52,9	0,0641	164
_	AC	0,0001	5,70	0,000	37,0	0,0///	63,0	0,0001	36,6	0,0011	142
2	AB (MO) + ER (MO)	0,0051	18,0	0,8973	23,4	<0,0001	65,4	<0,0001	59,4	0,0087	166
	TR (MO)		51,4		22,4		6,25		30,0		110
3	AB (MO)	0,0033	30,2	0,0107	10,8	<0,0001	15,2	0,0004	48,3	<0,0001	104
3	ER (MO)	0,0033	5,85	0,0107	36,1	~0,0001	116	0,0004	70,6	<0,0001	228
	ABER (MO)		9,66		28,3		74,6		62,7		175
4	ABTR (MO)+TRER	0,0873	29,1	0,1940	18,0	0,2551	83,0	0,0195	52,8	0,6874	183
	(MO)		•								
5	ABTR (MO)	0,0139	44,3	0,1509	11,4	0,0043	49,9	0,0002	41,3	0,0044	147
3	TRER (MO)	0,0139	14,0	0,1309	24,6	0,0043	116	0,0002	64,3	0,0044	219
6	TR (AC)	<0.0001	3,39	0,1552	35,5	0,2671	10,8	0,5572	31,8	0,2072	81
U	TR (MO)	<0,0001	51,4	0,1332	22,4	0,2071	6,25	0,3372	30,0	0,2072	110
7	ER (AC)	>0,9999	6,11	0,2949	45,5	0,7065	120	<0,0001	32,8	0,2825	204
	ER (MO)	- 0,7777	5,85	0,2747	36,1	0,7003	116	~0,0001	70,6	0,2023	228
	TRER (MO)		14,0		24,6		116		64,3		219
8	TR (MO) + ER (MO)	0,2718	28,6	0,5499	29,3	0,0004	61,0	0,0019	50,3	0,0175	169
	Tratamientos	0,0002		0,0178		<0,0001		<0,0001		<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Los aportes totales de K del promedio de dos tratamientos de una sola especie, fueron significativamente menores que las medias de los tratamientos de la asociación de ambas; tendencia también encontrada en el estrato árboles de sombra y en el aporte de hojarasca (Contraste 8, Cuadro 24). En general, los tratamientos asociados con poró registraron los más altos valores de aporte total de K (Contrastes 2, 3 y 5, Cuadro 24). Las diferencias significativas entre tratamientos para el aporte total de K, tuvieron alta contribución del estrato árboles de sombra y de la hojarasca (Contrastes 2, 3, 5 y 8, Cuadro 24). El estrato arbóreo aportó en promedio 34,8% del K total de los SAF; la hojarasca 31,6%, el estrato café contribuyó con 18,8% y el estrato vegetación herbácea con 14,8% del total (Anexo 10).

En general, las concentraciones de K (%) en los tejidos de los componentes en la biomasa de hojarasca (Cuadro 25) fueron menores al ser comparadas con sus homólogos en los residuos de poda (Cuadro 15), manteniéndose las tendencias encontradas en las concentraciones de las especies en pie.

Cuadro 25. Concentración de K (%) en hojarasca en los diferentes componentes de los estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración		Ca	ıfé			Cas	shá			Po	ró		Roble	coral
Concentración	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
Promedio	1,71	0,48	1,75	2,01	0,26	0,51	0,62	0,73	0,81	0,47	0,19	3,51	0,31	0,31
Max	2,24	0,65	2,22	2,32	0,31	0,51	0,77	0,87	1,04	0,71	0,19	3,51	0,39	0,61
Min	1.26	0.39	1.28	1.65	0.19	0.51	0,51	0.59	0.70	0.17	0.19	3.51	0.26	0.12

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas, BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

4.8.4 Aporte de fósforo

El análisis global del aporte total de P (kg ha⁻¹) reflejó diferencias significativas en el estrato vegetación herbácea, en el estrato árboles de sombra, en el aporte de hojarasca y aporte total; no así en el estrato café (P=0,0976) (Cuadro 26). El efecto de manejo fue significativamente mayor al comparar las medias de aporte total de P de los SAF en los tratamientos bajo MO, frente a las medias de los tratamientos bajo AC (Contraste 1, Cuadro 26). Similar tendencia, aunque no significativa, se encontró para las comparaciones con roble coral y poró (Contrastes 6 y 7, Cuadro 26). Los aportes dentro del estrato herbáceo (Contrastes 1 y 6, Cuadro 26) y en aportes de hojarasca (Contrastes 1 y 7, Cuadro 26) fueron mayores en los tratamientos bajo MO, frente a los tratamientos bajo AC.

Cuadro 26. Promedios de aporte de totales (kg ha⁻¹) de P por estrato y hojarasca y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Contractor	Vegetación	herbácea	Ca	fé	Árboles d	e sombra	Hojai	asca	Tot	tal
	Contrastes	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO	<0,0001	2,51	ne	2,25	0,4019	11,1	<0,0001	6,76	0,0090	22,6
1	AC	<0,0001	0,49	ns	3,63	0,4019	10,0	<0,0001	3,71	0,0090	17,9
	AB (MO) +		1,82		2,24		11,3		7,22		22,6
2	ER (MO)	0,0029	1	ns		0,0019	· ·	0,0001	*	0,0058	
	TR (MO)		4,63		2,69		1,40		3,96		12,7
3	AB (MO)	0.0001	3,19	ns	1,35	0,0012	3,65	0,0068	4,90	0,0001	13,1
	ER (MO)	0,0001	0,44	113	3,12	0,0012	19,0	0,0000	9,55	0,0001	32,1
	ABER (MO)		0,99		2,55		12,2		7,65		23,4
4	ABTR	0,0876		ns		0,3617		0,3831		0,2867	
1	(MO)+TRER	0,0870	2,91	115	1,89	0,3017	15,1	0,3631	7,26	0,2807	27,2
	(MO)										
5	ABTR (MO)	0,0062	4,57	ns	1,15	0,1234	11,3	0,0001	4,65	0,0140	21,7
,	TRER (MO)	0,0002	1,25	115	2,62	0,1234	18,9	0,0001	9,87	0,0140	32,7
6	TR (AC)	<0.0001	0,24	200	4,09	0,7778	1,51	0,0549	3,14	0,1571	9,0
0	TR (MO)	<0,0001	4,63	ns	2,69	0,7776	1,40	0,0349	3,96	0,1371	12,7
7	ER (AC)	0,5091	0,59	***	3,77	0,9250	19,3	<0,0001	3,87	0,0903	27,5
/	ER (MO)	0,3091	0,44	ns	3,12	0,9230	19,0	~0,0001	9,55	0,0903	32,1
	TRER (MO)		1,25		2,62		18,9		9,87		32,7
8	TR (MO) +	0,4850		ns		0,0139		0,0015		0,0051	
	ER (MO)		2,53		2,91		10,2		6,76		22,4
	Tratamientos	<0,0001		0,0976		0,0001		<0,0001		<0,0001	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Fueron mayores los aportes totales de P en los SAF de los tratamientos con leguminosas, frente a los tratamientos con roble coral; tendencia similar se encontró en las comparaciones dentro del estrato arbóreo y en el aporte de hojarasca (Contraste 2, Cuadro 26); mientras que en el estrato herbáceo, fueron significativamente mayores los aportes de P en los tratamientos con roble coral (Contraste 2, Cuadro 26). Al comparar el aporte de P en los tratamientos del asocio de las leguminosas frente al promedio de las leguminosas asociadas con roble coral no se encontraron diferencias significativas (Contraste 4, Cuadro 26).

Al comparar los aportes totales de P, las medias de los tratamientos con poró, superaron significativamente a las medias de los tratamientos con cashá (Contrastes 3 y 5, Cuadro 26); tendencia similar se encontró en los estratos árboles de sombra (Contraste 3, Cuadro 26) y aporte de hojarasca (Contrastes 3 y 5, Cuadro 26); mientras que en el estrato herbáceo fueron significativamente mayores los aportes de los tratamientos con cashá (Contrastes 3 y 5, Cuadro 26). Los aportes totales de P del promedio de dos tratamientos de una sola especie fueron significativamente menores que las medias de los tratamientos de la asociación de ambas, tendencia también encontrada en el estrato árboles de sombra y en el aporte de hojarasca (Contraste 8, Cuadro 26).

En general, los tratamientos asociados con poró registraron los más altos valores de aporte total de P (Contrastes 2, 3 y 5, Cuadro 26). Las diferencias significativas entre tratamientos para el aporte total de P tuvieron la mayor contribución del estrato árboles de sombra (Contrastes 2, 3 y 8, Cuadro 26). El estrato arbóreo aportó en promedio 44,7% del P total de los SAF, la hojarasca 28,4%, el estrato café contribuyó con 15,8% y el estrato vegetación herbácea con 11,2% del total (Anexo 11). Las concentraciones de P (%) en los tejidos de los componentes en la biomasa de hojarasca (Cuadro 27), fueron menores, al ser comparadas con sus homólogos en los residuos de poda (Cuadro 17), manteniéndose las tendencias encontradas en las concentraciones de las especies en pie.

Cuadro 27. Concentración de P (%) en hojarasca en los diferentes componentes de los estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración		Ca	ıfé			Cas	shá			Po	ró		Roble	coral
Concentracion	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
Promedio	0,12	0,10	0,23	0,17	0,09	0,14	0,21	0,17	0,17	0,18	0,12	0,44	0,08	0,08
Max	0,14	0,13	0,25	0,19	0,09	0,14	0,22	0,19	0,18	0,32	0,12	0,44	0,11	0,12
Min	0,10	0,07	0,22	0,15	0,08	0,14	0,19	0,15	0,16	0,05	0,12	0,44	0,05	0,05

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas, BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

4.8.5 Aporte de nitrógeno

El análisis global del aporte total de N (kg ha⁻¹) en los estratos vegetación herbácea, café, árboles de sombra, en el aporte de hojarasca y en el aporte reflejó diferencias significativas entre tratamientos (Cuadro 28). El efecto del manejo no fue significativo al comparar las medias de aporte total de N de los tratamientos bajo MO, frente a las medias de los tratamientos bajo AC (Contrastes 1, 6 y 7, Cuadro 28). Sin embargo, los aportes de N fueron significativamente mayores para las comparaciones dentro del estrato herbáceo (Contrastes 1 y 6, Cuadro 28) y en los aportes de hojarasca (Contrastes 1 y 7, Cuadro 28) en los tratamientos bajo MO, frente a los tratamientos bajo AC. En el estrato café, fueron las medias de los tratamientos bajo AC quienes superaron las medias de los tratamientos bajo MO (Contraste 1, Cuadro 28).

Fueron significativamente mayores los aportes totales de N de los SAF en los tratamientos con leguminosas que en los tratamientos con roble coral; tendencia similar se encontró en las comparaciones dentro del estrato arbóreo y en el aporte de hojarasca; mientras que en el estrato herbáceo, fueron significativamente mayores los aportes en los tratamientos con roble coral (Contraste 2, Cuadro 28). Las comparaciones de los aportes de N, de los tratamientos del asocio de las leguminosas, frente a los tratamientos de leguminosas asociadas con roble coral no presentaron diferencias significativas (Contraste 4, Cuadro 28).

El aporte total de N fue significativamente mayor en los tratamientos con poró frente a los tratamientos con cashá; similar tendencia se encontró en las comparaciones dentro de los estratos café y árboles de sombra (Contraste 3, Cuadro 28) y en el aporte de hojarasca (Contrastes 3 y 5, Cuadro 28); mientras que en el estrato herbáceo, fueron significativamente mayores los aportes de los tratamientos con cashá (Contrastes 3 y 5, Cuadro 28). Los aportes totales de N en las comparaciones del asocio de las leguminosas frente al promedio de los

tratamientos del asocio de roble coral con leguminosas no presentaron diferencias significativas (Contraste 5, Cuadro 28).

Cuadro 28. Promedios de aporte de totales (kg ha⁻¹) de N por estrato y hojarasca y valor de probabilidad (P) de contrastes de tratamientos en SAF de café, en Turrialba, Costa Rica (2006)

	Contrastes	Vegetación	herbácea	Ca	fé	Árboles d	e sombra	Hojai	rasca	To	tal
	Contrastes	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias	Valor P	Medias
1	MO	0,0002	21,2	0,0037	33,6	0,4208	118	<0,0001	136	0,4144	308
1	AC	0,0002	6,62	0,0037	56,6	0,4208	134	~0,0001	89	0,4144	286
	AB (MO) +		16,4		33,8		121		152		323
2	ER (MO)	0,0108	10,4	0,9112	33,6	0,0011	121	<0,0001	132	0,0028	323
	TR (MO)		36,5		35,2		10,0		71,6		153
3	AB (MO)	0,0014	26,8	0,0158	15,5	0,0080	50,8	0,0001	123	0,0069	216
3	ER (MO)	0,0014	5,97	0,0136	52,2	0,0000	191	0,0001	181	0,0009	430
	ABER (MO)		9,46		41,4		151		159		361
4	ABTR	0,0751		0,2928		>0,9999		0,0645		0,8864	
7	(MO)+TRER	0,0731	24,4	0,2928	28,6	~0,9999	152	0,0043	140	0,8804	344
	(MO)	,									
5	ABTR (MO)	0,0148	35,2	0,1121	17,2	0,3723	133	<0,0001	102	0,1735	287
Ľ	TRER (MO)	0,0140	13,5	0,1121	40,0	0,3723	170	<0,0001	178	0,1733	401
6	TR (AC)	0,0001	3,72	0,1731	54,5	0,4208	17,6	0,8198	74,1	0,9343	150
L	TR (MO)	0,0001	36,5	0,1731	35,2	0,4200	10,0	0,0176	71,6	0,7545	153
7	ER (AC)	0,4620	7,78	0,3156	66,3	0,1875	254	<0,0001	89,4	>0,9999	418
Ľ	ER (MO)	0,4020	5,97	0,3130	52,2	0,1873	191	~0,0001	181	~0,9999	430
	TRER (MO)		13,5		40,0		170		178		401
8	TR (MO) +	0,4897	21,2	0,7621	43,7	0,0331	100	0,0001	126	0,0539	292
	ER (MO)		21,2		43,7		100		120		292
	Tratamientos	0,0003		0,0271		0,0002		<0,0001		0,0007	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Valores resaltados en negrilla indican significancia (P<0.05).

Al comparar el aporte total de N de los SAF del promedio de dos tratamientos de una sola especie, frente a las medias de la asociación de ambas, no se encontraron diferencias significativas (Contraste 8, Cuadro 28); sin embargo, en las comparaciones dentro del estrato árboles de sombra y aporte de hojarasca, fueron las medias de los tratamientos en asocio, quienes superaron significativamente al promedio de dos tratamientos de las mismas especies (Contraste 8, Cuadro 28).

En general los tratamientos asociados con poró registraron los más altos valores de aporte total de N (Contrastes 2 y 3, Cuadro 28). Las diferencias significativas entre tratamientos para el aporte total de N tuvieron la mayor contribución de la hojarasca (Contrastes 2 y 3, Cuadro 28). La hojarasca aportó en promedio 41,7% del N total de los SAF, el estrato arbóreo 35,9%, el estrato café 15,4% y el estrato vegetación herbácea con 7,0% del total (Anexo 12).

En general, las concentraciones de N (%) en los tejidos de los componentes en la biomasa de hojarasca (Cuadro 29) fueron menores al ser comparadas con sus homólogos en

los residuos de poda (Cuadro 19), manteniéndose las tendencias encontradas en las concentraciones de las especies en pie.

Cuadro 29. Concentración de N (%) en hojarasca en los diferentes componentes de los estratos evaluados en SAF de café, Turrialba, Costa Rica (2006)

Concentración		Ca	ıfé			Cas	shá			Po	ró		Roble	coral
Concentracion	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
Promedio	2,62	1,90	3,69	2,58	3,60	1,62	5,07	4,23	3,00	1,17	0,57	3,99	1,15	1,21
Max	2,99	2,11	3,91	3,00	3,64	1,62	5,14	4,41	3,17	1,53	0,57	3,99	1,19	1,44
Min	2.42	1.37	3.51	2.38	3.55	1.62	4.99	4.01	2.90	0.78	0.57	3.99	1.11	0.89

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral), HA= malezas de hoja ancha, GR= gramíneas, BC= hierbas de buena cobertura; Ho=hojas; Ra=ramas, Tr= troncos; RD= ramas delgadas; RG= ramas gruesas; FL= flores; FR= frutos.

5 DISCUSIÓN

5.1 Aporte de biomasa

Las diferencias en la contribución a la biomasa total de un sistema a otro, sugieren que las tendencias varían de acuerdo a las características de las especies, las condiciones que crean las combinaciones y las labores del manejo. La no significancia en el efecto del manejo, en los aportes totales de biomasa de los sistemas evaluados sugiere, por una parte, que el manejo no es un factor determinante que favorezca o limite las condiciones para la producción significativa de biomasa de un sistema frente a otro. Por otro lado, podría deberse a que las interacciones de las especies asociadas, permiten que los aportes totales se compensen, a pesar de las diferencias encontradas dentro los estratos, lo cual se hizo evidente para las comparaciones sin y con hojarasca (Contrastes 1, 2, 7, 8, 9, 10, 11, Cuadro 7 y Contrastes 1, 6 y 7, Cuadro 8). Esta tendencia fue consistente al al contrastar el aporte total de biomasa considerando hojarasca en los tratamientos MC (Contrastes 1, 2, 7 al 11, Anexo 33), bajo la premisa que la hojarasca que producen los tratamientos MC es igual que la registrada en los tratamientos MO (Cuadro 30), dado que el ANAVA de contrastes no reflejó diferencias significativas en el aporte total de biomasa en el estrato arbóreo ni en el aporte total de biomasa de los SAF sin y con hojarasca (Contrastes 1, 2, 7 al 11, Cuadro 7 y Contrastes 1, 7 y 8, Cuadro 8)

Los bajos aportes de vegetación herbácea encontrados en los tratamientos AC se explican, en parte, por el control químico con herbicidas (Contraste 1, Cuadro 7 y Contraste 1, Cuadro 8); en los tratamientos con roble coral (solo) en AC, al control químico se unen las características de la hojarasca que aporta esta especie, que por su lenta descomposición forma una capa que limita la emergencia de hierbas y por ende, hace más eficiente el control (Contraste 7, Cuadro 7 y Contraste 6, Cuadro 8). Al respecto, Quintero y Atarof (1998) encontraron valores de 980 kg ha⁻¹ al evaluar el estado de la biomasa del estrato herbáceo en plantaciones de café a pleno sol, a lo largo de un ciclo anual y en condiciones de manejo común, de los caficultores de Los Andes de Venezuela. De igual manera, Arellano *et al.* (2004) encontraron alto aporte de biomasa (8300 kg ha⁻¹) en cafetales sin sombra.

Cuadro 30. Aportes promedio (kg ha⁻¹) de materia seca en SAF de café, Turrialba, Costa Rica (2006)

Tratamiento	Vegetación herbácea	Café	Árboles de sombra	Hojarasca	Total
AC	202	3648	5489	3660	12999
MC	399	2888	5385	5149	13821
MO	702	2047	5398	5123	13270
AB	699	1850	2540	4047	9136
ER	213	3596	9754	5245	18808
TR	663	2921	1496	4358	9438
ABER	259	2776	6331	4822	14187
ABTR	898	1642	4762	3993	11296
TRER	305	2846	6909	6629	16688

Nota 1: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Nota 2: Los residuos de poda de los estratos café y árboles de sombra corresponden al muestreo de un ciclo anual, la biomasa de la vegetación herbácea corresponden a ¾ del ciclo anual del manejo del estrato herbáceo, la hojarasca corresponde a la biomasa de un periodo de 7,5 meses.

La alta contribución del estrato café en los tratamientos bajo AC frente a otros manejos (Contraste 1, Cuadros 7 y 8) se explica por los requerimientos de poda más fuerte, debido al agotamiento del tejido productivo. Por otro lado, las bajas contribuciones de los tratamientos orgánicos, frente a los convencionales (Contrastes 2 y 11, Cuadro 7 y Contraste 1, Cuadro 8), sugieren menores requerimientos de poda para renovación de tejidos productivos, que pudo deberse a que los cafetos, bajo estos tratamientos, presentaron mejores características fenotípicas, aún posterior a la cosecha. Esto probablemente se derivó de una continua liberación y mineralización de nutrientes, provenientes de las enmiendas orgánicas y de la caída natural de hojarasca, que permitieron a su vez, una disponibilidad continua de nutrientes. Al respecto, Estivariz y Muschler (1998) encontraron en Turrialba, Costa Rica, que bajo sombra heterogénea de poró (dos podas drásticas durante el año), los cafetales presentaron mayor agotamiento del tejido productivo, consecuencia de una mayor exposición al sol, comparadas frente a SAF bajo sombra homogénea (40-60% durante el año). Quintero y Atarof (1998) reportaron valores menores (1808 kg ha⁻¹) que los encontrados en el presente estudio, al cuantificar biomasa en residuos de poda de café a pleno sol en la zona andina de Venezuela.

