

USISTEMAS DE PRODUCCION DE GRANOS BASICOS EN CENTROAMERICA.

Una metodología para definir áreas aptas para tecnologías agronómicas

Centro Interamericano de Documentación e Información Agrícola

2 - 001 1986

CIDIA

Informe técnico final del elemento de extrapolación del Proyecto CATIE/ROCAP 1979-1985

Turria'ba, Costa Rica

La preparación y publicación de este documento ha sido financiada por el Proyecto AID/ROCAP: SMALL FARM PRODUCTIONS SYSTEMS, bajo el contrato 569-0085 (Proyecto SIPRO-CATIE-ROCAP).

CENTRO AGRONOMICO TROPICAL DE INVESTIGACION Y ENSEÑANZA

Departamento de producción Vegetal

Turrialba, Costa Rica

1986

CONTENIDO

	Pagina N
PROLOGO	ix
INTRODUCCION	1
La transferencia de tecnología agricola.	
Algunos antecedentes	5
Marco conceptual	8
Metodología y objetivos del Proyecto	10
CAPITULO I. LOS PRINCIPALES SISTEMAS DE CULTIVOS EN CENTROAMERICA. SU DISTRIBUCION, DESCRIPCION AMBIENTAL Y DETERMINANTES EDAFOCLIMATICAS	13
Objetivos	15
Los datos utilizados y su manejo	15
Principales cultivos de Centroamérica	15
Distribución de los sistemas de cultivos más importantes	18
Descripción ambiental de los sistemas de cultivo	29
Análisis de las determinantes edafoclimáticas de los sistemas	61
CAPITULO II. EL MANEJO TRADICIONAL DADO À LOS SISTEMAS DE CULTIVOS Y SUS DETER- MINANTES EDAFOCLIMATICAS	67
Objetivos	69
Base de información	69
Ambiente climático	70
Características de las fincas	70 70
Características de las parcelas	70
	, ,
Características del manejo tradicional	71
Análisis de variables de manejo	91
Maiz, frijol y sorgo asociados	99

	<u>Página Nº</u>
CAPITULO III. PREDICCION DEL COMPORTAMIENTO DE	
UN PAQUETE TECNOLOGICO	103
Objetivos	105
Experimentos 1982	105
Experimentos 1983	109
Validación de los modelos	122
CAPITULO IV. CONCLUSIONES GENERALES	125
Información edafoclimática en Centroamérica	127
Representatividad de sitios y áreas específicas de desarrollo tecnológico	128
Predicción de la producción de un paquete tecnológico	130
Sintesis de la metodología para definir áreas de extrapolación en Centroamérica	133
ANEXOS	141
BIBLIOGRAFIA	173

INDICE DE CUADROS

Cuadro	<u>Nº</u>	PAGINA Nº
1	Uso agropecuario de la tierra en Centroamérica (miles de hectáreas)	16
2	Area de cultivos principales en Centroamérica (miles de hectáreas)	17
3	Uso agropecuario y porcentaje de la tierra en fincas pequeñas (miles de hectáreas)	19
4	Area sembrada y producción de maíz según modalidad de siembra	26
5	Area sembrada y producción de frijol según modalidad de siembra	27
6	Area sembrada y producción de sorgo según modalidad de siembra	28
7	Porcentaje de superficie sembrada con granos básicos según época y modalidad	31
8	Perfil ambiental de maíz monocultivo, primera	32
9	Perfil ambiental de maíz monocultivo, postrera	33
10	Perfil ambiental de frijol monoculti- vo, primera	34
11	Perfil ambiental de frijol monoculti- vo, postrera	35
12	Perfil ambiental de frijol asociado, primera	36
13	Perfil ambiental de sorgo asociado	37
14	Distribución de maíz solo en primera según zona de vida	44
15	Distribución de maíz solo en postrera	45

Cuadro Nº		Página No
16	Distribución de frijol solo en primera según zona de vida	46
17	Distribución de frijol solo en postrera según zona de vida	47
18	Distribución de frijol asociado según zona de vida	48
19	Distribución de sorgo asociado según zona de vida	49
20	Distribución de los sistemas de culti- vo según clasificación de suelo, Honduras	50
21	Distribución de los sistemas de culti- vo según clasificación de suelos. Nicaragua	51
22	Distribución de los sistemas de culti- vo según clasificación de suelo. El Salvador	52
23	Distribución de la lluvia en áreas de maíz monocultivo sembrado en primera	53
24	Distribución de la lluvia en áreas de maíz monocultivo sembrado en postrera	54
25	Distribución de la lluvia en áreas de frijol monocultivo sembrado en primera	55
26	Distribución de la lluvia en áreas de frijol (monocultivo) sembrado en postrera	56
27	Distribución de la lluvia en áreas de frijol asociado, sembrado en primera	57
28	Distribución de la lluvia en áreas de sorgo asociado	58
29	Regresión "Stepwise" de intensidad de siembra de los sistemas de cultivos contra variables edafoclimáticas	64