Las altas contribuciones de hojarasca en los tratamientos orgánicos frente a los tratamientos convencionales (Contrastes 1 y 7, Cuadro 8) se explican, en mayor parte, por la alta contribución de hojarasca proveniente de poró, especie que bajo tratamientos orgánicos, es sometido a poda regulada, quedando siempre copa en los árboles, que se reviste y renueva su follaje constantemente; contrario al tratamiento bajo AC, en el cual poró queda totalmente descopado dos veces al año. Chesney *et al.* (2001) manifiestan que los árboles de poró bajo poda regulada conservan más raíces finas que los podados drásticamente y que la retención de al menos una rama es suficiente para asegurar la recuperación rápida del área foliar. Al

respecto, Russo y Budowsky (1986), evaluando la producción de biomasa de hojarasca en SAF de café con poró, bajo diferentes ciclos de podas (una, dos y tres podas al año), encontraron que al podar dos veces al año, la biomasa de hojarasca se redujo aproximadamente al 45% del aporte que cuando se podó una vez al año y cuando se realizaron tres podas al año, no hubo producción de hojarasca. Aranguren *et al.* (1982) reportaron 10230 kg ha⁻¹año⁻¹ como aporte de biomasa de hojarasca en un SAF de café bajo MO, asociado con *Inga* sp. y poró.

Las bajas contribuciones de biomasa total de los tratamientos con roble coral (solo) bajo MO y MC, frente a los tratamientos con especies leguminosas bajo los mismos niveles de manejo (Contraste 3, Cuadro 7), se asocian con las características silviculturales del estrato arbóreo, aunque al compararlas incluyendo el aporte de la hojarasca la diferencia no fue significativa (Contraste 2, Cuadro 8). Estas diferencias en aporte de biomasa total, frente a las leguminosas, podrían asociarse con las características propias de roble coral (lento crecimiento, menor capacidad de rebrote) y los requerimientos de poda que disminuyen conforme madura la especie. Montenegro (2005), evaluando la producción de biomasa del estrato arbóreo en SAF con roble coral (solo), frente a cashá y poró (solos), en el mismo sitio, encontró valores ligeramente menores a los reportados en este estudio (1283 kg ha⁻¹), reflejándose diferencias significativas para las comparaciones de medias únicamente frente a poró. Fassbender et al. (1985), indican que la circulación de la materia orgánica en SAF de café con especies maderables (laurel), dependen exclusivamente de la fenología natural del cafeto y del árbol; mientras que en los SAF con poró, esta depende no solo de la fenología natural, sino también del manejo del poró. Al respecto, Haggar y Ewell (1995) sugieren que las diferencias en la productividad de especies arbóreas (en su estudio Hyeronima, Cordia y Cedrella), dependen de los patrones de asignación de biomasa para la captura de recursos (agua, luz, nutrientes); las especies maderables (Cordia y Cedrella) aunque presentaron altas tasas de retorno de hojarasca y alta producción de hojas, apenas fueron las necesarias para mantener una determinada área foliar, viéndose limitada la asignación de biomasa para engrosar el tronco. De igual manera, indican que los patrones óptimos de asignación de biomasa no siempre llevan a altas producciones de biomasa después de que las copas cierran.

La mayor contribución en el estrato herbáceo en los tratamientos con roble coral (solo o asociado con leguminosas) frente a los tratamientos con dos leguminosas (o el asocio de ellas) (Contrastes 3 y 5, Cuadro 7 y Contraste 2, Cuadro 8), podría estar relacionado a mayores

entradas de luz debido a la altura de fuste y la estrechez de copa de roble coral. De igual manera, la cantidad de hojarasca (Contraste 2, Cuadro 8) que proviene de estos sistemas, parece no ser una limitante para que la vegetación herbácea emerja en el suelo. Particularmente, en las comparaciones de dos tratamientos con leguminosas (o el asocio de ellas) frente a roble coral, los bajos aportes de vegetación herbácea podrían deberse a la poca entrada de luz antes de la poda y posterior a ella, al abundante volumen de biomasa de poda que logra cubrir las calles; además, aunque los residuos de poró son de rápida descomposición, existe una caída constante de hojarasca de apreciable área foliar que ayuda a mantener bajas las plantas del estrato herbáceo. En Venezuela, Arellano *et al.* (2004) encontraron en SAF de café con *Inga* sp. menor aporte de biomasa de vegetación herbácea, al compararlos frente a cafetales bajo sombra de cítricos, atribuyendo los bajos valores a la amplia cobertura de copa de la leguminosa (80%), así como al rol de la hojarasca para el control de la vegetación herbácea (el aporte de hojarasca en SAF con cítricos fue el 53% de la biomasa de hojarasca reportada de los SAF con *Inga* sp.).

Las altas contribuciones de biomasa total para las comparaciones sin y con hojarasca, en los tratamientos con poró (solo o asociado con roble coral), frente a los tratamientos con cashá (solo o asociado con roble coral) (Contrastes 4 y 6, Cuadro 7 y Contraste 3; Cuadro 8), tienen relación con las características silviculturales de la especie poró (rápido crecimiento, mayor capacidad de rebrote, constante renovación de follaje y mayor área foliar, entre otras) y por otro lado, a los mayores requerimientos de poda en el estrato café (Contrastes 4 y 6, Cuadro 7 y Contraste 3, Cuadro 2). Esta tendencia fue reportada por Fassbender et al. (1985), al comparar la producción de biomasa en SAF de café con laurel y SAF de café con poró, encontrando que en general, la relación en la producción total de materia orgánica entre los sistemas en mención, fue del orden de 1:3,5, respectivamente. Al respecto, Glover y Beer (1986), evaluando la producción de biomasa de SAF de café con poró, frente a café en asocio con poró y laurel (Cordia alliodora), encontraron que la biomasa total de los dos sistemas fue similar; sin embargo, la contribución de la biomasa de hojarasca en los SAF con poró (solo) representó aproximadamente el 56% de la hojarasca producida en los sistemas de poró con laurel, mientras que la biomasa de poda fue el 67% de la biomasa del SAF con poró. Estudios afines llevados a cabo en Turrialba, Costa Rica, por Alpizar et al. (1985) reportaron mayor acumulación de biomasa de café en tratamientos con sombra de poró (aproximadamente 50% más), frente a tratamientos con sombra de laurel (Cordia alliodora) bajo el mismo manejo,

aduciendo que la sombra del poró (poda) favoreció la actividad fotosintética y al contrario, la sombra permanente del laurel la limitó.

Las altas contribuciones de biomasa del estrato herbáceo para las comparaciones de cashá (solo o asociado con roble coral) frente a poró (solo o asociado con roble coral) (Contrastes 4 y 6, Cuadro 7 y Contrastes 2 y 4, Cuadro 8) podrían estar relacionados a que cashá muda la hoja en el periodo menos lluvioso (observación personal) abriendo espacios de luz. Durante el periodo de mayor lluvia existe alta disponibilidad de agua, a esto se une que el volumen de hojarasca y su área foliar no son suficientes para controlar la vegetación herbácea, creando condiciones propicias para el crecimientos de las hierbas. Kintomo et al. (1995) encontraron que S. siamea fue más efectiva para controlar la maleza que L. leucocephala, condición atribuida tanto a la morfología como a la calidad del material, es decir, además de que la hoja es más grande, es de más lenta descomposición. De igual manera, Budelman (1988) determinó que Flemingia macrophylla fue la especie más prometedora para el control de malezas, frente a Leucaena leucocephala y Gliricidia sepium, atribuyendo esto a la morfología de su mulch. En SAF de café, Goldberg y Kigel (1986), evaluando dinámica de malezas, encontraron menos del 60% de producción de biomasa de maleza por unidad de área, antes de la poda del estrato arbóreo que después de ella, lo que justifica la variabilidad entre los tratamientos.

La no significancia en los aportes totales de biomasa para las comparaciones del promedio de dos tratamientos, frente a los tratamientos del asocio de las mismas especies (Contrastes 12, 13 y 14, Cuadro 7 y Contraste 8, Cuadro 8) sugiere que el nivel de interacciones es similar en ambas condiciones. Sin embargo, al observar las comparaciones dentro del estrato arbóreo, y analizado desde la perspectiva de complementariedad del uso de recursos (de Wit, citado por Haggar y Ewell, 1997) acorde al criterio de Snaydon y Satorre (1989), se notó que este supuesto se cumplió, para las comparaciones de poró con roble coral y cashá con roble coral, visto que la relación por cociente entre el aporte total de los SAF asociados y el promedio de los aportes totales de dos tratamientos de una sola especie, es mayor a 1. Al respecto, Haggar y Ewel (1997) valoraron la influencia de la complementariedad y el uso competitivo de recursos en la productividad de plantaciones maderables puras, en tres especies (*Cedrela odorata*, *Hyeronima alchorneoides*, y *Cordia alliodora*), frente a la asociación de cada una de estas con dos monocotiledóneas perennes (*Euterpe oleracea* y *Heliconia imbricada*). No encontraron diferencias significativas en la

productividad de las especies *Hyeronima* y *Cedrela* cuando fueron comparadas en policultivo frente a monocultivo; sin embargo, la productividad de los sistemas en policultivo fue ligeramente mayor en *Hyeronima* y mucho en *Cederla* que sus respectivos mocultivos. Para el caso de las comparaciones con *Cordia*, la productividad de esta maderable en policultivo se vio afectada por la presencia de las monocotiledóneas, siendo significativamente mayor la productividad de la especie en monocultivo; sin embargo, la productividad del sistema en policultivo fue mayor al monocultivo.

5.2 Contenido de nutrientes

El contenido de nutrientes de las especies en los SAF, depende de muchos factores que incluyen las especies, parte de la planta, proporción relativa de hojas y ramas, edad del tejido, frecuencias de poda, el suelo y el clima (Palm, 1995). Budelman (1989) sugiere que la fertilidad del suelo y el manejo son factores importantes que afectan el contenido de nutrientes en los tejidos de las plantas; lo cual explican las diferencias en concentraciones entre plantas de la misma especie.

El contenido de nutrientes de la hojarasca es menor que el de los tejidos frescos debido a su traslocación antes de que esta caiga, de ahí que su calidad y porcentaje de nutrientes pueden ser marcadamente diferentes del material verde de las mismas plantas (Constantinides y Fownes 1994); lo que concuerda con los datos registrados en el presente estudio, en el que se encontró que en general, las concentraciones de nutrientes fueron mayores en los tejidos frescos que en la hojarasca, con la excepción del elemento Ca, que siempre fue mayor en los tejidos de la hojarasca, al compararlo con sus homólogos en los tejidos en pie.

En el presente estudio, las tendencias encontradas en las concentraciones entre especies fueron similares en el aporte de hojarasca (N>Ca>K>Mg>P) y en los tejidos verdes (N>K>Ca>Mg>P), a excepción de roble coral, en la cual la tendencia fue Ca>N>K>Mg>P para tejidos verdes y hojarasca. En las concentraciones de nutrientes del estrato herbáceo para todas especies analizadas, la tendencia encontrada fue K>N>Ca>Mg>P. Montenegro (2005), evaluando los tejidos frescos de las mismas especies del estrato arbóreo del presente estudio, reportó tendencias similares en las concentraciones de nutrientes (N>K>Ca>P>Mg). Caro *et al.* (2001) encontraron que la tendencia en las concentraciones del estrato herbáceo de un

cafetal bajo *Gliricidia sepium* fue (N>K>Ca>Mg>P); sin embargo, sus valores promedios de concentración fueron en general menores que los del presente estudio.

Alpízar et al. (1985), evaluando el contenido de nutrientes en SAF de café con laurel y café con poró, encontraron en los tejidos frescos de café, valores inferiores a los reportados en la presente investigación. De igual manera las concentraciones en los tejidos de poró fueron menores a las reportadas en la presente investigación. Montenegro (2005) encontró en el componente hojas del estrato arbóreo que N, Ca, Mg y P tuvieron concentraciones menores a las reportadas en el presente estudio; mientras que en K los valores reportados por él fueron superiores para las especies poró y roble coral; diferencias que podrían estar asociadas a mayor disponibilidad de nutrientes en el suelo debido a la incorporación de material orgánico de podas, hojarasca y control del estrato herbáceo. Las menores concentraciones en K se asocian a las altas extracciones por los fruto de café, lo cual se refleja en sus altas concentraciones (2,10%) valor superior al promedio registrados en el tejido foliar de las arbóreas.

De acuerdo con Bertsch (1998) las concentraciones promedio de Ca, Mg, K y N en las hojas de café de la presente investigación, se encontraron entre el rango normal para el mejor crecimiento de la planta; es decir, sobre el nivel crítico de deficiencia y bajo el nivel crítico de toxicidad. Únicamente la concentración de P se encontró en el límite mínimo del nivel crítico de deficiencia foliar (0,12–0,2), lo que sugiere que el uso de este elemento por la planta a partir del suelo resulta muy ineficiente (Bertsch 1998). Carvajal (1984) indica que las deficiencias de P podrían causar disminución en la absorción de N y Mg y un incremento en la absorción de Ca.

Los tejidos con concentraciones de N mayores a 20 mg g⁻¹ (2%) y mayores a 2,5 mg g⁻¹ (0,25%) de P, son considerados de alta calidad, aunque pueden ser modificados por altos contenidos de lignina y polifenoles (Mofongoya *et al.* 1998). Para este estudio, los contenidos promedios de N no alcanzaron estos valores en residuos de poda y hojarasca de roble coral; mientras que las concentraciones promedio de P superaron este valor en el estrato herbáceo y los residuos de poda de poró.

5.3 Reciclaje de nutrientes

Las diferencias encontradas entre tratamientos para los elementos analizados, se explican a su vez, por las diferencias en las concentraciones de cada uno de ellos en los distintos componentes y su aporte a la biomasa total.

El efecto significativo del manejo en los bajos aportes de Ca y P en los tratamientos bajo AC considerando la contribución de la hojarasca (Contraste 1, Cuadro 20) se explican porque, en general hubo más altas concentraciones de estos elementos en todos los componentes de los diferentes estratos evaluados en los tratamientos bajo MO, aunque la producción de biomasa total no haya sido significativa (Contrastes 2 y 9, Cuadro 7, Contraste 1, Cuadro 8). Las diferencias en los aportes totales de K en las comparaciones con roble coral (Contraste 7, Cuadro 14) podrían deberse a la alta concentración de K en el estrato herbáceo de estos tratamientos.

Las contribuciones significativas de los tratamientos con poró en los aportes de Ca (Contrastes 4 y 6, Cuadro 10 y Contrastes 3 y 5, Cuadro 20), Mg, K; P (Contrastes 3, 4 y 6, Cuadros 12, 14 y 16, Contrastes 2, 3 y 5, Cuadros 22, 24 y 26) y N (Contrastes 3, 4 y 6 Cuadro 18, Contrastes 2 y 3 Cuadro 28) se asocian en gran parte a las altas contribuciones de biomasa en los componentes ramas y hojas en el estrato arbóreo, ramas y troncos en el estrato café, y biomasa de hojas en hojarasca. Por otro lado, aunque en algunos tratamientos, las concentraciones fueron mayores en cashá y roble coral, sus aportes de biomasa fueron significativamente menores comparados a los tratamientos con poró (Contrastes 3, 4, 6, Cuadro 7 y Contraste 3, Cuadro 8)

Las altas contribuciones significativas de los tratamientos en asocio frente al promedio de las mismas especies en tratamientos individuales en los aportes totales de Ca (Contraste 14, Cuadro 10), Mg (Contraste 13, Cuadro 12); K (Contraste 13, Cuadro 14 y Contrastes 8, Cuadro 24), P (Contrastes 12 y 13, Cuadro 16 y Contraste 8, Cuadro 26) y N (Contrastes 12 y 13, Cuadro 28) sugiere, conforme con Haggar y Ewell (1997) una complementariedad significativa en el uso de recursos, debido en gran parte a una mayor concentración de los elementos en los tejidos del estrato arbóreo, aunque las comparaciones de aporte de total de biomasa de los SAF en estas condiciones no fueron significativas (Contrastes 12 al 13, Cuadro 7 y Contraste 8, Cuadro 8); sin embargo, fueron significativos para el aporte total de biomasa en el estrato arbóreo (Contrastes 12 y 13, Cuadro 5).

Al no encontrarse diferencias significativas a nivel de manejo para las variables aporte de biomasa en el estrato arbóreo y aporte total de biomasa, se consideró que la biomasa de hojarasca y su contenido de nutrientes fue similar en los tratamientos MC y MO. Con base en estos datos se encontró que los SAF bajo los diferentes niveles de manejo estuvieron en promedio entre los valores de fertilización recomendados por el ICAFE (1998), con la excepción de P en AC y MO. Cuando fueron comparados con los nutrientes que ingresaron vía fertilización química y orgánica, las entradas de P superaron las cantidades recicladas en los tratamientos AC y MO. De igual manera las entradas de Mg superaron los valores de reciclaje de nutrientes en los AC (Cuadro 31).

Aunque en algunos casos el reciclaje de nutrientes fue aparentemente menor a las entradas, es importante considerar que el muestreo para el aporte de biomasa y el reciclaje de nutrientes en la hojarasca y la vegetación herbácea no correspondió al año, por lo que se presume que los valores de reciclaje de P y Mg igualarían a sus entradas en AC y MO de haberse completado el ciclo anual de muestreo (Cuadro 31).

Cuadro 31. Comparación de las entradas de nutrientes externos con el promedio de los nutrientes reciclados por los SAF en Turrialba, Costa Rica (2006)

IC	AFE		Entrada rnas (1									Reci	clados en	los SAF	(kgha ⁻¹)							
(19	998)	AC	мс	мо			AC					MC							MO)		
		AC	IVIC	MO	ER	TR	ABER	Prom	AB	ER	TR	ABER	ABTR	TRER	Prom	AB	ER	TR	ABER	ABTR	TRER	Prom
N	200- 300	284	142	52,4	418	150	291	286	237	530	145	392	216	367	315	216	430	153	361	287	401	308
P	22,0- 33,0	22	11,0	46,1	27,5	8,98	17,1	17,9	14,5	35,2	10,5	23,8	13,3	25,1	20,4	13,1	32,1	12,7	23,4	21,7	32,7	22,6
K	83,0- 125	125	62,5	75,7	204	81,4	142	142	108	254	89,4	174	106	172	151	104	228	110	175	147	219	164
Mg	24,0- 48,0	36	18,0	23,2	35,6	19,2	26,6	27,1	17,5	46,2	19,8	32,9	17,6	32,3	27,7	17,2	39,7	20,8	28,6	22,6	33,4	27,1
Ca	SV	SV	SV	126	153	140	118	137	117	260	153	210	118	236	182	106	227	145	207	159	245	182

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota, cashá), TR: Terminalia amazonia (roble coral). Nota 2: El reciclaje de nutrientes en los SAF corresponde a la sumatoria de los valores de reciclaje de cada uno de los estratos evaluados. Nota 3: el reciclaje de nutrientes en los residuos de poda de los estratos café y árboles de sombra corresponden al muestreo de un ciclo anual, en la biomasa de la vegetación herbácea corresponde a ¾ del ciclo anual del manejo del estrato herbáceo y en la hojarasca corresponde a un periodo de 7,5 meses.

Los valores de aportes promedios totales de Ca, K y N encontrados en la presente investigación, están entre los valores reportados en SAF de café con poró y café con laurel (en hojarasca más poda) en Turrialba, Costa Rica, por Fassbender *et al.* (1985). Ellos registraron contribuciones de 243 kg ha⁻¹ y 110 kg ha⁻¹ de Ca, 260 kg ha⁻¹ y 54,3 kg ha⁻¹ de K y de 461 kg ha⁻¹ y 114 kg ha⁻¹ de N, respectivamente; mientras que para P y Mg los valores reportados por ellos (P 24,2 kg ha⁻¹ y Mg 75,9 kg ha⁻¹ y 37,1 kg ha⁻¹) fueron superiores a los registrados en el presente estudio; es importante considerar que en el presente estudio el muestreo de la

hojarasca y del estrato herbáceo correspondió únicamente a 7,5 meses del ciclo anual, lo cual pudiera explicar estas diferencias.

Los aportes promedios de los elementos analizados en los tratamientos asociados con poró (sólo o combinado), incluyendo la contribución de la hojarasca, se encontraron entre los valores reportados por Fassbender *et al.* (1985); así como los aportes promedios de N, K y Ca en los tratamientos con cashá y roble coral (solos o combinados entre ellos) incluyendo la contribución de la hojarasca.