Cuádro Nº		Página Nº
30	Resumen del análisis de componentes principales: variables de manejo, sistema maíz + frijol	92
31	Resumen de las regresiones de varia- bles de manejo contra factores am- bientales. Sistema maíz + frijol	93
32	Resumen del análisis de componentes principales: variables de manejo. Sistema maíz + sorgo	95
33	Resumen de la regresión de variables de manejo contra factores ambientales. Sistema maíz + sorgo	96
34	Distribución de las parcelas muestrea- das, según pendiente, método de siem- bra y uso de la tierra. Sistema maíz + sorgo	98
35	Resumen del análisis de componentes principales; variables de manejo, sistema maíz + sorgo + frijol	100
36	Resumen de la regresión de variables de manejo contra factores ambientales. Sistema maíz + sorgo + frijol	101
37	Distribución de las parcelas muestreadas según pendiente, método de siembra y uso de la tierra. Sistema maíz + sorgo + frijol	102
38	Paquete tecnológico de maíz asociado con sorgo	106
39	Paquete tecnológico de maíz con vigna en relevo	107
40	Identificación de los sitios experimentales, 1983. El Salvador	110
41	Identificación de los sitios experimentales, 1983. Guatemala	111
42	Identificación de los sitios experi- mentales, 1983. Honduras	112

Cuadro Nº		Página No
43	Identificación de los sitios experimentales, 1983. Nicaragua	113
44	Rendimientos de maíz, sorgo y vigna en los experimentos de transferencia, El Salvador, 1983	115
45	Rendimientos de maíz, sorgo y vigna en los experimentos de transferencia, Guatemala, 1983	116
46	Rendimientos de maíz, sorgo y vigna en los experimentos de transferencia, Honduras, 1983	117
47	Rendimientos de maíz, sorgo y vigna en los experimentos de transferencia, Nicaragua, 1983	118
48	Producción de maíz + sorgo, expresada en kg ha ⁻¹ maíz equivalente	120
49	Modelos de regresión para el maíz	136
50	Modelos de regresión para sorgo y vigna	137
51	Modelos de regresión para producción total de tratamientos 1 y 3	138
52	Capacidad de predicción de los diferentes modelos de rendimiento	139

INDICE DE FIGURAS

Figura	NΩ	Página No
1	Perfil ambiental de maiz en primera	38
2	Perfil ambiental de maíz solo en postrera	39
3	Perfil ambiental de frijol solo en primera	40
4	Perfil ambiental de frijol solo en postrera	41
5	Perfil ambiental de frijol asociado en primera	42
6	Perfil ambiental de sorgo asociado	43
7	Distribución de la intensidad de siembra	66
8	Ambiente climático de las fincas encuestadas, según sistema de cultivos	72
9	Características socioeconómicas de las fincas encuestadas, según siste-ma de cultivos	73
10	Características de las parcelas según sistemas de cultivos	74
11	Rotación en el uso de la tierra	75
12	Uso de la parcela en años anteriores	76
13	Preparación del terreno	78
14	Fechas de siembra y cosecha de los cultivos según sistema	79
15	Arreglos cronológicos más comunes	82
16	Arreglos espaciales más comunes	83
17	Poblaciones de plantas sembradas	97

<u>Figura Nº</u>		Página	Nο
18	Tipo de crecimiento del frijol según sistema	89	
19	Rendimientos esperados (kg ha^{-1})	30	
20	Distribución del tipo de crecimiento del frijol según altura	97	
	INDICE DE MAPAS		
Mapa Nº			
1	Sistema maiz sembrado solo en primera	21	
2	Sistema maiz sembrado solo en postrera	22	
3	Sistema maíz asociado con sorgo	23	
4	Sistema de frijol asociado	24	
5	Sistema frijol sembrado solo en primera	25	
6	Sistema frijol sembrado solo en postrera	30	

El CATIE desarrolló durante varios años un Programa Regional de Investigación sobre Sistemas de Producción para Fincas Pequeñas del Istmo Centroamericano, por medio del Departamento de Producción Vegetal (DPV). El Proyecto fue financiado por la Oficina Regional para los Programas Centroamericanos (ROCAP) de la Agencia de los Estados Unidos para el Desarrollo Internacional (AID); su ejecución estuvo a cargo de las instituciones nacionales de investigación agrícola y del CATIE como organismo de coordinacción.

La generalización o aplicación de tecnologías desarrolladas en un área a otras similares es lo que se denomina extrapolación, en este documento. La investigación en extrapolación es uno de los elementos del Proyecto de Sistemas de Producción para Fincas Pequeñas (SFPS) y se llevó a cabo entre 1979 y 1985.

Este documento es el informe final de las actividades de investigación realizadas para desarrollar una metodología de extrapolación de tecnología agrícola, aplicable a sistemas de cultivos anuales en Centraomérica, describe también los principales sistemas de cultivo del área centroamericana y sus determinantes de manejo para ilustrar el procedimiento utilizado, y los resultados obtenidos en la investigación de los medios por los cuales la tecnología desarrollada para cultivos en un área puede ser aplicada a otras áreas.