En el estrato arbóreo, Montenegro (2005) reportó mayores valores de reciclaje de los elementos que los encontrados en este estudio para los tratamientos con roble coral bajo AC, y cashá y poró bajo MO y MC (excepto Mg en poró); diferencias que podrían estar asociadas a una menor producción de biomasa en el presente año, dado que las especies arbóreas, conforme alcanzan madurez bajan los requerimientos de manejo. Por el contrario, reportó considerablemente menores valores de reciclaje en los tratamientos con poró bajo AC que los encontrados en esta investigación, en el presente estudio los valores mayores se relacionan con la mayor producción de biomasa encontrada, ya que conforme la especie maduró también creció su capacidad de rebrote. Las diferencias ligeramente menores de Ca, Mg y P, como las ligeramente mayores de K y N en roble coral bajo MC y MO (en el 2004), podrían estar más asociadas a valores de concentración, lo que sugiere que el crecimiento de esta especie no ha sido significativo en los últimos dos años. (Cuadro 32).

Cuadro 32. Resumen comparativo de aportes promedio (kg ha⁻¹año⁻¹) de nutrientes en el estrato arbóreo de SAF de café en Turrialba, Costa Rica (2006)

	Calcio		Magnesi	io	Potasio)	Fósforo)	Nitrógeno		
Tratamiento Montenegro (2005) 2006		Montenegro (2005)	2006	Montenegro (2005)	2006	Montenegro (2005)	2006	Montenegro (2005)	2006		
AB (MO/MC)	23,8	22,2	4,10	2,29	23,1	18,0	4,70	4,48	113	58,4	
ER (AC)	21,7	54,1	5,80	6,57	46,1	120	6,10	19,3	74,9	254	
ER (M0/MC)	106	64,6	4,10	5,24	146	128	27,6	20,7	330	236	
TR (AC)	41,9	18,6	6,60	4,35	26,5	10,8	4,00	1,51	57,8	17,6	
TR (MO/MC)	19,9	20,4	1,90	3,24	10,3	10,0	1,80	1,86	19,8	15,5	

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Nota 2: mediciones de Montenegro (2005) fueron realizadas en el 2004.

Aunque la tasa de liberación de nutrientes en los residuos vegetales no fue evaluada en la presente investigación, es de mencionar que Montenegro (2005) encontró, para las mismas especies evaluadas en el estrato arbóreo de este estudio, que los tratamientos con poró liberaron el 50% del contenido de Ca, N, P y K requirieron de un período de 4 a 32 días, Mg en todos los tratamientos empleó de 6 a 57 días, mientras que todos los demás tratamientos

necesitaron periodos mayores a 17 semanas para liberar dicho porcentaje del contenido de sus elementos.

5.4 Eficiencia de la fertilización

Al realizar el balance de nutrientes entre los ingresos por fertilizaciones químicas y orgánicas frente a las salidas por la cosecha de los frutos para un periodo de dos años (2004-2005), los nutrientes acumulados en los frutos y exportados en las dos cosechas no excedieron las entradas (balance positivo) (Cuadro 33), exceptuando Ca en los tratamientos convencionales, debido a que durante el periodo analizado no se aplicó este elemento, aunque los valores negativos de exportación de este elemento fueron bajos, indica que este elemento está extrayéndose de las reservas del suelo; sin embargo, se considera que no se está ocasionando déficit de Ca en él, dado que el reciclaje (kg ha⁻¹) de los SAF es considerable en relación con la exportación (Cuadro 20).

Aunque la productividad acumulada del café en los años 2004 y 2005 no fue significativa entre tratamientos (P= 0,1003), sí se encontraron diferencias significativas para la eficiencia de los fertilizantes (salidas/entradas) entre tratamientos, con excepción de K (P=0,0538, Anexo 29). Potasio presentó los mayores valores de eficiencia por fertilización (Cuadro 33) y una alta concentración promedio en el fruto (2,10%), lo que sugiere que este podría ser un elemento potencialmente limitante para la producción. Por el contrario, los menores valores de eficiencia por fertilización en Ca en los tratamientos orgánicos (Cuadro 33) y la baja concentración de este elemento en sus frutos (0,25%) sugieren que este tiene poca influencia en la producción.

En general, los valores promedios de concentración de los elementos en los frutos (0,25% Ca, 0,12% Mg, 2,10% K, 0,13% P, 1,63% N) fueron similares a los reportados por Ramírez *et al.* (2002) (0,24% Ca, 0,16% Mg, 2,22% K, 0,14% P, 1,68% N) en un estudio llevado a cabo en cafetales bajo manejo convencional, en Aquiares, Costa Rica, ellos reportan además, que aproximadamente tres meses posteriores al pico de floración, todos lo elementos, excepto K, fueron consumidos en un 50% del requisito total.

Cuadro 33. Entradas y salidas de nutrientes (kg ha⁻¹) acumulados en el periodo 2004-2005 en SAF de café, Turrialba, Costa Rica

Tratamiento		Salidas					Fertilización					Eficiencia %					
		PS Frutos	Ca	Mg	K	P	N	Ca	Mg	K	P	N	Ca	Mg	K	P	N
1	AC	5339	16,7	8,04	103	6,95	83,8	0,00	72,0	250	44,0	585	0,00	11,2	41,2	15,8	14,3
2	MC	3858	8,60	4,47	75,0	5,08	61,6	0,00	54,0	125	22,0	292	0,00	8,28	60,0	23,1	21,1
3	MO	4223	10,5	5,01	99,0	5,85	72,3	235	46,9	178	84,8	299	4,45	10,7	55,7	6,89	24,2
4	AB	3781	8,32	3,97	84,0	5,29	60,3	118	50,5	151	53,4	296	1,83	7,93	55,9	14,6	20,4
5	ABER	4420	9,51	5,03	89,4	5,30	72,4	78,3	57,6	184	50,3	392	1,53	8,80	50,6	13,6	19,9
6	ABTR	3438	7,72	3,46	69,5	4,47	51,4	118	50,5	151	53,4	296	1,56	6,81	47,5	13,3	17,4
7	ER	4459	14,1	6,49	96,3	5,95	76,1	78,3	57,6	184	50,3	392	1,97	11,4	54,6	14,6	21,1
8	TR	4884	14,7	7,02	102	6,96	76,4	78,3	57,6	184	50,3	392	1,99	12,1	57,0	17,3	20,9
9	TRER	4390	8,54	5,24	91,7	6,11	78,8	117,5	50,5	151	53,4	296	1,73	10,4	62,2	17,5	26,7

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Nota 2: EF (%) = (salidas/entradas) x 100.

Al comparar los valores promedios de eficiencia de la fertilización para N, P, y K frente a los valores de eficiencia propuestos por Bertsch (1998) (para N 50–70%, para P 30–50% y para K 60–80%), aunque estos valores son de extracción total por la planta y no de exportación, se encontró que en este estudio, N y P no son elementos limitantes para la producción de frutos; aunque a nivel de manejo, la eficiencia promedio de los tratamientos bajo MC para P se acerca a los valores que limitarían la producción en ausencia de este. Por otro lado, se encontró que en los tratamientos bajo MC y roble coral-poró el K es un elemento crítico para la cosecha de frutos, debido a que se acerca al límite de la eficiencia recomendado para este elemento. El ANAVA de contrastes para esta variable no reflejó diferencias significativas entre tratamientos (P= 0,1003), lo que sugiere que K en todos los tratamientos sería un elemento potencialmente limitante para la producción, y de bajar su dosificación se comprometerían las reservas del suelo, situación también encontrada por Fassbender *et al.* (1985) en SAF de cacao en asocio con poró y laurel.

Los valores en conjunto indican que solo una porción de los nutrientes que ingresaron fue utilizada para la formación de frutos, otra parte pudo haberse usado en la formación de biomasa dentro del SAF y otra posiblemente se perdió por lixiviación y volatilización (Cuadro 33). Soto (1992) menciona además, que en general, los factores propios de cada año como las condiciones climáticas, afectan el crecimiento de raíces y por lo tanto la eficiencia de absorción de nutrimentos.

El ANAVA de contrastes entre tratamientos reflejó diferencias significativas en la eficiencia de fertilización a nivel de manejo, menor para N en los tratamientos AC (Contrastes 1, 7 y 8, Anexo 29). Esto sugiere una sobre aplicación de este elemento, superior a la capacidad del cafeto para su adsorción. Se asocia también a condiciones menos favorables

para la toma de nutrientes y pérdida natural de ellos, puesto que los suelos permanecen libres de vegetación la mayor parte del tiempo, expuestos a sol y lluvia por las podas drásticas y a la falta de sincronía de la disponibilidad con la capacidad del cafeto para su adsorción. La baja eficiencia de P bajo MO podría estar relacionada, a una sobre aplicación de este elemento en las enmiendas orgánicas, aunque de acuerdo con Carvajal (1984) la respuesta de P por el cafeto no siempre es consistente. Por otro lado, la mayor eficiencia de P en MC indica que bajo estos tratamientos, P sería un elemento potencialmente crítico para la producción, en caso de aminorarse o cesar su aplicación.

La menor eficiencia de P y N en los tratamientos con cashá-roble coral (Contraste 6, Anexo 29) se explican en parte por los valores bajos de cosecha (aunque no significativos) frente a roble coral-poró por otro lado, esto podría estar asociado a que las condiciones que se crearon en estas asociaciones fueron menos favorables para la absorción de estos elementos, porque en estos tratamientos es notoria una cobertura más densa en el estrato herbáceo, la cual compite por aprovechar una parte de los nutrientes que ingresan por fertilizaciones. Por el contrario, en los tratamientos con poró la cobertura de hojarasca ayuda a minimizar el impacto de las lluvias y el surgimiento de malezas, que a su vez funciona como esponja y almacén de nutrientes. A pesar de las diferencias encontradas en estos tratamientos, N y P no se presentan como elementos limitantes para la producción de frutos al disminuirse su dosificación. La menor eficiencia de Mg y N en los tratamientos en asocio frente al promedio de las dos especies en tratamientos individuales (Contraste 13 Anexo 29), se relaciona con la posible competencia por dichos elementos entre los cultivos y el estrato arbóreo.

5.5 Índices de exportación

El índice de exportación se lo obtuvo de la relación por cociente entre los nutrientes exportados en la cosecha y los nutrientes que se reciclan en los SAF. Para este análisis se asumió que la biomasa y nutrientes de la hojarasca de los tratamientos bajo MC, es la misma cantidad aportada y registrada en la de los tratamientos bajo MO, dado que el ANAVA de contrastes para la variables aporte de biomasa del estrato arbóreo y del aporte total de biomasa no reflejó diferencias significativas entre tratamientos a nivel de manejo (Cuadros 7 y 8); bajo esta condición, en general se encontró que los valores de exportación no excedieron los valores de reciclaje (Cuadro 34).

Al igual que en el análisis de eficiencia de la fertilización, K fue el elemento que se exportó en mayor proporción de los SAF. Particularmente los tratamientos bajo AC y roble coral presentaron los más altos valores, asociados a la alta producción de frutos y alta concentración de este elemento en ellos, lo que sugiere que si las entradas de este elemento por fertilización llegan a ser restringidas, se estaría comprometiendo la reserva de K del suelo y sería el primer elemento en agotarse, hasta que su aplicación sea reestablecida. La misma observación se podría extender para P bajo los mismos tratamientos que para K (Cuadro 34). A pesar de haberse encontrado también altos valores de exportación para Ca, Mg y N en los tratamientos bajo AC y roble coral, el análisis de estos valores indica que las pérdidas de estos nutrientes serían menos importantes que la pérdida de K y P (Cuadro 34) en este estudio.

Cuadro 34. Índices de exportación de los nutrientes (%) que se reciclan en SAF de café, Turrialba, Costa Rica (2006)

	Tratamiento	IE MS	IECa	IEMg	IEK	IEP	IEN
1	AC	24,7	6,78	18,3	47,4	27,7	19,9
2	MC	17,0	2,81	9,81	31,1	16,7	12,7
3	MO	13,9	2,43	7,69	26,1	11,9	10,6
4	AB	19,3	3,45	10,6	36,1	17,7	12,2
5	ABER	16,9	2,97	8,99	28,5	13,5	11,0
6	ABTR	16,2	2,96	9,13	28,0	14,3	11,0
7	ER	12,4	3,76	8,52	21,7	10,0	8,60
8	TR	25,4	5,21	17,9	54,3	33,5	25,2
9	TRER	12,2	1,59	7,13	21,9	10,0	9,45

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Nota 2: IE (%) = (nutrientes exportados en la cosecha 2005 / nutrientes reciclados en el 2006) x 100. Nota 3: El reciclaje de nutrientes en los SAF corresponde a la sumatoria de los valores de reciclaje de cada uno de los estratos evaluados. Nota 4: el reciclaje de nutrientes en los residuos de poda de los estratos café y árboles de sombra corresponden al muestreo de un ciclo anual, en la biomasa de la vegetación herbácea corresponde a ¾ del ciclo anual del manejo del estrato herbáceo y en la hojarasca corresponde a un periodo de 7,5 meses.

El análisis de contrastes para la comparación entre índices de exportación reflejó, a nivel de manejo, diferencias significativamente mayores para todos los elementos en los tratamientos bajo AC, frente al promedio de los tratamientos bajo MC y MO (Contrastes 1, 7 y 8, Anexo 30); de igual manera, fueron significativamente mayores los valores de exportación de los elementos en los tratamientos bajo MC frente a los tratamientos bajo MO (Contraste 2, Anexo 30), que se explican en parte, debido a que la cosecha del año 2005 fue también significativamente mayor bajo los tratamientos convencionales. Los resultados indican que particularmente para Mg y P, en los tratamientos bajo AC las reservas del suelo bajarían a corto plazo en caso de restringirse su aplicación, pues su reciclaje no cubre los requerimientos recomendados por el ICAFE (1998) y tampoco iguala la cantidad que ingresa vía fertilización inorgánica. En cuanto al reciclaje de K y N, aunque bajo los tratamientos convencionales

cubren ligeramente los requerimientos del cultivo, especialmente para K sus reservas se verían agotadas a corto plazo, dado su alto índice de exportación.

Aunque la producción de fruto de café no fue significativa a nivel de sombra para el año 2005 (Anexo 30), fueron los tratamientos con roble coral los que presentaron los más altos valores de exportación, tanto de MS como de Mg, N, P y K, frente a los tratamientos con leguminosas (Contraste 3, Anexo 30). En la comparación entre leguminosas, fueron los tratamientos con cashá quienes presentaron mayores valores de exportación en MS y nutrientes frente a los tratamientos con poró (Contraste 4, significativo en Contraste 6 para Ca, Anexo 30), resultados que indican que si la intensidad de manejo disminuye o se restringe la aplicación de fertilizantes, la productividad del cultivo y del estrato arbóreo decrecerían también con mayor aceleración en los tratamientos con roble coral y cashá, debido a que se agotarían las reservas de nutrientes de los suelos. Por el contrario, en los tratamientos con poró, la situación se vio más favorable, dado que se recicla significativamente mayor cantidad de nutrientes y sus exportaciones son menores.

Al comparar las medias de los índices de exportación del promedio de dos tratamientos de una especie frente a la media del asocio de ellas, fue el asocio quien mostró significativamente menores valores de exportación (Contrastes 12, 13 y 14, Anexo 30), debido a una menor producción en el asocio (aunque no significativa) y mayor reciclaje en el asocio, lo que sugiere la potencialidad de los SAF más diversos para soportar limitaciones de manejo y mantener la productividad por un período más prolongado que si se encontraran en SAF con una sola especie de sombra.

5.6 Eficiencia de uso de nutrientes

Binkley *et al.* (1992) define la eficiencia de uso de nutrientes (EUN) como la cantidad de biomasa producida por unidad de nutriente absorbido. Montagnini *et al.* (1999) sugieren que una especie con valores altos de EUN, es considerada de alta capacidad para producir grandes cantidades de biomasa con menos nutrientes, pero poco efectivos para reciclar nutrientes, siendo estas especies favorables para la reforestación de sitios con suelos degradados. Por el contrario, las especies con bajos valores de EUN, son considerados de alta efectividad ya que reciclan altas cantidades de nutrientes, y son favorables para su inclusión en SAF donde los cultivos se beneficiarían del reciclaje de nutrientes. El presente análisis se

deriva de la relación por cociente entre la productividad primaria neta (PPN) de los SAF (sumatoria de la biomasa de podas de café y árboles de sombra, del estrato herbáceo, de la hojarasca caída naturalmente y de la cosecha de frutos) y su contenido de nutrientes (excepto los exportados en la cosecha). Es importante mencionar que para el cálculo de los valores de EUN se consideró que los tratamientos bajo MC aportaron la misma cantidad de biomasa y nutrientes de hojarasca que los tratamientos bajo MO, debido a que el análisis de contrastes en la variable aporte de biomasa en el estrato arbóreo y aporte total de biomasa para las comparaciones a nivel de manejo sin y con hojarasca no fueron significativos (Contrastes 1, 2, 9, 10 y 11, Cuadro 7 y Contrastes 1, 6 y 7, Cuadro 8).

Cuadro 35. Valores promedios de eficiencia de uso de nutrientes (MG kg⁻¹)en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	PPN	EUN Ca	EUN Mg	EUN K	EUN P	EUN N
1	AC	16,0	0,117	0,602	0,121	1,020	0,062
2	MC	15,9	0,089	0,595	0,110	0,836	0,055
3	MO	14,9	0,082	0,550	0,091	0,685	0,050
4	AB	10,9	0,098	0,626	0,103	0,787	0,048
5	ABER	16,4	0,096	0,558	0,101	0,777	0,047
6	ABTR	12,9	0,094	0,634	0,101	0,764	0,052
7	ER	21,1	0,102	0,520	0,093	0,672	0,046
8	TR	11,9	0,082	0,598	0,130	1,138	0,079
9	TRER	18,7	0,077	0,566	0,097	0,661	0,049

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral), PPN: productividad primaria neta. Nota 2: EUN = PPN / nutrientes reciclados. Nota 3: PPN = Σ (biomasa de cada estrato+biomasa de la cosecha 2005). Nota 4: El reciclaje de nutrientes en los SAF corresponde a la sumatoria de los valores de reciclaje de cada uno de los estratos evaluados.

Los tratamientos más efectivos (valores menores) en el uso de los nutrientes a nivel de manejo fueron en general, los tratamientos orgánicos. A nivel de sombra, Ca y P parecen ser mayormente reciclados en los tratamientos con roble coral-poró; mientras que los tratamientos con poró reciclan mayormente Mg, K y N (Cuadro 35), resultados que se asocian con las altas concentraciones de estos elementos encontradas en los tejidos.

El ANAVA de contrastes reflejó a nivel de manejo, menor EUN en el promedio de los tratamientos bajo MC y MO frente a los tratamientos bajo AC para la mayoría de los elementos (Contrastes 1, 7 y 8 Anexo 32) lo que se asocia a que, en general su concentración fue menor en los tratamientos bajo AC, sugiriendo menor cantidad y disponibilidad de nutrientes para el cultivo, aunque la PPN no presentó diferencias significativas a este nivel. De igual manera, la mayor efectividad de los elementos evaluados en los tratamientos orgánicos frente a los tratamientos bajo MC (Contrastes 2 y 11 y Contraste 9 para K y P, Anexo 32), se explican por las mayores concentraciones de los elementos bajo MO, lo que favorece el mantenimiento y la fertilidad de los suelos bajo estos sistemas, que dependen de la liberación

continua de los nutrientes en los residuos y enmiendas orgánicas, aunque la PPN no fue significativa a este nivel.

A nivel de sombra, la menor EUN de K, P y N encontrada en el promedio de los tratamientos con leguminosas frente a roble coral (Contraste 3 y Contraste 5 para N, Anexo 32) y la menor EUN de Ca en los tratamientos con roble coral (Contraste 3, Anexo 32), se asocian a las mayores concentraciones de estos elementos en sus tejidos, lo que sugiere limitaciones de disponibilidad de N, P y K para el cultivo en los tratamientos asociados con la maderable y Ca en los tratamientos con leguminosas.

En las comparaciones entre leguminosas, los tratamientos con poró presentaron menor EUN en todos los elementos (Contraste 4 y Contraste 6 en Ca y P, Anexo 32), lo que indica el potencial de servicio de esta especie para recircular altas cantidades de nutrientes en los residuos vegetales que se reciclan dentro de estos SAF, lo que se explica en parte a la mayor PPN y a una mayor concentración de este elemento sus tejidos.

Al comparar el promedio de dos tratamientos de una sola especie frente al asocio de ellas, presentaron mayor EUN las especies en asocio para la recirculación de P (Contrastes 12 y 13, Anexo 32) y Ca (Contraste 14, Anexo 32), aunque la PPN presentó diferencias significativas únicamente en los tratamientos con poró y roble coral; lo cual indica que las especies en asocio tuvieron mayor capacidad de reciclar estos elementos que cuando estuvieron en tratamientos individuales. Al respecto, Montagnini *et al.* (1999) sugieren que la combinación en tiempo y/o espacio de especies de alta y baja EUN debería ser considerada en las iniciativas que apuntan a la recuperación de nutrientes en suelos degradados.

6 DISCUSIÓN FINAL

Los resultados en conjunto reflejan el potencial de los distintos SAF evaluados para el reciclaje de biomasa y nutrientes. Tomando en cuenta que en el presente estudio no se evaluó la hojarasca en los tratamientos bajo MC, y al no encontrarse diferencias significativas en el aporte de biomasa del estrato arbóreo y el aporte total entre MC y MO, se asumió que la cantidad de hojarasca que produjeron los tratamientos bajo MC fue la misma que la de los tratamientos bajo MO. Basado en esta premisa, el manejo no afectó la producción de biomasa total de los SAF (Anexo 33).

Bajo la misma condición, a nivel de sombra, sobresalen los aportes totales de biomasa de los tratamientos con leguminosas; particularmente, los tratamientos con poró (solo o asociado con roble coral) mostraron ventajas significativas en comparación con otros tratamientos sin poró (Anexo 33).

El aporte total de biomasa en las comparaciones de dos tratamientos de una sola especie frente al asocio de ellas, refleja que en los tratamientos en asocio se cumple el supuesto de complementariedad de recursos (Anexo 33).

A nivel de manejo, el reciclaje total de nutrientes tuvo efecto en Ca y P (Contrastes 1 y 6, Anexo 33) siendo significativamente mayor en el aporte promedio de MC y MO frente a la media de los tratamientos bajo AC; de igual manera en K (Contraste 2, Anexo 33), en el cual fue significativamente mayor el aporte en los tratamientos bajo MO frente a los aportes medios de los tratamientos bajo MC.

A nivel de sombra, partiendo de la consideración que la hojarasca de los SAF bajo MC es la misma que aportan los tratamientos bajo MO, fue consistente la ventaja de los aportes totales de nutrientes de los SAF con leguminosas y entre ellas la alta contribución significativa de los tratamientos con poró sólo o asociado con roble coral.

En los SAF evaluados, el reciclaje total de Ca (Contrastes 12 y 14, Anexo 33), K, P y N (Contrastes 12 y 13, Anexo 33) fue significativamente mayor en los tratamientos en asocio frente al promedio de los tratamientos de las especies en monosombra, lo que sugiere sus beneficios potenciales en comparación con aquellos de menor diversidad.

Cuando se visualizan en conjunto los valores del índice de eficiencia de la fertilización y los índices de exportación de nutrientes, se notó consistentemente que K fue el elemento potencialmente limitante y el de mayor exportación a través de la cosecha, lo que sugiere que,

si en dado momento baja la intensidad de manejo o cesan las entradas por fertilización, se deberían favorecer las formas de K, de lo contrario las reservas existentes en el suelo y la productividad del cultivo y del SAF en general, se verían afectadas a corto plazo. Basados en los índices de exportación, en general los tratamientos orgánicos y los tratamientos asociados con leguminosas (Contrastes 2, 3 y 4 Anexo 30), podrían soportar un periodo más prolongado para mantener la productividad del cultivo en caso de bajar o cesar la fertilización, lo cual se reflejó en la producción de frutos, puesto que los rendimientos de producción acumulados del 2004 y 2005 no fueron significativos (Anexo 30).

Con base en los valores de eficiencia de uso de nutrientes, los tratamientos orgánicos y los asociados con leguminosas, particularmente los tratamientos con poró, mostraron ser más efectivos para el reciclaje de nutrientes, lo que sugiere una mayor disponibilidad de nutrientes para el cultivo.

7 CONCLUSIONES

El manejo no afectó la producción de biomasa entre tratamientos en los SAF evaluados, no así en el reciclaje de Ca, P y K.

El aporte de biomasa y el reciclaje de N, P, K y Mg fueron mayores en los tratamientos con leguminosas que en los tratamientos con roble coral.

Entre los tratamientos con leguminosas, poró siempre superó el aporte de biomasa y el reciclaje de nutrientes frente a cashá (solas o en asocio con roble coral).

El aporte de biomasa de los tratamientos de dos especies en asocio (significativo en roble coral-poró) fue mayor que el promedio de los tratamientos de las especies en monosombra. De igual manera, fue mayor el reciclaje de nutrientes en los tratamientos de dos esspecies en asocio que en los tratamientos en monosombra, para el reciclaje de Ca (significativo en roble coral-poró y cashá poró), P y N (significativos en roble coral-poró y cashá-roble coral) y Mg y K (no significativos).

Los bajos aportes de biomasa de vegetación herbácea en los tratamientos AC de roble coral sugieren que, en conjunto con el control químico, la hojarasca de roble coral ayuda a proteger el suelo de malezas, pudiendo ser esta una especie a incorporar en sistemas manejados convencionalmente. De igual manera, la menor cantidad de biomasa de vegetación herbácea en los tratamientos MO de poró, la convierten en una especie favorable para la inclusión en sistemas orgánicos de producción, debido a la abundante biomasa de poda y hojarasca que esta especie produce, unida al efecto benéfico de su sombra.

El manejo afectó el porcentaje de cafetos podados, el menor requrimiento de poda en los tratamientos MO indica que las enmiendas orgánicas y el control mecánico de malezas favorecen el vigor vegetativo del café.

El balance de entradas y salidas de nutrientes para el periodo 2004 – 2005 fue positivo para N, P, K y Mg, lo que indica que el egreso de nutrientes no excede su entrada. Particularmente para Ca en los tratamientos AC y MC se obtuvo un valor negativo debido a que en este periodo no ingresó este elemento en forma inorgánica, no obstante, sus salidas fueron bajas respecto a su reciclaje.

El K fue el elemento potencialmente limitante para la producción y el de mayor exportación en todos los tratamientos, lo que indica que al disminuir o cesar su aplicación, se comprometerían los rendimientos de producción. De igual manera P se mostró potencialmente

limitante y de alta exportación en los tratamientos convencionales, sin embargo, algunos investigadores señalan que no hay respuesta del café a la aplicación de este elemento.

Los menores valores de índices de exportación en los tratamientos orgánicos y con leguminosas indican que estos tratamientos tienen mayor capacidad para manetener la productividad de los SAF por un periodo más prolongado en caso de limitarse o cesar la fertilización.

Los bajos valores de eficiencia de uso de nutrientes en los tratamientos orgánicos y con leguminosas indican alta efectividad de estos para el reciclaje de nutrientes, lo que los hace deseables en SAF de café porque esta característica favorece la disponibilidad de nutrientes para los cafetos.

Los bajos valores de aporte de biomasa y reciclaje de nutrientes de los tratamientos de cashá frente a los tratamientos de poró (solos o asociados con roble coral), sugieren el rechazo de la primera H_o que postuló que entre los tratamientos con leguminosas (solas o combinadas) no se presentarían diferencias significativas para estas variables.

Las diferencias significativas en el aporte total de biomasa y en la mayoría de los nutrientes en las comparaciones de los tratamientos con leguminosas frente a la maderable, sugieren el rechazo parcial de la segunda H_o que postuló que al comparar tratamientos con doseles de sombra de leguminosas y no leguminosas (solas o combinadas) bajo diferentes niveles de manejo no presentarían diferencias significativas.

Dado que el manejo no afectó el aporte total de biomasa, pero sí los valores de reciclaje de Ca, K y P, así como los valores de eficiencia de uso de nutrientes, se rechaza parcialmente la tercera H_o que postuló que el aporte de biomasa y el reciclaje nutrientes en los SAF bajo manejos convencional y orgánico no presentarían diferencias significativas.

8 RECOMENDACIONES

Por los altos valores de reciclaje de nutrientes, particularmente en los tratamientos con leguminosas y los rendimientos acumulados de producción para los dos últimos años (2004 – 2005), aunque estos no fueron significativos entre tratamientos, se sugiere considerar el uso de insumos con menores concentraciones de N y mayores en K, con el objeto de suplementar las pérdidas por exportación.

Dado que la producción de café en los dos últimos años (2004 – 2005) no presentó diferencias significativas entre tratamientos, y en la búsqueda de la sostenibilidad de los SAF en estudio, se recomienda la opción de implementar los manejos MC y/o MO por su mayor potencial de reciclaje y las condiciones favorables que estos crean para mantener y mejorar la fertilidad de los suelos.

Futuros estudios podrían considerar la respuesta del rendimiento de producción de café frente a diferentes dosis de aplicación de K, debido a sus altas tasas de eficiencia de fertilización y de exportación.

Para mejorar el diseño de los agroecosistemas es relevante dar énfasis al criterio de selección de las especies del componente arbóreo para sombra, con la visión de favorecer el reciclaje de nutrientes. Si se seleccionan especies leguminosas, estas deberían presentar características similares a las de poró, fácil establecimiento, alta producción de biomasa, y rico contenido de nutrientes. Al incluir una segunda especie maderable, se podría seleccionar entre las especies de alto valor comercial para asegurar un ingreso adicional a largo plazo, aunque sus tejidos tengan menor concentración de nutrientes y que en un determinado momento se afecte el reciclaje de nutrientes.

Debido a que hubo complementariedad en el uso de recursos para la producción de biomasa y el reciclaje de nutrientes en los tratamientos del asocio de dos especies arbóreas, se sugiere promover la implementación de estos modelos para la implementación de SAF, dentro de los cuales se podría incluir poró como uno de los componentes de este estrato.

Otros estudios podrían dar continuidad al monitoreo de la producción de biomasa del estrato café que generen información entre ciclos de alta y baja producción. De igual manera, en esta línea de estudio se podría abarcar el estrato arbóreo y hojarasca de las especies cashá y roble coral debido a que éstas aún no han alcanzado su madurez fisiológica.

Se sugiere que próximos estudios, en la línea de descomposición y liberación de nutientes, consideren incluir residuos vegetales de todos los estratos.

9 BIBLIOGRAFÍA

- Aguilar, A; Staver, C; Aguilar, V; Somarriba, S. 1997. Manejo selectivo de malezas para la conservación del suelo en café joven: evaluación de sistemas químico/mecánico y mecanismos sin y con *Arachis pintoi*. *In* ICAFE, ed. Memorias XVIII Simposio Latinoamericano de Caficultura (septiembre de 1997, San José, Costa Rica). San José, CR, EDITORAMA. p. 85–92.
- Aguilar, V; Staver, C. 1997. Acumulación y descomposición de biomasa en el subsistema maleza bajo tres manejos en un cafetal del pacífico de Nicaragua. *In* ICAFE, ed. Memorias XVIII Simposio Latinoamericano de Caficultura (septiembre de 1997, San José, Costa Rica). San José, CR, EDITORAMA. p. 115-124.
- 2001. Selective leed and ground cover management in a coffee plantation with shade trees in Nicaragua. Doctoral Thesis. Swedish University of Agricultural Sciences. pp. 1–24.
- Alpizar, I; Fassbender, HW; Heuveldop, J; Folster, H; Enriquez, G. 1985. Sistemas agroforestales de café (*Coffea arabica*) con Laurel (*Cordia alliodora*) y café con Poró (*Erythrina poeppigiana*) en Turrialba, Costa Rica. I. Biomasa y reservas nutritivas. Turrialba 35(3): 233–242
- ______; Fassbender, HW; Heuveldop, J; Folster, H; Enriquez, G. 1986. Modelling agroforestry systems of cacao (*Theobroma cacao*) with laurel (*Cordia alliodora*) and poró (*Erythrina poeppigiana*) in Costa Rica. I. Inventory of organic matter and nutrients. Agroforestry Systems 4: 175–189.
- Anderson, JM; Ingram, JSI. 1993. Tropical soil biology and fertility. 2nd edición. Oxford UK. CAB Internacional. pp 22–46.
- Aranguren, J; Escalante, G; Herrera, R. 1982. Nitrogen cycle of tropical perennial crops under shade trees. I Coffee. Plant and Soil. 67:247–258.
- Araya, M. 1994. Distribución y niveles poblacionales de Meloidogyne spp. y Pratylenchus spp. en ocho cantones productores de café en Costa Rica. Agronomía Costarricense 18:183–187.
- Arellano, R; Paolini, J; Vásquez, L. Mora, E. 2004. Producción y descomposición de la hojarasca en tres agroecosistemas de café en el Estado de Trujillo, Venezuela. Revista Forestal Venezolana 48(1): 7–14.
- Beer, J. 1988. Litter production and nutrient cycling in coffee (*Coffea arabica*) or cacao (*Theobroma cacao*) plantations whit shade trees. Agroforestry Systems 38:139–164.
- ; Bonnemann, A; Chavez, W; Fassbender, H.W; Imbach, A.C and Martel, I. 1990. Modelling agroforestry systems of cacao (*Theobroma cacao*) with laurel (Cordia alliodora) or poró (*Erythrina poeppigiana*) in Costa Rica. V. Productivity indices, organic material models and sustainability over ten years. Agroforestry systems 12:229–249.

- _____; Muschler, R; Kass, D; Somarriba, E. 1998. Shade management in coffee and cacao plantations. Agroforestry systems. 38: 139–164.
- ; Harvey, C; Ibrahim, I; Harmand, MJ; Somarriba, E; Jimenez, F. 2003. Servicios ambientales de los sistemas agroforestales. Agroforesteria en las Americas 10(37–38):80–87.
- Berninger, F; Salas, E. 2003. Biomass dynamics of Erythrina lanceolata as influenced by shoot-pruning intensity in Costa Rica. Agroforestry Systems 57: 19–28
- Bertsch, F. 1998. La fertilidad de los suelos y su manejo. Asociación Costarricense de la Ciencia del Suelo. San José, CR. 174 p.
- Binkley, D; Dunkin, K.A; DeBell, D and Ryan, M.G. 1992. Production and nutrient cycling in mixed plantations of eucalyptus and albizia in Hawai. Forest Science 38(2):393–408.
- Bornemisza, E. 1982. Nitrogen cycling in coffee plantations. Plant and Soil 67:241–246.
- Bouharmont, P. 1993. Study of the effect of herbicide treatments using Roundup on the growth and production of Robusta coffe trees. Café Cacao Thé (París), 37(3):191–194.
- Budelman, A. 1988. The performance of the leaf mulches of *Leucaena leucocephala*, *Flemingia macrophylla* and *Gliricidia sepium* in weed control. Agroforestry Systems 6:137–145.
- Cannell, MGR. 1971. Effect of the presence of fruits on net phoythosynthesis. In Annual Report Coffee Research Station, Ruiru, Kenya 1970–71. p. 41–42
- _____. 1976. Crop physiological aspect of coffee bean yield. Kenya Coffe 41:245–253.
- Cardona, CDA; Sadeghian, KHS. (2005) Ciclo de nutrimentos y actividad microbiana en cafetales a libre exposición solar y con sombrío de *Inga* spp. CENICAFE 56(2):127–141.
- Caro, P; Rodríguez, M.I.; Morán C. 2001. Extracción de nutrimentos por las malezas en el cultivo del cafeto (*Coffea arabica* L.). Café Cacao 2(1): 25–27.
- Carvajal, JF. 1984. Cafeto Cultivo y fertilización. Segunda edición. Instituto Internacional de la Potasa. Berna, Suiza p. 143–187.
- Carvajal, JF. 1985. Cafeto-cultivo y fertilización. 2da. Edición. Berna, Suiza. Instituto Internacional de la Potasa. 254 p.
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). 2000. Manejo de semillas de 100 especies forestales de América Latina. Turrialba, CR. Serie Técnica, Manual Técnico Nº 41. v.1, 204 p.
- Constantinides, M; Fownes JH. 1994. Nitrogen mineralization from leaves and litter of tropical plants: relation ship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol Biochem 26: 49–55.
- Cordero, J; Mesén, F; Montero, M; Stewart, J; Dossier, D; Chanberlain, J; Pennington, T; Hands, M; Hughes, C; Detlefsen, G. 2003. Descripciones de especies de

- árboles nativos de América Central. *In* Cordero, J; Boshier,D H . (eds). Árboles de Centro América: un Manual para Extensionistas. Oxford, UK. FRP. OFI/CATIE. p. 311–958.
- Chesney, P.; Schlönvoigt, A.; Kass, D.; Vlek, P.; Murach, D. 2001. Respuestas de las raíces finas y acumulación de nitrógeno en el follaje de *Erythrina poeppigiana* después de podas parciales o completas. Agroforestería en las Américas. 8(30): 48–51.
- De Melo, VF; Haggar, JP; Staver, CP. 2002. Sostenibilidad y sinergismo en sistemas agroforestales con café: estudio a largo plazo de interacciones agroecológicas. Café Cacao 3(1):31–35.
- Díaz-Rumeu, R; Hunter, A. 1978. Metodología de muestreo de suelos, análisis químico de suelos y tejido vegetal y de investigación en invernadero. Turrialba, CR. CATIE. 68 p.
- Di Rienzo, JA; Balzarini, MG; Casanoves, F; González, LA; Tablada, EM; Díaz, MP; Robledo, CW. 2001. Estadística para las Ciencias Agropecuarias. 4° ed. Córdoba, AR. Editorial Triunfar S.A. p 243–253.
- Estivariz, J; Muschler, R. 1998. Efecto de la sombra sobre el vigor y la producción de *Coffea arabica* var. Caturra después de una poda total del café en Turrialba, Costa Rica. Agroforestería en las Américas 5(17–18):49–53.
- Fassbender, H.W.; Alpizar, L;Heuveldop, J; Enríquez, G; Folster, H. 1985. Sistemas agroforestales de café (*Coffea arabica*) con laurel (*Cordia alliodora*) y café con poró (*Erythrina poeppigiana*) en Turrialba, Costa Rica. III. Modelos de la materia orgánica y los elementos nutritivos. Turrialba. 35 (4): 403–413.
- gear balances of organic matter and nutrients in agroforestry systems at CATIE, Costa Rica. Forest Ecology and Management 45:173–183.
- ______. 1992. Modelos edafológicos de los sistemas de producción agroforestal. Turrialba, CR. Centro Agronómico tropical de Investigación y Enseñanza (CATIE). 185–470.
- Fischersworring, BH; RoBkamp, RR. 2001. Guía para la caficultura ecológica. Deutsche gesellschaft für technische Zusammenarbeit (GTZ) GmbH. 3 ed. 153 p.
- Fournier, LA. 1988. El cultivo del cafeto (Coffea arabica L.) al sol o la sombra: un enfoque agronómico y ecofisiológico. Agronomía Costarricense. 12(1):131–146.
- Glover, N; Beer, J. 1986. Nutrient cycling in two tradicional Central American agroforestry systems. Agroforestry Systems 4: 77–87.
- Goldberg, A.D.; Kigel, J. 1986. Dynamics of the weed community in coffe plantations grown undershade tress: effect of clearing. Israel Journal of Botany. 35:121–131.
- Gutierrez, PS; Vaast, P. 2001. Comportamiento fisiológico del café asociado a con *Eucalyptus deglupta, Terminalia ivorensis* o sin sombra. Agroforestería de las Américas. 9(35–36):44–49.

- Haggar, JP; Ewell, JJ. 1995. Establishment, resource acquisition, and early productivity as determined by biomass allocation patterns of three tropical tree species. Forest Science 41(4): 689–708.
- ; Ewell, JJ. 1997. Primary productivity and resource partitioning in model tropical ecosystems. Ecology 78(4): 1211–1221. *Fuente orginal*. De Wit. C. T. 1960. On competition. Verslagen van Landbouwkundige Onderzoekingen 66:1–82.
- _____; Ewell, JJ. 1997. Primary productivity and resource partitioning in model tropical ecosystems. Ecology 78(4): 1211–1221.
 - ____(Ed.) 2001. Sostenibilidad y sinergismo en sistemas agroforestales con café. Agroforestería en las Américas. 8 (29): 49–51.
- Harmand, JM; Ndonfack, P; Forkong, CN. 2002. Efecto de varias especies de árboles sobre el estrato herbáceo y la dinámica del nitrógeno del suelo en la zona Sudaniana de Camerún. Agroforestería de las Américas 9(33–34):14–18.
- Henríquez, C; Bertsch, F; Salas, R. 1995. Fertilidad de suelos: Manual de laboratorio. San José CR. Asociación Costarricense de la Ciencia del Suelo. p 51–60.
- Hernández, OG; Beer, J; von Platen, H. 1997. Rendimiento de café (*Coffea arabica* vars. Caturra), producción de madera (*Cordia alliodora*) y análisis financiero de plantaciones con diferentes densidades de sombra en Costa Rica. Agroforestería en la Américas. 4(13): 8–13.
- Heuveldop, J; Alpízar, L; Fassbender, HW; Enríquez, G; Folster, H. 1985. Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poró (Erythrina poeppigiana) en Turrialba, Costa Rica. II. Producción agrícola, maderable y de residuos vegetales. Turrialba 35(4): 347–355.
- InfoStat. 2002. InfoStat; versión 1.1 / Profesional. Manual del usuario. Grupo Infostat, FCA. Universidad Nacional de Córdoba, Argentina. p. 64–80.
- Instituto del Café de Costa Rica (ICAFE). 1998. Manual de recomendaciones para el cultivo del café. San José, CR. 127–137 p.
- Jiménez, E; Martínez, P. 1979. Estudios ecológicos del agroecosistema cafetalero: II producción de materia orgánica en diferentes tipos de estructura. BIOTICA 4 (3): 109–126.
- Kintomo, AA.; Agboola, AA and Mutsaers, JW. 1995. Weed control effects of mulch from prunings of *Leucaena leucocephala* and *Senna siamea*. Nitrogen fixing tree research reports. 13:75–78.
- Lampkin, N. 2001. Agricultura ecológica. 1º ed. U.K. Grupo Mundi Prensa. 50–84.
- Lyngbaek, AE; Muschler, RG; Sinclair, FL. 1999. Productividad, mano de obra y costos variables en fincas cafetaleras orgánicas y convencionales de Costa Rica. Agroforestería en las Américas. 6(23): 24–26.
- Mofongoya, PL; Giller, KE. and Palm, CA. 1998. Descomposition and nitrogen release patterns of tree pruning and litter. Agroforestry systems 38: 77–97.

- Montagnini, F; Jordan, CF; Matta, RM. 1999. Reciclaje y eficiencia de nutrientes en sistemas agroforestales. Yvyrareta 9: 21–40.
- Montealegre, M. 1954. Cafetales a pleno sol versus cafetales a la sombra. Suelos Tico 7:263–275.
- Montenegro, GEJ. 2005. Efecto de la dinámica de la materia de nutrientes de la biomasa de tres tipos de árboles de sombra en sistemas de manejo de café orgánico y convencional. Tesis M.Sc., Turrialba, CR, CATIE. 67 p.
- Muschler, RG. 1997. Efectos de sombra de *Erythrina poeppigiana* sobre *Coffea arabica* vars. Caturra y Catimor. In: Memorias XVIII Simposio Latinoamericano de Caficultura. Costa Rica. IICA-PROMECAFE. p. 157–162.
- ; Bonnemann, A. 1997. Potentials and limitations of Agroforestry for changing land-use in the tropics: experiences from Central America. *Forest Ecology and Management*. 91: 61–73.
- _____. 2000. Árboles en cafetales. Turrialba, CR, Proyecto Agroforestal CATIE / GTZ. p 13. (Materiales de enseñanza No. 45).
- ______. 2001. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry systems. 85:131–139.
- Niuwenhuyse, A. 2005. Curso de manejo de suelos. Presentación "Taxonomía de suelos". CATIE. 60 p.
- Norgrove, L; Hauser, S. 2000. Leaf properties, litter fall, and nutrient inputs of *Terminalia ivorensis* as different tree stand densities in a tropical timber food crop multistrata system. Can. J. For. Res.30: 1400–1409.
- Nygren, P; Ramírez, C. 1995. Production and turnover of N₂ fixing nodules in relation foliage development in periodically pruned Erythrina poeppigiana (Leguminosae) trees. Forest Ecology and Management. 73: 59–73.
- OFICAFE. 1978. Manual de recomendaciones para cultivar café. 3er. ed. Oficina de café Ministerio de Agricultura y Ganadería. San José, Costa Rica.
- Palm, CA. 1995. Contribution of agroforestry trees to nutrient requirements of intercropped plants. Agroforestry Systems 30: 105–124.
- Pérez, V. 1977. Veinticinco años de investigación sistemática del cultivo de café en Costa Rica. 1950–1975. Agronomía Costarricense 1:169–185.
- Quintero, JS y Atafor, M. 1998. Contenido y flujo de nitrógeno en la biomasa y hojarasca de un cafetal a plena exposición solar en los Andes Venezolanos. Rev. Fac. Agron. (LUZ) 15:501–514.
- Ramírez, F; Bertsch, F; Mora, L. 2002. Consumo de nutrimentos por los frutos y bandolas de café caturra durante un ciclo de desarrollo y maduración en Aquiares, Turrialba, Costa Rica. Agronomía Costarricense 26(1):33–42.
- Ramirez, LG. 1993. Producción de café (*Coffea arabica* vars. Caturra) bajo diferentes niveles de fertilización con y sin sombra de *Erythrina poeppigiana*. *In* Westley,

- SB and Powell, MH (eds) Erythrina in the New and Old Worlds. Nitrogen Fixing Tree Association, Paia, Hawai. pp. 121–124.
- Rao, MR; Nair, PK; Ong, CK. 1998. Biophysical interactions in tropical agroforestry systems. Agroforestry Systems 38:5–50.
- Rivera, R. 1992. Crecimiento y producción de fitomasa de una plantación de cafeto a plena exposición solar sobre suelo ferrealítico rojo compacto. Cultivos tropicales. 13(2–3):
- Rodríguez, FH; Rodríguez, AJ. 2002. Métodos de análisis de suelos y plantas: criterios de interpretación. México. Editorial Trillas. p 145–168.
- Russo, RO; Budowsky, G. 1986. Effect of pollarding frequency on biomasa of Erythrina poeppigiana as a coffee shade tree. Agroforestry Systems. 4:145–162.
- Salazar, R. 1989. Guía para la investigación silvicultural de especies de uso múltiple. Turrialba, CR. Proyecto Cultivo de Árboles de uso Múltiple (MADELEÑA/CATIE). p 43–51. (Serie técnica boletín técnico N° 29).
- Samayoa, JO; Sánchez, V. 2000. Importancia de la sombra en la incidencia de enfermedades en café orgánico y convencional en Paraíso, Costa Rica. Agroforestería en las Américas. 7(26): 34–36.
- Snaydon, RW. and Satorre, EH. 1989. Bivariate diagrams for plant competition data: modifications and interpretation. Journal of Applied Ecology 26: 1043–1057.
- Soto, PML. 1992. Dinámica de la eficiencia de uso y balance de nutrimentos en sistemas agroforestales y en cultivos con enmiendas orgánicas en la Montaña, Turrialba. Tesis Mag. Sc. CATIE, Turrialba, Costa Rica. 120p.
- Steppler, HA; Nair, PKR. (eds). 1987. Agroforestry: a decade of development. ICRAF, Nairobi, Kenya. 335 p.
- Suárez, PDA. 2002. Cuantificación y valoración económica del servicio ambiental, almacenamiento de carbono en sistemas agroforestales de café en la Comarca Yassica Sur, Matagalpa, Nicaragua. Tesis M.Sc. Turrialba, CR. 117 p.
- Szott, LT; Palm, CA. 1996. Nutrient stocks in managed and natural humid tropical fallows. Plant and Soil. 186: 293–309.
- Vaast, P; Snoeck, D. 1999. Hacia un manejo sostenible de la materia orgánica y de la fertilidad biológica de los suelos cafetaleros. *In* Bertrand, B; Rapidez, B. eds. Desafio de la caficultura en Centro América. San José, CR. IICA: PROMECAFE: CIRAD: IRD: CCCR. Francia. Editorial Agronómica. p. 139–169.
- Valencia, AG. 1973. Relación entre el índice de área foliar y la productividad del cafeto. Cenicafé 24: 79–89.

10 ANEXOS

Anexo 1. Listado de variables que fueron transformadas a rangos

Estrato herbáceo	Todas las variables
Estrato café	MS en hojas
Estrato arbóreo	Todas las variables
Hojarasca	MS en ramas delgadas, ramas gruesas y flores
Aportes totales con hojarasca	MS total en el estrato arbóreo, vegetación herbácea, hojarasca, MS total, aporte total de Ca, K y P.
Aportes totales sin hojarasca	MS total en el estrato arbóreo, vegetación herbácea y aporte total de MS. Aporte total de Ca, Mg, K, P y N.
Aportes totales considerando hojarasca en los tratamientos bajo MC	Todas las variables
Índice de eficiencia de uso de nutrientes	EUN Ca y EUN P

Anexo 2. Aporte de biomasa (MS) del estrato herbáceo en SAF de café en Turrialba, Costa Rica (2006)

	T	Hierbas de	e hoja ancha	G	ramíneas	Hierbas de	buena cobertura	Total
	Tratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg h	na ⁻¹
1	AB (MC)	35,7	183	56,7	291	7,66	39,4	514
2	AB (MO)	17,7	156	52,4	463	29,9	265	884
3	ABER (AC)	90,3	234	7,52	19,5	2,13	5,5	259
4	ABER (MC)	57,1	147	35,2	90,7	7,66	19,7	258
5	ABER (MO)	31,5	81,7	15,9	41,3	52,5	136	259
6	ABTR (MC)	32,5	210	55,3	357	12,2	79,0	647
7	ABTR (MO)	19,6	225	49,1	565	31,3	360	1150
8	ER (AC)	88,1	198	8,07	18,2	3,87	8,70	225
9	ER (MC)	66,7	168	32,9	82,9	0,38	0,97	252
10	ER (MO)	59,2	96,9	25,4	41,6	15,3	25,0	164
11	TR (AC)	86,6	106	5,84	7,17	7,60	9,33	123
12	TR (MC)	32,9	173	59,3	313	7,86	41,5	527
13	TR (MO)	34,5	461	54,3	727	11,2	151	1338
14	TRER (MC)	78,3	153	19,2	37,5	2,48	4,83	195
15	TRER (MO)	33,1	137	51,3	213	15,6	64,6	414
	Promedio general	50,9	182	35,2	218	13,9	80,7	481

Nota: MO= Medio Orgánico, MC= Medio Convencional; AC= Alto convencional, ER: Erythrina poeppigiana, AB: Chloroleucon eurycyclum (Abarema idiopota), TR: Terminalia amazonia.

Anexo 3. Medias del aporte de biomasa en estrato café, en SAF de café en Turrialba, Costa Rica (2006)

т		Т	roncos	R	amas	ŀ	Iojas	Tot	al MS	% CP
1	`ratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	% CP
1	AB (MC)	48,4	1298	44,1	1182	7,46	200	100	2680	89,7
2	AB (MO)	46,1	470	40,7	415	13,2	134	100	1020	31,9
3	ABER (AC)	45,1	1356	43,4	1304	11,5	347	100	3007	66,4
4	ABER (MC)	51,5	1437	39,9	1114	8,65	242	100	2792	68,5
5	ABER (MO)	46,8	1183	38,8	982	14,4	365	100	2530	62,7
6	ABTR (MC)	48,4	1087	41,6	934	9,93	223	100	2244	80,6
7	ABTR (MO)	40,3	419	44,8	466	14,9	155	100	1039	30,9
8	ER (AC)	43,9	1802	42,6	1750	13,4	551	100	4104	78,5
9	ER (MC)	48,0	1731	39,3	1416	12,8	461	100	3608	67,2
10	ER (MO)	42,3	1300	37,8	1164	19,9	612	100	3077	66,1
11	TR (AC)	47,1	1804	46,1	1767	6,81	261	100	3832	81,7
12	TR (MC)	49,2	1343	41,2	1126	9,64	264	100	2733	84,7
13	TR (MO)	44,3	974	41,2	906	14,5	319	100	2199	52,5
14	TRER (MC)	52,1	1705	37,8	1238	10,1	329	100	3272	84,7
15	TRER (MO)	46,8	1133	39,0	943	14,2	343	100	2419	57,7
Pro	medio general	46,7	1269	41,2	1114	12,1	320	100	2704	66,9

Nota: MO= Medio Orgánico, MC= Medio Convencional; AC= Alto convencional, ER: Erythrina poeppigiana, AB: Chloroleucon eurycyclum (Abarema idiopota), TR: Terminalia amazonia.

Anexo 4. Aporte de biomasa (MS) del estrato árboles de sombra en SAF de café en Turrialba, Costa Rica (2006)

Tratamiento	Especie podada	Ној	as	Ran delga		Ran grue		Flo	res	Frut		Tot	al	Gran total
	pouaua	kg ha ⁻¹	%	kg ha ⁻¹										
AB (MC)	AB	609	20,8	532	18,2	1787	61,0	0,63	0,02	0,17	0,01	2929	100	2929
AB (MO)	AB	473	22,0	437	20,3	1239	57,6	1,02	0,05	0,08	0,00	2150	100	2150
ABER (AC)	AB	233	4,85	173	3,59	537	11,2	0,87	0,02	0,00	0,00	944	19,6	4812
ABER (AC)	ER	1558	32,4	490	10,2	1819	37,8	0,00	0,00	0,00	0,00	3868	80,4	4012
ABER (MC)	AB	234	3,07	224	2,94	722	9,50	0,74	0,01	1,70	0,02	1182	15,5	7606
ABER (MC)	ER	1898	24,9	965	12,7	3561	46,8	0,00	0,00	0,00	0,00	6424	84,5	7000
ABER (MO)	AB	349	5,30	427	6,49	1109	16,9	2,02	0,03	1,22	0,02	1888	28,7	6575
ABER (MO)	ER	1476	22,5	618	9,40	2593	39,4	0,00	0,00	0,00	0,00	4687	71,3	6373
ABTR (MC)	AB	405	13,9	374	12,8	1412	48,4	2,26	0,08	1,87	0,06	2195	75,3	2916
ABTR (MC)	TR	264	9,06	242	8,31	215	7,36	0,00	0,00	0,00	0,00	721	24,7	2910
ABTR (MO)	AB	1163	17,6	997	15,1	3744	56,7	12,5	0,19	3,57	0,05	5920	89,6	6608
ABTR (MO)	TR	268	4,06	254	3,84	166	2,52	0,00	0,00	0,00	0,00	688	10,4	0008
ER (AC)	ER	3430	34,3	827	8,27	5740	57,4	0,00	0,00	0,00	0,00	9997	100	9997
ER (MC)	ER	3863	33,8	1745	15,3	5820	50,9	0,00	0,00	0,00	0,00	11427	100	11427
ER (MO)	ER	2449	31,2	1178	15,0	4210	53,7	0,00	0,00	0,00	0,00	7837	100	7837
TR (AC)	TR	693	41,8	535	32,2	431	26,0	0,00	0,00	0,00	0,00	1659	100	1659
TR (MC)	TR	818	43,7	552	29,4	504	26,9	0,00	0,00	0,00	0,00	1874	100	1874
TR (MO)	TR	441	46,2	365	38,2	149	15,6	0,00	0,00	0,00	0,00	955	100	955
TRER (MC)	TR	354	6,36	212	3,81	237	4,27	0,00	0,00	0,00	0,00	803	14,4	5557
TRER (MC)	ER	1552	27,9	677	12,2	2526	45,5	0,00	0,00	0,00	0,00	4754	85,6	3337
TRER (MO)	TR	206	2,49	169	2,05	122	1,48	0,00	0,00	0,00	0,00	497	6,02	8262
TRER (MO)	ER	2301	27,8	881	10,7	4583	55,5	0,00	0,00	0,00	0,00	7765	94,0	8202
Prome	dio	1669	30,8	858	15,9	2882	53,3	1,33	0,02	0,57	0,01	5411	100	5411

Nota: MO= Medio Orgánico, MC= Medio Convencional; AC= Alto convencional, ER: Erythrina poeppigiana, AB: Chloroleucon eurycyclum (Abarema idiopota), TR: Terminalia amazonia.

Anexo 5. Biomasa (MS) de hojarasca caída de forma natural, acumulada durante 7,5 meses de muestreo en SAF de café en Turrialba, Costa Rica (2006)

Π.	T	ъ.	H	Iojas	Rama	s delgadas	Rama	s gruesas	F	lores	F	rutos		Total	
	Tratamientos	Especies	%	kg ha ⁻¹	%	kg l	na ⁻¹								
1	AB (MO)	Café	51,0	2063	0,84	33,9	0,00	0,00	0,43	17,6	3,94	159	56,2	2274	4047
1	AB (MO)	AB	42,1	1704	0,09	3,67	0,00	0,00	1,06	42,9	0,54	21,9	43,8	1773	4047
	ABER (AC)	Café	49,9	1714	1,47	50,7	0,00	0,00	0,24	8,22	3,42	118	55,0	1890	
2	ABER (AC)	AB	28,1	967	0,00	0,00	0,00	0,00	1,22	42,0	0,19	6,56	29,6	1016	3436
	ABER (AC)	ER	15,4	527	0,06	2,22	0,00	0,00	0,01	0,22	0,00	0,00	15,4	530	
	ABER (MO)	Café	30,1	1658	0,63	35,0	0,00	0,00	0,12	6,78	3,34	184	34,2	1883	
3	ABER (MO)	AB	17,4	960	0,01	0,33	0,00	0,00	0,23	12,8	0,49	26,9	18,1	1000	5514
	ABER (MO)	ER	44,9	2475	0,81	44,9	2,00	110	0,02	1,33	0,00	0,00	47,7	2631	
	ABTR (MO)	Café	38,3	1528	1,38	55,0	0,00	0,00	0,32	12,9	2,75	110	42,7	1705	
4	ABTR (MO)	AB	29,1	1162	0,02	0,78	0,00	0,00	1,67	66,6	2,31	92,2	33,1	1321	3993
	ABTR (MO)	TR	23,8	951	0,38	15,3	0,00	0,00	0,00	0,00	0,00	0,00	24,2	966	
5	ER (AC)	Café	54,2	1642	1,54	46,8	0,00	0,00	0,59	17,9	5,59	169	61,9	1876	3031
5	ER (AC)	ER	38,1	1155	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	38,1	1155	3031
6	ER (MO)	Café	37,7	2395	0,80	50,8	0,00	0,00	0,11	6,78	4,16	264	42,8	2717	6352
U	ER (MO)	ER	57,0	3617	0,16	10,2	0,00	0,00	0,05	3,33	0,05	3,33	57,2	3634	0332
7	TR (AC)	Café	33,0	1491	1,07	48,3	0,00	0,00	0,07	3,22	1,35	60,8	35,5	1604	4513
/	TR (AC)	TR	63,4	2862	1,03	46,7	0,00	0,00	0,00	0,00	0,00	0,00	64,5	2909	4313
8	TR (MO)	Café	39,9	1679	0,87	36,8	0,00	0,00	0,23	9,67	2,27	95,6	43,3	1821	4203
o	TR (MO)	TR	56,6	2379	0,10	4,22	0,00	0,00	0,00	0,00	0,00	0,00	56,7	2383	4203
	TRER (MO)	Café	25,9	1715	0,61	40,6	0,00	0,00	0,06	3,67	2,93	194,3	29,5	1954	
9	TRER (MO)	ER	57,1	3788	0,28	18,8	0,22	14,6	0,00	0,00	0,00	0,00	57,6	3821	6629
	TRER (MO)	TR	12,8	846	0,11	7,00	0,00	0,00	0,00	0,00	0,00	0,00	12,9	853	
	Promedio ger	neral	94,0	4364,3	1,4	61,3	0,2	13,9	0,7	28,4	3,7	167,4	100	4635	4635

Nota: MO= Medio Orgánico, MC= Medio Convencional; AC= Alto convencional, ER: Erythrina poeppigiana, AB: Chloroleucon eurycyclum (Abarema idiopota), TR: Terminalia amazonia.

Anexo 6. Medias del aporte de biomasa por estrato, en SAF de café en Turrialba, Costa Rica (2006)

	Tratamientos	Vegetación	herbácea	C	afé	Árboles d	e sombra	To	tal MS
		%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MC)	8,39	514	43,8	2680	47,8	2929	100	6124
2	AB (MO)	21,8	884	25,2	1020	53,0	2150	100	4055
3	ABER (AC)	3,20	259	37,2	3007	59,6	4812	100	8077
4	ABER (MC)	2,42	258	26,2	2792	71,4	7606	100	10656
5	ABER (MO)	2,77	259	27,0	2530	70,2	6575	100	9363
6	ABTR (MC)	11,1	647	38,6	2244	50,2	2916	100	5807
7	ABTR (MO)	13,1	1150	11,8	1039	75,1	6608	100	8798
8	ER (AC)	1,57	225	28,6	4104	69,8	9997	100	14326
9	ER (MC)	1,65	252	23,6	3608	74,7	11427	100	15288
10	ER (MO)	1,48	164	27,8	3077	70,7	7837	100	11077
11	TR (AC)	2,19	123	68,3	3832	29,5	1659	100	5614
12	TR (MC)	10,3	527	53,2	2733	36,5	1874	100	5134
13	TR (MO)	29,8	1338	49,0	2199	21,3	955	100	4493
14	TRER (MC)	2,16	195	36,3	3272	61,6	5557	100	9024
15	TRER (MO)	3,73	414	21,8	2419	74,5	8262	100	11096
F	Promedio general	7,70	481	34,6	2704	57,7	5411	100	8595

Anexo 7. Medias del aporte de biomasa por estrato y el aporte de hojarasca en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	Vegetac	ión herbácea		Café	Árboles	de sombra	Ho	jarasca	Tot	al MS
	Trataimento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MO)	10,9	884	12,6	1020	26,5	2150	50,0	4047	100	8102
2	ABER (AC)	2,25	259	26,1	3007	41,8	4812	29,8	3436	100	11513
3	ABER (MO)	1,74	259	17,0	2530	44,2	6575	37,1	5514	100	14878
4	ABTR (MO)	8,99	1150	8,13	1039	51,7	6608	31,2	3993	100	12791
5	ER (AC)	1,30	225	23,6	4104	57,6	9997	17,5	3031	100	17357
6	ER (MO)	0,94	164	17,7	3077	45,0	7837	36,4	6352	100	17428
7	TR (AC)	1,21	123	37,8	3832	16,4	1659	44,6	4513	100	10126
8	TR (MO)	15,4	1338	25,3	2199	11,0	955	48,3	4203	100	8696
9	TRER (MO)	2,34	414	13,7	2419	46,6	8262	37,4	6629	100	17724
	Promedio general	5,01	535	20,2	2581	37,9	5428	36,9	4635	100	13180

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral).

Anexo 8. Medias del aporte de Ca por estrato y el aporte de hojarasca en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	Vege	tación herbácea		Café	Árbole	s de sombra	Н	lojarasca	To	talCa
	Tratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MO)	13,7	14,42	8,18	8,64	18,7	19,8	59,4	62,7	100	106
2	ABER (AC)	1,78	2,10	23,6	27,9	27,4	32,3	47,2	55,7	100	118
3	ABER (MO)	2,46	5,09	10,4	21,5	28,7	59,3	58,4	121	100	207
4	ABTR (MO)	9,76	15,52	6,05	9,62	42,5	67,6	41,6	66,2	100	159
5	ER (AC)	1,24	1,90	25,0	38,4	35,3	54,1	38,5	59,0	100	153
6	ER (MO)	0,87	1,99	11,7	26,6	22,3	50,6	65,2	148	100	227
7	TR (AC)	0,53	0,74	20,6	28,7	13,3	18,6	65,6	91,5	100	140
8	TR (MO)	9,53	13,86	13,9	20,1	9,5	13,8	67,1	97,6	100	145
9	TRER (MO)	2,32	5,69	8,71	21,4	23,8	58,3	65,2	160	100	245
Pı	romedio general	4,68	6,81	14,2	22,5	24,6	41,6	56,5	95,7	100	167

Anexo 9. Medias del aporte de Mg por estrato y el aporte de hojarasca en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	Veget	tación herbácea		Café	Árboles	s de sombra	Н	ojarasca	Tot	alMg
	Tratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MO)	25,2	4,34	7,69	1,32	11,6	2,00	55,5	9,54	100	17,2
2	ABER (AC)	4,16	1,11	17,1	4,55	39,5	10,5	39,2	10,4	100	26,6
3	ABER (MO)	4,59	1,31	11,6	3,32	30,7	8,79	53,1	15,2	100	28,6
4	ABTR (MO)	22,4	5,06	6,32	1,43	32,5	7,33	38,8	8,74	100	22,6
5	ER (AC)	2,49	0,88	18,5	6,57	44,7	15,9	34,4	12,2	100	35,6
6	ER (MO)	1,71	0,68	12,9	5,11	33,1	13,2	52,3	20,8	100	39,7
7	TR (AC)	2,36	0,45	22,6	4,35	12,7	2,45	62,3	12,0	100	19,2
8	TR (MO)	26,9	5,59	14,7	3,06	6,12	1,27	52,2	10,8	100	20,8
9	TRER (MO)	5,18	1,73	11,0	3,69	31,3	10,5	52,4	17,5	100	33,4
Pı	romedio general	10,6	2,35	13,6	3,71	26,9	7,99	48,9	13,0	100	27,1

Anexo 10. Medias del aporte de K por estrato y el aporte de hojarasca en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	Veget	ación herbácea	(Café	Árbole	es de sombra	Н	ojarasca	Tot	alK
	1 ratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MO)	28,9	30,2	10,3	10,8	14,5	15,2	46,2	48,3	100	104
2	ABER (AC)	5,36	7,59	21,2	30,1	41,4	58,6	32,0	45,3	100	142
3	ABER (MO)	5,51	9,66	16,1	28,3	42,5	74,6	35,8	62,7	100	175
4	ABTR (MO)	30,1	44,3	7,78	11,4	34,0	49,9	28,1	41,3	100	147
5	ER (AC)	3,00	6,11	22,3	45,5	58,6	120	16,1	32,8	100	204
6	ER (MO)	2,56	5,85	15,8	36,1	50,7	116	30,9	70,6	100	228
7	TR (AC)	4,16	3,39	43,6	35,5	13,2	10,8	39,0	31,8	100	81,4
8	TR (MO)	46,7	51,4	20,4	22,4	5,68	6,25	27,2	30,0	100	110
9	TRER (MO)	6,38	14,0	11,2	24,6	53,0	116	29,4	64,3	100	219
	Promedio general	14,7	19,2	18,8	27,2	34,8	62,9	31,6	47,5	100	157

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral).

Anexo 11. Medias del aporte de P por estrato y el aporte de hojarasca en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	Veget	ación herbácea	(Café	Árbole	es de sombra	Н	ojarasca	Tot	talP
	1 ratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MO)	24,4	3,19	10,3	1,35	27,9	3,65	37,4	4,90	100	13,1
2	ABER (AC)	3,64	0,62	17,7	3,02	54,5	9,32	24,2	4,14	100	17,1
3	ABER (MO)	4,24	0,99	10,9	2,55	52,2	12,2	32,7	7,65	100	23,4
4	ABTR (MO)	21,1	4,57	5,30	1,15	52,2	11,3	21,4	4,65	100	21,7
5	ER (AC)	2,15	0,59	13,7	3,77	70,1	19,3	14,1	3,87	100	27,5
6	ER (MO)	1,38	0,44	9,72	3,12	59,2	19,0	29,7	9,55	100	32,1
7	TR (AC)	2,72	0,24	45,6	4,09	16,8	1,51	34,9	3,14	100	8,98
8	TR (MO)	36,5	4,63	21,2	2,69	11,1	1,40	31,3	3,96	100	12,7
9	TRER (MO)	3,84	1,25	8,03	2,62	57,9	18,9	30,2	9,87	100	32,7
P	romedio general	11,1	1,84	15,8	2,71	44,6	10,7	28,4	5,75	100	21,0

Anexo 12. Medias del aporte de N por estrato y el aporte de hojarasca en SAF de café en Turrialba, Costa Rica (2006)

	Tratamiento	Vege	etación herbácea	(Café	Árbol	es de sombra	I	Hojarasca	To	talN
	1 ratamiento	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MO)	12,4	26,8	7,15	15,5	23,5	50,8	57,0	123	100	216
2	ABER (AC)	2,88	8,37	16,9	49,1	45,0	131	35,3	103	100	291
3	ABER (MO)	2,62	9,46	11,5	41,4	41,9	151	44,0	159	100	361
4	ABTR (MO)	12,2	35,2	5,97	17,2	46,4	133	35,4	102	100	287
5	ER (AC)	1,86	7,78	15,9	66,3	60,9	254	21,4	89	100	418
6	ER (MO)	1,39	5,97	12,1	52,2	44,4	191	42,1	181	100	430
7	TR (AC)	2,48	3,72	36,4	54,5	11,8	17,6	49,4	74,1	100	150
8	TR (MO)	23,8	36,5	22,9	35,2	6,53	10,0	46,7	71,6	100	153
9	TRER (MO)	3,37	13,5	10,0	40,0	42,3	170	44,4	178	100	401
Pı	romedio general	7,01	16,4	15,4	41,2	35,8	123	41,7	120	100	301

Anexo 13. Medias del aporte de Ca por estrato, en SAF de café en Turrialba, Costa Rica (2006)

	Tratamientos	Vege	tación herbácea		Café	Árboles	de sombra	7	Total
		%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MC)	6,99	3,78	47,6	25,8	45,5	24,6	100	54,2
2	AB (MO)	33,7	14,4	20,2	8,64	46,2	19,8	100	42,8
3	ABER (AC)	3,37	2,10	44,8	27,9	51,8	32,3	100	62,3
4	ABER (MC)	2,53	2,24	29,0	25,8	68,5	60,9	100	88,9
5	ABER (MO)	5,92	5,09	25,0	21,5	69,0	59,3	100	85,9
6	ABTR (MC)	11,4	5,89	42,1	21,8	46,5	24,1	100	51,7
7	ABTR (MO)	16,7	15,5	10,4	9,62	72,9	67,6	100	92,8
8	ER (AC)	2,02	1,90	40,7	38,4	57,3	54,1	100	94,4
9	ER (MC)	1,49	1,68	28,5	32,1	70,0	78,7	100	112
10	ER (MO)	2,51	1,99	33,6	26,6	63,9	50,6	100	79,2
11	TR (AC)	1,54	0,74	59,8	28,7	38,6	18,6	100	48,0
12	TR (MC)	8,07	4,69	45,6	26,5	46,3	26,9	100	58,1
13	TR (MO)	29,0	13,9	42,1	20,1	28,9	13,8	100	47,8
14	TRER (MC)	1,99	1,52	38,0	29,1	60,0	45,9	100	76,5
15	TRER (MO)	6,67	5,69	25,0	21,4	68,3	58,3	100	85,3
P	romedio general	8,92	5,41	35,49	24,3	55,6	42,4	100	72,0

Anexo 14. Medias del aporte de Mg por estrato, en SAF de café en Turrialba, Costa Rica (2006)

	Tratamientos	Vegetae	ción herbácea		Café	Árboles	s de sombra	,	Total
	1 ratamientos	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MC)	26,2	2,10	40,7	3,25	33,1	2,64	100	7,99
2	AB (MO)	56,6	4,34	17,3	1,32	26,1	2,00	100	7,66
3	ABER (AC)	6,83	1,11	28,2	4,55	65,0	10,5	100	16,2
4	ABER (MC)	6,30	1,11	20,3	3,58	73,4	13,0	100	17,6
5	ABER (MO)	9,78	1,31	24,8	3,32	65,5	8,79	100	13,4
6	ABTR (MC)	31,9	2,83	34,4	3,05	33,7	2,99	100	8,87
7	ABTR (MO)	36,6	5,06	10,3	1,43	53,0	7,33	100	13,8
8	ER (AC)	3,79	0,88	28,1	6,57	68,1	15,9	100	23,3
9	ER (MC)	4,08	1,04	21,2	5,38	74,8	19,0	100	25,4
10	ER (MO)	3,59	0,68	26,9	5,11	69,5	13,2	100	19,0
11	TR (AC)	6,27	0,45	59,9	4,35	33,8	2,45	100	7,25
12	TR (MC)	24,2	2,03	40,8	3,42	35,0	2,93	100	8,37
13	TR (MO)	56,3	5,59	30,9	3,06	12,8	1,27	100	9,92
14	TRER (MC)	5,21	0,77	31,0	4,58	63,8	9,45	100	14,8
15	TRER (MO)	10,9	1,73	23,2	3,69	65,9	10,5	100	15,9
P	romedio general	19,2	2,07	29,2	3,78	51,6	8,12	100	14,0

Anexo 15. Medias del aporte de K por estrato, en SAF de café en Turrialba, Costa Rica (2006)

	Tratamientos	Vegetación	herbácea	Ca	ıfé	Árboles	de sombra	To	tal
	1 rataimentos	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MC)	27,2	16,1	37,6	22,3	35,2	20,8	100	59,3
2	AB (MO)	53,8	30,2	19,2	10,8	27,0	15,2	100	56,2
3	ABER (AC)	7,88	7,59	31,2	30,1	60,9	58,6	100	96,3
4	ABER (MC)	7,52	8,40	23,6	26,4	68,8	76,8	100	112
5	ABER (MO)	8,59	9,66	25,1	28,3	66,3	74,6	100	113
6	ABTR (MC)	35,6	23,1	33,3	21,7	31,1	20,2	100	65,0
7	ABTR (MO)	41,9	44,3	10,8	11,4	47,2	49,9	100	106
8	ER (AC)	3,57	6,11	26,6	45,5	69,8	120	100	171
9	ER (MC)	4,07	7,46	19,2	35,2	76,8	141	100	183
10	ER (MO)	3,71	5,85	22,9	36,1	73,4	116	100	158
11	TR (AC)	6,82	3,39	71,5	35,5	21,7	10,8	100	49,7
12	TR (MC)	32,0	18,7	44,4	26,0	23,6	13,8	100	58,5
13	TR (MO)	64,2	51,4	28,0	22,4	7,8	6,25	100	80,1
14	TRER (MC)	4,71	5,06	30,0	32,3	65,3	70,2	100	108
15	TRER (MO)	9,04	14,0	15,9	24,6	75,0	116	100	155
P	romedio general	20,7	16,8	29,3	27,2	50,0	60,6	100	105

Anexo 16. Medias del aporte de P por estrato, en SAF de café en Turrialba, Costa Rica (2006)

	Tratamientos	Vegetación	herbácea	Ca	fé	Árboles	de sombra	Tot	tal
	Tratamientos	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MC)	17,2	1,65	27,6	2,65	55,2	5,31	100	9,62
2	AB (MO)	38,9	3,19	16,5	1,35	44,5	3,65	100	8,20
3	ABER (AC)	4,80	0,62	23,3	3,02	71,9	9,32	100	13,0
4	ABER (MC)	4,34	0,70	15,1	2,44	80,5	13,0	100	16,1
5	ABER (MO)	6,30	0,99	16,2	2,55	77,5	12,2	100	15,8
6	ABTR (MC)	26,0	2,25	24,1	2,08	49,9	4,32	100	8,65
7	ABTR (MO)	26,8	4,57	6,75	1,15	66,5	11,3	100	17,1
8	ER (AC)	2,50	0,59	16,0	3,77	81,5	19,3	100	23,7
9	ER (MC)	2,50	0,64	10,6	2,72	86,9	22,3	100	25,7
10	ER (MO)	1,96	0,44	13,8	3,12	84,2	19,0	100	22,6
11	TR (AC)	4,18	0,24	70,0	4,09	25,8	1,51	100	5,84
12	TR (MC)	23,7	1,66	43,2	3,02	33,1	2,31	100	6,99
13	TR (MO)	53,0	4,63	30,9	2,69	16,1	1,40	100	8,72
14	TRER (MC)	3,10	0,47	19,2	2,91	77,8	11,8	100	15,2
15	TRER (MO)	5,51	1,25	11,5	2,62	83,0	18,9	100	22,8
P	romedio general	14,7	1,59	23,0	2,68	62,3	10,4	100	14,7

Anexo 17. Medias del aporte de N por estrato, en SAF de café en Turrialba, Costa Rica (2006)

	Tratamientos	Vegetac	ción herbácea		Café	Árboles	s de sombra		Γotal
	1 ratamientos	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹	%	kg ha ⁻¹
1	AB (MC)	12,4	14,2	29,8	34,1	57,7	65,9	100	114
2	AB (MO)	28,8	26,8	16,6	15,5	54,6	50,8	100	93,1
3	ABER (AC)	4,45	8,37	26,1	49,1	69,5	131	100	188
4	ABER (MC)	3,86	9,00	16,9	39,5	79,2	185	100	233
5	ABER (MO)	4,68	9,46	20,5	41,4	74,8	151	100	202
6	ABTR (MC)	15,3	17,6	29,6	33,9	55,1	63,3	100	115
7	ABTR (MO)	18,9	35,2	9,24	17,2	71,8	133	100	186
8	ER (AC)	2,37	7,78	20,2	66,3	77,4	254	100	328
9	ER (MC)	2,43	8,50	17,2	60,2	80,3	281	100	349
10	ER (MO)	2,40	5,97	20,9	52,2	76,7	191	100	249
11	TR (AC)	4,90	3,72	71,9	54,5	23,2	17,6	100	75,9
12	TR (MC)	20,6	14,9	50,2	36,2	29,2	21,0	100	72,1
13	TR (MO)	44,7	36,5	43,1	35,2	12,3	10,0	100	81,6
14	TRER (MC)	3,49	6,60	26,9	50,9	69,6	132	100	189
15	TRER (MO)	6,06	13,5	17,9	40,0	76,0	170	100	223
P	romedio general	11,7	14,5	27,8	41,7	60,5	124	100	180

Anexo 18. Concentraciones de Ca (%) en biomasa de hojarasca caída de forma natural en SAF de café, Turrialba, Costa Rica (2006)

	Tratamiento		(Café			C	ashá			Po	ró		Roble	coral
	1 ratamiento	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
1	AB (MO)	1,80	1,42	0,76	0,31	1,41	2,42	0,50	0,51	SV	SV	SV	sv	sv	SV
2	ABER (AC)	1,68	1,29	0,79	0,32	1,52	SV	0,54	0,54	2,06	1,30	SV	SV	sv	sv
3	ABER (MO)	1,63	0,89	0,41	0,43	1,58	SV	0,46	0,69	3,07	1,08	0,74	SV	sv	SV
4	ABTR (MO)	1,57	1,44	0,54	0,26	1,51	SV	0,54	0,58	SV	SV	SV	SV	2,35	1,86
5	ER (AC)	1,61	1,03	0,65	0,32	SV	SV	SV	SV	2,72	sv	SV	SV	sv	sv
6	ER (MO)	1,88	1,35	0,55	0,29	SV	SV	SV	SV	2,80	2,41	SV	0,35	SV	SV
7	TR (AC)	1,46	1,37	0,47	0,31	SV	2,38	1,58							
8	TR (MO)	2,03	1,29	0,82	0,35	SV	2,63	1,20							
9	TRER (MO)	2,14	1,32	0,75	0,30	SV	SV	SV	SV	2,62	2,07	SV	SV	2,64	1,81
	Promedio	1,76	1,27	0,64	0,32	1,51	1,21	0,51	0,58	2,65	1,72	0,74	0,35	2,50	1,61

Anexo 19. Concentraciones de Mg(%) en biomasa de hojarasca caída de forma natural en SAF de café, Turrialba, Costa Rica

	Tratamiento		C	afé			Ca	shá			Po	ró		Roble	coral
	Trataimento	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
1	AB (MO)	0,34	0,19	0,28	0,18	0,12	0,18	0,13	0,09	SV	sv	SV	SV	sv	SV
2	ABER (AC)	0,40	0,21	0,22	0,20	0,15	SV	0,12	0,12	0,32	0,39	SV	SV	SV	sv
3	ABER (MO)	0,35	0,13	0,23	0,20	0,12	SV	0,13	0,11	0,31	0,08	0,07	SV	SV	sv
4	ABTR (MO)	0,33	0,22	0,27	0,17	0,09	SV	0,12	0,12	SV	sv	SV	SV	0,22	0,21
5	ER (AC)	0,37	0,18	0,27	0,22	SV	SV	SV	SV	0,49	SV	sv	SV	SV	SV
6	ER (MO)	0,39	0,19	0,24	0,17	SV	sv	sv	sv	0,30	0,15	SV	0,30	SV	sv
7	TR (AC)	0,34	0,22	0,22	0,21	SV	0,23	0,20							
8	TR (MO)	0,36	0,17	0,27	0,20	SV	0,19	0,15							
9	TRER (MO)	0,36	0,18	0,27	0,18	SV	SV	SV	SV	0,24	0,23	SV	SV	0,21	0,12
	Promedio	0,36	0,19	0,25	0,19	0,12	0,18	0,13	0,11	0,33	0,21	0,07	0,30	0,21	0,17

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral); Ho: hojas; Ra: ramas; FL: flores; RD: ramas delgadas; RG: ramas gruesas.

Anexo 20. Concentraciones de K (%) en biomasa de hojarasca caída de forma natural en SAF de café, Turrialba, Costa Rica (2006)

	Tratamientos		C	afé			Ca	shá			Po	ró		Roble	coral
	1 ratamientos	Ho	Ra	FL	FR	Ho	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
1	AB (MO)	1,91	0,54	1,28	2,03	0,28	0,51	0,77	0,59	sv	sv	sv	SV	SV	SV
2	ABER (AC)	1,96	0,42	1,42	2,25	0,31	SV	0,51	0,87	1,04	0,65	SV	SV	SV	SV
3	ABER (MO)	2,24	0,46	2,22	2,11	0,24	SV	0,62	0,64	0,75	0,17	0,19	SV	SV	SV
4	ABTR (MO)	2,05	0,65	1,94	2,05	0,19	SV	0,56	0,82	sv	SV	sv	SV	0,39	0,61
5	ER (AC)	1,28	0,39	1,60	1,89	SV	SV	SV	sv	0,70	SV	SV	SV	SV	sv
6	ER (MO)	1,57	0,40	1,83	2,01	SV	SV	SV	sv	0,75	0,71	sv	3,51	sv	sv
7	TR (AC)	1,51	0,45	2,02	2,32	SV	0,26	0,23							
8	TR (MO)	1,26	0,48	1,62	1,65	SV	0,29	0,28							
9	TRER (MO)	1,63	0,54	1,81	1,79	SV	SV	SV	SV	0,79	0,33	SV	SV	0,31	0,12
	Promedio	1,71	0,48	1,75	2,01	0,26	0,51	0,62	0,73	0,81	0,47	0,19	3,51	0,31	0,31

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral); Ho: hojas; Ra: ramas; FL: flores; RD: ramas delgadas; RG: ramas gruesas.

Anexo 21. Concentraciones de P (%) en biomasa de hojarasca caída de forma natural en SAF de café, Turrialba, Costa Rica (2006)

	Tratamiento		C	afé			Ca	shá			Po	ró		Roble	coral
	1 ratamiento	Ho	Ra	FL	FR	Но	RD	FLP	FR	Ho	RD	RG	FL	Ho	RD
1	AB (MO)	0,14	0,10	0,23	0,17	0,09	0,14	0,21	0,15	SV	SV	sv	SV	sv	sv
2	ABER (AC)	0,12	0,09	0,22	0,17	0,08	SV	0,19	0,19	0,18	0,05	sv	SV	sv	SV
3	ABER (MO)	0,12	0,07	0,24	0,16	0,09	SV	0,22	0,17	0,17	0,11	0,12	SV	SV	SV
4	ABTR (MO)	0,13	0,11	0,25	0,16	0,09	SV	0,20	0,17	sv	SV	SV	SV	0,11	0,12
5	ER (AC)	0,10	0,07	0,22	0,18	SV	SV	SV	SV	0,16	SV	SV	SV	SV	sv
6	ER (MO)	0,12	0,09	0,23	0,16	SV	SV	sv	SV	0,17	0,25	SV	0,44	SV	SV
7	TR (AC)	0,10	0,13	0,22	0,19	SV	0,05	0,06							
8	TR (MO)	0,11	0,10	0,23	0,16	SV	0,08	0,08							
9	TRER (MO)	0,11	0,10	0,24	0,15	SV	SV	SV	SV	0,18	0,32	sv	SV	0,09	0,05
	Promedio	0,12	0,10	0,23	0,17	0,09	0,14	0,21	0,17	0,17	0,18	0,12	0,44	0,08	0,08

Anexo 22. Concentraciones de N (%) en biomasa de hojarasca caída de forma natural en SAF de café, Turrialba, Costa Rica (2006)

	Tratamiento		C	afé			Ca	shá			Po	ró		Roble	coral
	1 ratamiento	Ho	Ra	FL	FR	Но	RD	FL	FR	Ho	RD	RG	FL	Ho	RD
1	AB (MO)	2,57	1,88	3,90	2,38	3,63	1,62	5,07	4,41	sv	sv	sv	sv	sv	SV
2	ABER (AC)	2,60	1,95	3,76	2,44	3,64	sv	5,08	4,19	3,09	0,87	sv	sv	sv	SV
3	ABER (MO)	2,63	1,37	3,51	2,66	3,55	SV	5,14	4,32	2,94	0,78	0,57	sv	SV	SV
4	ABTR (MO)	2,43	2,11	3,51	2,62	3,59	SV	4,99	4,01	sv	SV	sv	sv	1,17	0,89
5	ER (AC)	2,99	2,11	3,91	3,00	sv	SV	SV	sv	2,90	SV	sv	sv	SV	SV
6	ER (MO)	2,82	1,89	3,79	2,63	sv	SV	SV	sv	2,90	1,50	sv	3,99	SV	SV
7	TR (AC)	2,59	2,05	3,57	2,39	sv	1,13	1,30							
8	TR (MO)	2,49	1,94	3,55	2,38	sv	1,11	1,22							
9	TRER (MO)	2,42	1,84	3,70	2,70	sv	SV	SV	sv	3,17	1,53	sv	SV	1,19	1,44
	Promedio	2,62	1,90	3,69	2,58	3,60	1,62	5,07	4,23	3,00	1,17	0,57	3,99	1,15	1,21

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral); Ho: hojas; Ra: ramas; FL: flores; RD: ramas delgadas; RG: ramas gruesas

Anexo 23. Concentraciones de Ca (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica (2006)

7	· · · · · · · · · · · · · · · · · · ·	Vegeta	ción he	rbácea		Café				Cashá	l			Poró		Ro	ble co	ral
1	ratamiento	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
1	AB(MC)	1,07	0,50	0,93	1,14	1,24	0,68	1,09	0,96	0,72	0,43	0,64	SV	SV	sv	SV	SV	SV
2	AB(MO)	1,55	0,59	3,50	1,20	1,17	0,46	0,90	1,00	0,90	0,40	0,47	SV	sv	sv	sv	SV	SV
3	ABER(AC)	0,85	0,29	1,03	1,22	1,16	0,63	0,65	0,89	0,61	0,20		1,12	0,81	0,25	SV	sv	SV
4	ABER(MC)	0,85	0,54	2,55	1,17	1,13	0,72	0,72	1,14	0,88	0,39	0,58	1,78	0,97	0,20	sv	sv	SV
5	ABER(MO)	1,33	0,52	2,78	1,34	1,08	0,51	0,98	1,02	0,97	0,44	0,50	1,98	0,82	0,25	sv	sv	SV
6	ABTR(MC)	1,43	0,56	1,12	1,00	1,23	0,74	0,69	0,90	0,72	0,23	0,55	SV	SV	sv	1,99	0,64	0,43
7	ABTR(MO)	1,33	0,54	2,63	1,07	1,08	0,70	0,95	1,08	1,00	0,38	0,74	SV	SV	SV	1,78	0,98	0,63
8	ER(AC)	0,88	0,40	1,00	1,22	1,17	0,62	SV	SV	SV	SV	SV	1,00	0,59	0,26	SV	sv	SV
9	ER(MC)	0,69	0,48	2,83	1,36	1,15	0,55	SV	SV	SV	SV	SV	1,41	0,72	0,20	SV	sv	SV
10	ER(MO)	1,29	0,42	2,24	1,24	1,13	0,45	SV	SV	SV	SV	SV	1,07	0,89	0,33	sv	sv	SV
11	TR(AC)	0,62	0,30	0,65	1,18	0,94	0,50	SV	SV	SV	SV	SV	sv	SV	sv	1,68	0,93	0,45
12	TR(MC)	1,39	0,55	1,35	1,12	1,27	0,69	SV	SV	SV	SV	SV	SV	sv	sv	1,79	1,77	0,50
13	TR(MO)	1,43	0,51	2,36	1,13	1,19	0,59	SV	SV	sv	SV	SV	sv	SV	sv	1,94	1,19	0,61
14	TRER(MC)	0,85	0,47	1,02	1,29	1,26	0,54	SV	SV	sv	SV	SV	1,37	0,95	0,27	1,91	0,97	0,42
15	TRER(MO)	1,52	0,58	3,68	1,32	1,22	0,47	SV	SV	SV	SV	SV	1,44	0,76	0,27	1,79	1,48	0,82
	Promedio	1,14	0,48	1,98	1,20	1,16	0,59	0,85	1,00	0,83	0,35	0,58	1,40	0,81	0,25	1,84	1,14	0,55

Anexo 24. Concentraciones de Mg (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica (2006)

7	Cuatamianta	Vegeta	ación he	rbácea		Café				Cashá				Poró		R	oble cor	al
,	Tratamiento	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
1	AB(MC)	0,39	0,40	0,55	0,35	0,15	0,06	0,28	0,06	0,04	0,13	0,12	SV	SV	SV	sv	SV	sv
2	AB(MO)	0,42	0,44	0,62	0,31	0,15	0,06	0,23	0,07	0,05	0,15	0,09	SV	SV	SV	SV	SV	SV
3	ABER(AC)	0,42	0,48	0,55	0,40	0,17	0,07	0,24	0,08	0,06	0,22		0,34	0,30	0,15	SV	SV	SV
4	ABER(MC)	0,46	0,36	0,55	0,33	0,16	0,07	0,28	0,08	0,06	0,16	0,12	0,36	0,21	0,08	sv	SV	sv
5	ABER(MO)	0,41	0,36	0,61	0,34	0,14	0,06	0,25	0,08	0,07	0,21	0,12	0,28	0,15	0,07	sv	SV	sv
6	ABTR(MC)	0,41	0,43	0,55	0,35	0,15	0,08	0,24	0,08	0,05	0,16	0,13	SV	SV	SV	0,20	0,12	0,08
7	ABTR(MO)	0,37	0,36	0,61	0,31	0,14	0,07	0,27	0,07	0,06	0,15	0,11	SV	SV	SV	0,23	0,15	0,10
8	ER(AC)	0,40	0,37	0,28	0,39	0,17	0,08	sv	SV	sv	SV	SV	0,25	0,19	0,10	SV	SV	SV
9	ER(MC)	0,47	0,36	0,53	0,42	0,17	0,06	SV	SV	SV	SV	SV	0,28	0,17	0,09	SV	SV	SV
10	ER(MO)	0,42	0,44	0,36	0,36	0,16	0,08	SV	SV	SV	SV	SV	0,28	0,25	0,08	SV	SV	SV
11	TR(AC)	0,38	0,44	0,21	0,37	0,13	0,06	SV	sv	sv	sv	SV	SV	SV	SV	0,21	0,13	0,07
12	TR(MC)	0,42	0,35	0,49	0,30	0,15	0,07	SV	sv	sv	sv	SV	SV	SV	SV	0,20	0,17	0,07
13	TR(MO)	0,33	0,41	0,72	0,32	0,15	0,07	sv	SV	sv	SV	SV	SV	SV	SV	0,17	0,11	0,08
14	TRER(MC)	0,41	0,33	0,45	0,39	0,17	0,07	sv	SV	sv	SV	SV	0,30	0,21	0,08	0,23	0,11	0,07
15	TRER(MO)	0,42	0,41	0,44	0,35	0,18	0,07	SV	SV	SV	SV	sv	0,23	0,14	0,07	0,22	0,17	0,09
	Promedio	0,41	0,40	0,50	0,35	0,16	0,07	0,26	0,07	0,05	0,17	0,12	0,29	0,20	0,09	0,21	0,14	0,08

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral); Ho: hojas; Ra: ramas; FL: flores; RD: ramas delgadas; RG: ramas gruesas.

Anexo 25. Concentraciones de K (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica (2006)

т.	atamiento	Vegeta	ción he	rbácea		Café				Cashá	í			Poró		Ro	ble co	ral
11	ratamiento	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
1	AB(MC)	2,44	3,40	4,47	2,38	0,77	0,65	1,28	0,77	0,50	1,56	0,55	SV	sv	sv	sv	sv	SV
2	AB(MO)	3,22	3,38	3,61	2,39	1,18	0,57	1,12	0,75	0,53	1,29	0,60	SV	sv	sv	SV	SV	SV
3	ABER(AC)	2,83	3,63	4,91	2,17	0,95	0,75	1,25	0,86	0,57	1,93	SV	1,48	2,24	0,94	SV	SV	sv
4	ABER(MC)	2,43	4,08	5,69	2,39	1,04	0,63	1,27	0,78	0,68	0,93	0,74	1,32	1,49	0,78	SV	SV	SV
5	ABER(MO)	3,84	3,50	3,73	2,56	1,22	0,59	1,12	0,90	0,66	1,57	0,90	1,41	2,10	0,99	SV	SV	SV
6	ABTR(MC)	2,85	3,64	5,23	2,42	1,01	0,63	1,21	0,79	0,52	0,67	0,97	SV	SV	SV	0,60	0,69	0,77
7	ABTR(MO)	3,84	3,62	4,22	2,33	1,06	0,69	1,20	0,84	0,61	1,04	0,45	SV	sv	sv	0,57	0,65	0,74
8	ER(AC)	2,62	3,74	2,77	2,35	1,11	0,73	SV	SV	sv	sv	SV	1,70	1,57	0,84	SV	SV	sv
9	ER(MC)	2,49	4,31	4,41	2,29	0,98	0,62	SV	SV	sv	sv	SV	1,18	1,32	1,24	SV	SV	SV
10	ER(MO)	3,15	3,74	4,95	2,46	1,19	0,55	SV	SV	sv	sv	SV	1,80	2,11	1,11	SV	SV	SV
11	TR(AC)	2,70	4,88	1,82	2,19	0,98	0,69	SV	SV	SV	sv	SV	SV	SV	sv	0,73	0,65	0,60
12	TR(MC)	3,14	3,56	5,19	2,46	0,86	0,73	SV	SV	sv	sv	SV	SV	sv	SV	0,61	0,81	0,77
13	TR(MO)	3,81	3,78	4,20	2,25	1,06	0,58	SV	SV	sv	sv	SV	SV	sv	sv	0,64	0,57	0,73
14	TRER(MC)	2,48	3,02	2,95	2,39	1,09	0,64	SV	SV	sv	SV	SV	1,61	1,73	1,12	0,64	0,68	0,57
15	TRER(MO)	2,98	3,55	3,63	2,32	1,19	0,48	SV	SV	SV	SV	SV	1,59	2,01	1,28	0,71	0,62	0,64
I	Promedio	2,99	3,72	4,12	2,36	1,05	0,64	1,21	0,81	0,58	1,28	0,70	1,51	1,82	1,04	0,64	0,67	0,69

Anexo 26. Concentraciones de P (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica (2006)

	Tratamiento	Vegeta	ción her	bácea		Café				Cashá				Poró		Ro	ble co	ral
		HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
1	AB(MC)	0,30	0,33	0,36	0,21	0,09	0,09	0,19	0,21	0,17	0,22	0,15	SV	SV	SV	SV	SV	SV
2	AB(MO)	0,35	0,36	0,37	0,19	0,14	0,11	0,22	0,20	0,14	0,28	0,12	SV	SV	SV	SV	SV	SV
3	ABER(AC)	0,24	0,22	0,34	0,18	0,09	0,09	0,18	0,17	0,13	0,43	SV	0,30	0,25	0,11	SV	SV	SV
4	ABER(MC)	0,25	0,30	0,31	0,18	0,09	0,07	0,20	0,18	0,14	0,25	0,20	0,31	0,21	0,09	SV	SV	SV
5	ABER(MO)	0,39	0,28	0,41	0,17	0,10	0,08	0,18	0,15	0,12	0,30	0,18	0,31	0,27	0,13	SV	SV	SV
6	ABTR(MC)	0,32	0,35	0,41	0,21	0,08	0,08	0,20	0,19	0,13	0,22	0,17	SV	SV	SV	0,19	0,09	0,11
7	ABTR(MO)	0,40	0,37	0,44	0,20	0,10	0,09	0,19	0,20	0,16	0,23	0,17	SV	SV	SV	0,20	0,15	0,12
8	ER(AC)	0,26	0,28	0,30	0,17	0,09	0,07	SV	SV	sv	SV	SV	0,33	0,20	0,11	SV	SV	SV
9	ER(MC)	0,22	0,31	0,30	0,15	0,07	0,06	SV	SV	SV	SV	SV	0,31	0,16	0,13	SV	SV	SV
10	ER(MO)	0,25	0,23	0,42	0,15	0,10	0,08	SV	SV	SV	SV	SV	0,37	0,31	0,15	SV	SV	SV
11	TR(AC)	0,19	0,29	0,23	0,20	0,11	0,09	SV	SV	SV	SV	SV	SV	SV	SV	0,12	0,07	0,07
12	TR(MC)	0,32	0,31	0,32	0,21	0,10	0,10	SV	SV	SV	SV	SV	SV	SV	SV	0,14	0,12	0,10
13	TR(MO)	0,33	0,34	0,42	0,20	0,13	0,09	SV	SV	sv	SV	SV	SV	SV	SV	0,18	0,13	0,09
14	TRER(MC)	0,24	0,24	0,30	0,17	0,08	0,08	SV	SV	SV	SV	SV	0,33	0,29	0,14	0,20	0,16	0,13
15	TRER(MO)	0,28	0,30	0,36	0,17	0,12	0,08	SV	SV	SV	SV	SV	0,32	0,33	0,17	0,16	0,17	0,12
	Promedio	0,29	0,30	0,35	0,18	0,10	0,08	0,19	0,19	0,14	0,28	0,17	0,32	0,25	0,13	0,17	0,13	0,11

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (Abarema idiopota) (cashá), TR: Terminalia amazonia (roble coral); Ho: hojas; Ra: ramas; FL: flores; RD: ramas delgadas; RG: ramas gruesas.

Anexo 27. Concentraciones de N (%) en tejidos frescos en SAF de café, Turrialba, Costa Rica (2006)

	Tratamiento	Vegeta	ción hei	bácea		Café				Cashá				Poró		Ro	ble co	ral
	Tratamiento	HA	GR	BC	Ho	Ra	Tr	Ho	RD	RG	FL	FR	Ho	RD	RG	Ho	RD	RG
1	AB(MC)	3,09	2,55	2,77	3,27	1,44	0,81	5,15	1,72	1,42	4,12	3,98	sv	sv	sv	SV	sv	sv
2	AB(MO)	3,31	2,66	3,53	3,27	1,68	0,87	5,01	1,91	1,51	4,64	4,35	SV	SV	SV	SV	SV	sv
3	ABER(AC)	3,24	3,03	3,83	3,27	1,78	1,07	5,37	2,16	1,79	6,39	SV	5,00	1,75	1,01	SV	SV	sv
4	ABER(MC)	3,78	3,07	3,32	3,38	1,46	1,05	5,59	2,09	1,85	5,19	5,00	5,39	1,80	0,95	SV	SV	sv
5	ABER(MO)	3,83	2,27	3,96	3,35	1,78	0,99	5,32	2,33	1,74	5,32	4,59	4,84	1,68	0,83	SV	SV	sv
6	ABTR(MC)	3,12	2,45	2,90	3,51	1,76	0,89	5,32	2,28	1,86	5,60	4,22	SV	SV	SV	1,74	0,50	0,43
7	ABTR(MO)	3,36	2,70	3,44	3,32	1,78	0,89	4,94	1,97	1,30	5,20	5,06	SV	sv	SV	1,77	0,55	0,39
8	ER(AC)	3,56	2,76	2,60	3,29	1,73	0,99	SV	SV	SV	SV	SV	5,40	1,55	0,98	SV	SV	sv
9	ER(MC)	3,79	2,87	4,46	3,40	1,95	0,98	SV	SV	SV	SV	SV	5,16	1,53	0,94	SV	SV	sv
10	ER(MO)	3,95	2,53	4,36	3,30	1,74	0,90	SV	SV	SV	SV	SV	5,38	1,56	0,97	SV	SV	sv
11	TR(AC)	3,08	3,55	2,02	3,37	1,68	0,89	SV	SV	SV	SV	SV	SV	SV	SV	1,82	0,60	0,42
12	TR(MC)	3,12	2,64	2,93	3,19	1,57	0,75	sv	SV	SV	SV	SV	SV	sv	sv	1,80	0,73	0,45
13	TR(MO)	2,61	2,69	3,26	3,26	1,72	0,94	sv	SV	SV	SV	SV	SV	sv	SV	1,69	0,51	0,46
14	TRER(MC)	3,55	2,80	2,77	3,55	1,83	0,97	sv	SV	SV	SV	SV	5,47	1,79	1,02	1,82	0,75	0,41
15	TRER(MO)	3,61	2,82	3,98	3,42	1,87	0,94	SV	SV	SV	SV	SV	5,02	1,36	0,80	1,77	0,84	0,42
	Promedio	3,40	2,76	3,34	3,34	1,72	0,93	5,24	2,07	1,64	5,21	4,53	5,21	1,63	0,94	1,77	0,64	0,43

Anexo 28. Concentraciones de nutrientes (%) en frutos frescos en SAF de café, Turrialba, Costa Rica (cosecha 2004)

	Tratamientos	Ca	Mg	K	P	N
1	AB (MC)	0,21	0,10	1,91	0,13	1,43
2	AB (MO)	0,23	0,11	2,54	0,15	1,76
3	ABER (AC)	0,19	0,12	1,92	0,12	1,57
4	ABER (MC)	0,21	0,11	1,92	0,12	1,58
5	ABER (MO)	0,25	0,11	2,24	0,12	1,77
6	ABTR (MC)	0,22	0,11	1,91	0,13	1,55
7	ABTR (MO)	0,23	0,09	2,15	0,13	1,43
8	ER (AC)	0,33	0,15	1,91	0,13	1,57
9	ER (MC)	0,32	0,16	2,13	0,13	1,76
10	ER (MO)	0,30	0,13	2,47	0,14	1,82
11	TR (AC)	0,41	0,18	1,95	0,14	1,57
12	TR (MC)	0,20	0,11	1,93	0,15	1,50
13	TR (MO)	0,26	0,13	2,32	0,14	1,60
14	TRER (MC)	0,19	0,11	1,89	0,13	1,74
15	TRER (MO)	0,20	0,13	2,32	0,15	1,86
	Promedio	0,25	0,12	2,10	0,13	1,63

Anexo 29. Índices de eficiencia (%) como proporción de los nutrientes que ingresaron por fertilizaciones (2004–2005), en SAF de café en Turrialba, Costa Rica (2006)

		Frut	os MS			Efici	encia de la	fertiliza	ción 2004	al 2005	(kg ha ⁻¹)		
	Contrastes	(kg	ha ⁻¹)	(Ca	N	Иg		K		P		N
		Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P
1	MO+MC AC	4041 5339	0,0026	2,23		9,48 11,2	0,0521	57,9 41,2	0,0010	15,0 15,8	0,1253	22,6 14,3	<0,0001
2	MC MO	3858 4223	0,3076	4,45		8,28 10,7	0,0277	60,0 55,7	0,2538	23,1	<0,0001	21,1 24,2	0,1786
3	ER (MO/MC)+AB (MO/MC)	3913	0,2301	2,40		9,73	0,8856	58,8	0,7217	14,3	0,1777	22,4	0,9697
	TR (MO/MC)	4559		2,99		11,3		63,9		17,1		24,0	
4	ER (MO/MC) AB (MO/MC)	4044 3781	0,6684	2,96 1,83		11,5 7,93	0,0134	61,6 55,9	0,6596	14,0 14,6	0,8743	24,5	0,1742
	ABER (MO/MC)	4032		2,29		8,88		56,0		13,3		22,9	
5	ABTR (MO/MC)+TRER (MO/MC)	3914	0,8245	1,64		8,63	0,4110	54,8	0,5423	15,4	0,3490	22,0	0,4169
6	ABTR (MO/MC)	3438	0,1287	1,56		6,81	0,0018	47,5	0,0321	13,3	0,0377	17,4	0,0008
	TRER (MO/MC)	4390		1,73		10,4		62,2	,	17,5		26,7	
7	TR (AC) TR (MO/MC)	5535 4559	0,2006	2,99		13,8	0,0920	43,2 63,9	0,0568	17,6 17,1	0,4662	14,9 24,0	0,0388
8	ER (AC) ER (MO/MC)	5287 4044	0,1063	2.96		11,0 11.5	0,7994	40,4 61,6	0,0233	15,6 14.0	0,4160	14,2 24,5	0,0017
9	TR (MC)	3713	0,0591	0,00		7,56	0,0155	57,3	0,6779	25,3	<0,0001	19,1	0,1994
_	TR (MO) ER (MC)	5405 3458		5,98		15,0 10,2		70,6 58,9		8,9 20,4		28,9 20,8	
10	ER (MO)	4631	0,1836	5,91		12,8	0,6601	64,4	0,9668	7,6	<0,0001	28,1	0,3558
11	AB (MC)	3813	0,9411	2.67		7,06	0,1660	58,3	0,8030	22,5	<0,0001	18,7	0,3106
	AB (MO)	3749		3,67		8,79		53,6		6,6		22,0	
12	ER (MO/MC)+TR (MO/MC)	4302	0,8682	2,97		11,4	0,7464	62,8	0,9865	15,6	0,5046	24,2	0,1672
	TRER (MO/MC)	4390		1,73		10,4		62,2		17,5		26,7	
13	AB (MO/MC)+TR (MO/MC)	4170	0,1754	2,41		9,60	0,0411	59,9	0,0272	15,9	0,0631	22,2	0,0441
	ABTR (MO/MC)	3438		1,56		6,81		47,5		13,3		17,4	
14	AB (MO/MC)+ER (MO/MC)	3913	0,8229	2,40		9,73	0,8856	58,8	0,7217	14,3	0,3805	22,4	0,6491
-	ABER (MO/MC)	4032	0.400-	2,29		8,88	0.005-	56,0	0.055	13,3	0.000	22,9	0.004=
پ	Tratamientos		0,1003		l		0,0055		0,0538		<0,0001	L	0,0015

Anexo 30. Índices de exportación (%) como proporción de los nutrientes que reciclan en los SAF de café en Turrialba, Costa Rica (2006)

	Contrastes	IE N	MS %	IEC	Ca%	IEN	⁄Ig%	IE	K%	IE	P%	IE	N%		os MS ha ⁻¹)
		Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P
1	MO+MC AC	15,4	<0,0001	2,62	<0,0001	8,75	<0,0001	28,6	<0,0001	14,3	<0,0001	11,7 19.9	<0,0001	1869 2997	<0,0001
	MC	24,7 17,0		6,78 2,81		18,3 9,81	·	47,4 31,1	-	27,7 16,7		19,9	-	2099	-
2	MO	13,9	0,0027	2,43	0,0345	7,69	0,0008	26,1	0,0065	11,9	0,0001	10.6	0,0021	1640	0,0008
	ER			,		,						.,,.			
3	(MO/MC)+AB (MO/MC)	14,7	0,0002	2,94	0,6724	8,54	0,0034	27,4	0,0001	12,8	<0,0001	9,74	<0,0001	1837	0,1352
	TR (MO/MC)	23,0		3,30		12,6		45,1		26,5		21,9	İ	2138	
4	ER (MO/MC)	10,1	<0,0001	2,43	0.0033	6,50	0.0003	18,6	<0.0001	7,88	<0.0001	7,29	<0.0001	1903	0,5163
4	AB (MO/MC)	19,3	\0,0001	3,45	0,0033	10,6	0,0003	36,1	<0,0001	17,7	~0,0001	12,2	<0,0001	1770	0,3103
	ABER (MO/MC)	11,9		2,00		6,58		21,9		9,47		8,21		1806	
5	ABTR (MO/MC)+TRER (MO/MC)	14,2	0,2448	2,28	0,4998	8,13	0,1797	25,0	0,2737	12,2	0,1987	10,2	0,1235	1800	0,9842
_	ABTR (MO/MC)	16,2	0.0507	2,96	0,0002	9,13	0.1/27	28,0	0.1240	14,3	0,0890	11,0	0.2057	1628	0,1880
6	TRER (MO/MC)	12,2	0,0586	1,59	0,0002	7,13	0,1637	21,9	0,1248	10,0	0,0890	9,45	0,3057	1971	0,1880
7	TR (AC)	30,1	0,1623	9,04	0.0001	28,6	0,0072	72,6	0.0779	47,3	0,0566	31,9	0,1743	2975	0,0129
	TR (MO/MC)	23,0	0,1023	3,30	0,0001	12,6	0,0072	45,1	0,0777	26,5	0,0000	21,9	0,17.15	2138	0,012)
8	ER (AC) ER (MO/MC)	17,2 10.1	0,0055	6,40 2.43	<0,0001	12,6 6.50	0,0001	27,9 18.6	0,0153	14,1 7,88	0,0017	11,2 7,29	0,0022	2988 1903	0,0026
	TR (MC)	21,9		2,73		11,6		44,9		29,6		21,5		2092	
9	TR (MO)	24.2	0,764	3.86	0,337	13.6	>0,9999	45.4	0,4998	23.5	0,1748	22.2	0,5079	2184	0,6284
10	ER (MC)	9,8	>0,9999	2,48	0,7822	7,13	0,2793	17,9	0,712	7,93	0,8845	6,99	0,6424	1995	0,4691
10	ER (MO)	10,3	~0,9999	2,38	0,7822	5,88	0,2793	19,4	0,/12	7,82	0,8843	7,60	0,0424	1812	0,4091
11	AB (MC)	20,7	0,2591	3,77	0.4492	11,9	0,1524	37,2	0.6668	18,9	0,3137	12,7	0,4668	2101	0,0261
11	AB (MO)	17,8	0,2371	3,14	0,4472	9,21	0,1324	35,1	0,0000	16,5	0,3137	11,7	0,4000	1440	0,0201
12	ER (MO/MC)+TR (MO/MC)	16,6	0,026	2,86	<0,0001	9,54	0,0551	31,9	0,016	17,2	0,0039	14,6	0,0189	2021	0,7970
	TRER (MO/MC)	12,2		1,59		7,13		21,9		10,0		9,45		1971	
13	AB (MO/MC)+TR (MO/MC)	21,1	0,0054	3,37	0,0468	11,6	0,0103	40,6	0,0006	22,1	0,0001	17,0	0,0002	1954	0,1614
	ABTR (MO/MC)	16,2		2,96		9,13		28,0		14,3		11,0		1628	
14	AB (MO/MC)+ER (MO/MC)	14,7	0,0988	2,94	0,0003	8,54	0,0402	27,4	0,0443	12,8	0,0308	9,74	0,0655	1837	0,9526
	ABER (MO/MC)	11,9		2,00		6,58		21,9		9,47		8,21		1806	
1	Tratamientos		<0,0001		<0,0001		<0,0001	1	<0,0001	l	<0,0001		<0,0001	l	0,0001

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Valores resaltados en negrillas indican significancia (P<0,05) Nota 2: en los tratamientos bajo MC se adicionó los nutrientes aportados en la hojarasca de los tratamientos bajo MO debido a que no se encontraron diferencias significativas a nivel de manejo para las variables aporte de biomasa en el estrato arbóreo y biomasa total para las comparaciones sin y con hojarasca.

Anexo 31. Nutrientes reciclados (kg ha⁻¹), entradas y salidas en SAF de café en Turrialba, Costa Rica (2006)

Tratamiento		Nutrie	ites rec	iclados		Entr	adas por	fertiliza	ciones (2	2005)		Sal	idas (200	06)	
Tratamiento	Ca	Mg	K	P	N	Ca	Mg	K	P	N	Ca	Mg	K	P	N
AB (MC)	117	17,5	108	14,5	237	0,00	18,0	62,5	11,0	142	4,41	2,10	40,1	2,73	30,0
AB (MO)	106	17,2	104	13,1	216	126	23,2	75,7	46,1	52,4	3,31	1,58	36,6	2,16	25,3
ABER (AC)	118	26,6	142	17,1	291	0,00	36,0	125	22,0	284	5,75	3,63	58,1	3,63	47,5
ABER (MC)	210	32,9	174	23,8	392	0,00	18,0	62,5	11,0	142	3,90	2,04	35,7	2,23	29,4
ABER (MO)	207	28,6	175	23,4	361	126	23,2	75,7	46,1	52,4	4,38	1,93	39,3	2,10	31,0
ABTR (MC)	118	17,6	106	13,3	216	0,00	18,0	62,5	11,0	142	4,63	2,32	40,2	2,74	32,7
ABTR (MO)	159	22,6	147	21,7	287	126	23,2	75,7	46,1	52,4	2,64	1,03	24,7	1,49	16,4
ER (AC)	153	35,6	204	27,5	418	0,00	36,0	125	22,0	284	9,86	4,48	57,1	3,88	46,9
ER (MC)	260	46,2	254	35,2	530	0,00	18,0	62,5	11,0	142	6,38	3,19	42,5	2,59	35,1
ER (MO)	227	39,7	228	32,1	430	126	23,2	75,7	46,1	52,4	5,43	2,36	44,7	2,54	33,0
TR (AC)	140	19,2	81,4	8,98	150	0,00	36,0	125	22,0	284	12,2	5,35	58,0	4,16	46,7
TR (MC)	153	19,8	89,4	10,5	145	0,00	18,0	62,5	11,0	142	4,18	2,30	40,4	3,14	31,4
TR (MO)	145	20,8	110	12,7	153	126	23,2	75,7	46,1	52,4	5,68	2,84	50,7	3,06	34,9
TRER (MC)	236	32,3	172	25,1	367	0,00	18,0	62,5	11,0	142	4,64	2,68	46,1	3,17	42,4
TRER (MO)	245	33,4	219	32,7	401	126	23,2	75,7	46,1	52,4	3,01	1,95	34,9	2,26	28,0
Prom	173	27,3	154	20,8	306						5,36	2,65	43,3	2,79	34,0
Ran max	260	46,2	254	35,2	530						12,2	5,35	58,1	4,16	47,5
Ran min	106	17,2	81,4	8,98	145						2,64	1,03	24,7	1,49	16,4

Nota 1: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Nota 2: en los tratamientos bajo MC se adicionó los nutrientes aportados en la hojarasca de los tratamientos bajo MO debido a que no se encontraron diferencias significativas a nivel de manejo para las variables aporte de biomasa en el estrato arbóreo y biomasa total tanto para las comparaciones sin y con hojarasca.

Anexo 32. Eficiencia de uso de nutrientes (MG kg⁻¹)en SAF de café en Turrialba, Costa Rica (2006)

	Contrastes	P	PN	UE	N Ca	UE	N Mg	UE	N K	UI	EN P	UF	EN N
	Contrastes	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P
1	MO+MC	15,4	0,3625	0,086	<0,0001	0,573	0,1282	0,101	0,0032	0,761	<0,0001	0,052	<0,0001
1	AC	16,0	0,3023	0,117	~0,0001	0,602	0,1262	0,121	0,0032	1,020	~0,0001	0,062	~0,0001
2	MC	15,9	0,4360	0,089	0,0107	0,595	0,0182	0,110	<0,0001	0,836	<0,0001	0,055	0,0001
	MO	14,9	0,4300	0,082	0,0107	0,550	0,0162	0,091	<0,0001	0,685	<0,0001	0,050	0,0001
	ER												
3	(MO/MC)+AB	16,2	0,0109	0,092	0,0001	0,560	0,3276	0,096	0,0037	0,713	<0.0001	0,046	<0,0001
3	(MO/MC)		0,0109		0,0001		0,3270		0,0037		<0,0001		<0,0001
	TR (MO/MC)	11,2		0,075		0,554		0,114		0,975		0,075	
4	ER (MO/MC)	21,4	<0,0001	0,087	0,0134	0,494	0,0001	0,089	0,0069	0,639	<0,0001	0,045	0,0024
1 4	AB (MO/MC)	10,9	~0,0001	0,098	0,0134	0,626	0,0001	0,103	0,0009	0,787	~0,0001	0,048	0,0024
	ABER (MO/MC)	17,3		0,083		0,564		0,099		0,738		0,046	
5	ABTR		0,3010		0,4334		0,2071		0,8424		0,3375		0,0001
)	(MO/MC)+TRER	15,8	0,3010	0,086	0,4334	0,600	0,2071	0,099	0,0424	0,712	0,3373	0,050	0,0001
	(MO/MC)												
6	ABTR (MO/MC)	12,9	0,0011	0,094	0,0003	0,634	0.0954	0,101	0,2755	0,764	0,0022	0,052	0.0866
U	TRER (MO/MC)	18,7	0,0011	0,077	0,0003	0,566	0,0934	0,097	0,2733	0,661	0,0022	0,049	0,0800
7	TR (AC)	13,1	0,3462	0,095	0,0005	0,686	0,0120	0,161	0,0242	1,465	<0,0001	0,088	0,2860
/	TR (MO/MC)	11,2	0,3402	0,075	0,0005	0,554	0,0120	0,114	0,0242	0,975	<0,0001	0,075	0,2800
8	ER (AC)	20,3	0,8951	0,133	<0,0001	0,572	0,0077	0,100	0,0374	0,739	0,0117	0,049	0,0004
0	ER (MO/MC)	21,4	0,0931	0,087	~0,0001	0,494	0,0077	0,089	0,0374	0,639	0,0117	0,045	0,0004
9	TR (MC)	11,6	0,5846	0,076	0.8600	0,585	0,1722	0,129	0.0039	1,097	<0.0001	0,080	0,4391
9	TR (MO)	10,9	0,3840	0,075	0,8000	0,523	0,1722	0,099	0,0039	0,852	<0,0001	0,070	0,4391
10	ER (MC)	23,6	0,6814	0,089	0,4718	0,504	0,6548	0,094	0,2679	0,679	0,0721	0,045	0,8764
10	ER (MO)	19,2	0,0814	0,085	0,4/18	0,484	0,0348	0,084	0,2679	0,598	0,0721	0,045	0,8704
11	AB (MC)	12,3	0,2408	0,105	0.0101	0,698	0.0047	0,114	0.0056	0,846	0.0104	0,052	<0.0001
11	AB (MO)	9,54	0,2408	0,090	0,0191	0,555	0,0047	0,091	0,0056	0,728	0,0104	0,044	<0,0001
	ER												
12	(MO/MC)+TR	16,3	0,0259	0,081	0,2798	0,524	0,0843	0,101	0,6198	0,807	<0,0001	0,060	0,4118
12	(MO/MC)		0,0259		0,2798		0,0843		0,6198		<0,0001		0,4118
	TRER (MO/MC)	18,7		0,077		0,566		0,097		0,661		0,049	
	AB												
13	(MO/MC)+TR	11,1	0,2532	0,086	0,0355	0,590	0,2404	0,108	0,3743	0,881	0.0001	0,061	0,4867
13	(MO/MC)		0,2332		0,0333		0,2404		0,3743		0,0001		0,4807
	ABTR (MO/MC)	12,9		0,094		0,634		0,101		0,764		0,052	
	AB			,									
14	(MO/MC)+ER	16,2	0.1585	0,092	0.0146	0,560	0,4890	0,096	0,2878	0,713	0,3435	0,046	0,7510
14	(MO/MC)		0,1363		0,0140		0,4090		0,20/8		0,5433		0,7310
	ABER (MO/MC)	17,3		0,083		0,564		0,099		0,738		0,046	
	Tratamientos		0,0001		<0,0001	1,	0,0006	1 ED E	<0,0001		<0,0001	AD CU	<0,0001

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Valores resaltados en negrillas indican significancia (P<0,05). Nota 2: en los tratamientos bajo MC se adicionó los nutrientes aportados en la hojarasca de los tratamientos bajo MO debido a que no se encontraron diferencias significativas a nivel de manejo para las variables aporte de biomasa en el estrato arbóreo y biomasa total para las comparaciones sin y con hojarasca

Anexo 33. Aportes totales de biomasa y nutrientes (kg ha⁻¹) en SAF de café en Turrialba, Costa Rica (2006)

	Contractor	Bio	masa	(Ca	N	Иg		K		P		N
	Contrastes	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P	Media	Valor P
1	MO+MC	13545	0,8973	182	0,0061	27,4	0,5443	157	0,1194	21,5	0,0306	311	0,3511
1	AC	12999	0,8973	137	0,0001	27,1	0,3443	142	0,1194	17,9	0,0300	286	0,3311
2	MC	13821	0,5269	182	0,9324	27,7	0,7480	151	0,0282	20,4	0,0569	315	0,7440
	MO	13270	0,3209	182	0,9324	27,1	0,7460	164	0,0282	22,6	0,0309	308	0,7440
	ER (MO/MC)+AB	14335		178		30,2		174		23,7		354	
3	(MO/MC)		0,0066		0,6718		0,0104		<0,0001		<0,0001		<0,0001
	TR (MO/MC)	9094		149		20,3		100		11,6		149	
4	ER (MO/MC)	19534	<0,0001	244	<0.0001	43,0	<0.0001	241	<0,0001	33,7	<0,0001	480	<0,0001
<u>.</u>	AB (MO/MC)	9136	-0,0001	111	-0,0001	17,4	-0,0001	106	-0,0001	13,8	-0,0001	227	-0,0001
	ABER (MO/MC)	15524		208		30,8		175		23,6		377	
5	ABTR		0,1100		0,1508		0,0429		0,1618		0,5295		0,0965
	(MO/MC)+TRER	13992	.,	190	.,	26,5	- ,	161	., .	23,2	.,-	318	.,
	(MO/MC)	11207		120		20.1		127		17.5		252	
6	ABTR (MO/MC)	11296 16688	0,0012	138 241	<0,0001	20,1 32,9	<0,0001	127 195	0,0001	17,5 28.9	0,0002	252 384	0,0021
	TRER (MO/MC)	10126		140		- 3-		81		-)-		150	
7	TR (AC) TR (MO/MC)	9094	0,4981	140	0,5108	19,2 20,3	0,5304	100	0,1341	9,0 11.6	0,2054	149	>0,9999
-	ER (AC)	17357		153		35,6		204		27,5		418	
8	ER (MO/MC)	19534	0,7442	244	0,0082	43,0	0,3315	241	0,2386	33,7	0,1820	480	0,6923
-	TR (MC)	9492		153		19,8		89		10,5		145	
9	TR (MC)	8696	0,4815	145	0,6780	20.8	0,6286	110	0,0691	12.7	0,1808	153	0,7318
	ER (MC)	21639		260		46,2		254		35,2		530	
10	ER (MO)	17428	0,6380	227	0,6041	39,7	0,9036	228	0,8972	32,1	0,8048	430	0,5685
	AB (MC)	10170		117		17,5		108		14,5		237	
11	AB (MO)	8102	0,1787	106	0,6780	17,2	0,7165	104	0,6987	13,1	0,579	216	0,6479
	ER (MO/MC)+TR												
12	(MO/MC)	14314	0,0399	196	0,0212	31,6	0,2410	170	0,0042	22,7	0,0010	315	0,0061
	TRER (MO/MC)	16688		241		32,9		195	,	28,9		384	,
	AB (MO/MC)+TR	0115		130		10.0		103		10.7		188	
13	(MO/MC)	9115	0,2539	130	0,9324	18,8	0,8432	103	0,0770	12,7	0,0223		0,0475
	ABTR (MO/MC)	11296		138		20,1		127		17,5		252	
	AB (MO/MC)+ER	14335		178		30,2		174		23,7		354	
14	(MO/MC)		0,0757		0,0175		0,1589		0,2120		0,3541		0,2878
	ABER (MO/MC)	15524		208		30,8		175		23,6		377	
	Tratamientos		<0,0001		<0,0001		<0,0001		<0,0001		<0,0001		<0,0001

Nota: MO= medio orgánico, MC= medio convencional; AC= alto convencional, ER: Erythrina poeppigiana (poró), AB: Chloroleucon eurycyclum (cashá; Abarema idiopota), TR: Terminalia amazonia (roble coral). Nota 2: en los tratamientos bajo MC se adicionó los nutrientes aportados en la hojarasca de los tratamientos bajo MO, porque no hubo diferencias significativas a nivel de manejo para las variables aporte de biomasa en el estrato arbóreo y biomasa tota tanto para las comparaciones sin y con hojarasca