El informe ha sido organizado en una Introducción, cuatro Capítulos y Anexos. En la Introducción se presentan los conceptos, antecedentes y justificación por los que se incluyó el elemento de extrapolación en el Proyecto; además, se unumeran los pasos seguidos en el proceso.

En el primer Capítulo se describen los principales sistemas de cultivo en Centroamérica, así como su distribución, descripción ambiental y determinantes edafoclimáticas.

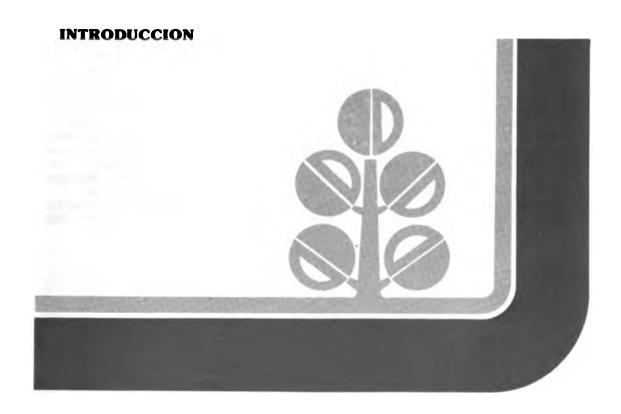
El Capítulo segundo presenta el manejo tradicional dado por los agricultores a los sistemas de cultivo, describe la posibilidad de utilizar una encuesta como herramienta para determinar la relación entre el manejo de los sistemas de cultivo y el ambiente edafoclimático y se identifican las variables edafoclimáticas que más determinan el manejo dado por el agricultor a los sistemas.

En el Capítulo tercero se trata de determinar si la producción de un paquete tecnológico puede relacionarse con factores ambientales, utilizando una red de sitios experimentales; asimismo, trata de valorar la capacidad de producción de un modelo empírico, utilizando datos de los sitios experimentales.

El Capítulo cuarto expone las conclusiones generales obtenidas por medio del anúlisis de la información generada durante todo el proyecto.

Finalmente, en los Anexos se incluye información de tipo edafoclimática; el formulario para la encuesta sobre identificación e información general, metodología usada para el cálculo de balance hídrico, así como otros datos de mucha importancia que se anexan por considerarlos de gran utilidad.

Las referencias listadas en la sección de bibliografía proporcionan fuentes adicionales de información para las personas que desean profundizar en tópicos especiales.


El documento es parte de los informes técnicos del Proyecto Regional de Investigación en Sistemas de Producción para Fincas Pequeñas (SFPS), y fue preparado por el Dr. Richard Hawkins, con la colaboración -en un inicio- del Dr. Robert Hart (especialista en sistemas), Dr. Julio Henao (biometrista) y el M.Sc. José Arze (ecofisiólogo). Contribuyeron además, los Ingenieros Miguel A. Rico y Gilberto Acevedo (especialistas en suelos); Dr. Gelio Guzmán (agroclimatología) y el Dr. Foster B. Cady (biometrista); asímismo, contribuyeron -con el trabajo de campo, encuestas y experimentos-

el Ing. Juan Ernesto Celada (Guatemala), Ing. Roberto Alegría e Ing. Carlos Gil (El Salvador), Ing. Gerardo Petit (Honduras), los Ingenieros Roger Läw y Benito Castilblanco (DGTA, Nicaragua) y demás miembros del equipo técnico central del Proyecto en el CATIE.

El editor Tomás Saraví, el Dr. Carlos F. Burgos y el biólogo Ely Rodríguez participaron en la revisión editorial, diseño y publicación del informe.

A todos ellos, y en especial a los agricultores del área centroamericana, se les agradece su participación y contribución en las labores de campo y en la preparación de este informe.

> Romeo Martinez Rodas Jefe Departamento de Producción Vegetal

INTRODUCCION

Se invierte mucho esfuerzo, tanto intelectual como práctico, en mejorar la agricultura de los países menos desarrollados del mundo. Ese esfuerzo se debe al importante papel que juega el sector agropecuario en la economía de esos países, y también a la necesidad de alimentar adecuadamente a una población cada vez mayor.

El desarrollo agrícola consiste en dos pasos básicos. En primer lugar, es preciso identificar una tecnología apropiada; luego, hay que transferir esa metodología a los agricultores usuarios. Que una tecnología sea apropiada dependerá de una multitud de factores que, en conjunto, constituyen las ambiciones del agricultor, y de los recursos que tiene disponibles. Como todas las fincas y todos los agricultores son distintos, la tecnología más apropiada diferirá de finca a finca. Aún en una misma finca los suelos y otros recursos pueden variar; la manera más efectiva de usar una parcela puede variar dentro de la finca y de un año a otro.

En años pasados no se apreció la importancia de esta especificidad de la tecnología agrícola. Como notaron Hayami y Ruttan (1971), "en reconocimiento del carácter y la situación específica de la tecnología agrícola -y su falta de eficiencia-fue una razón principal en gran parte de la asistencia técnica de las agencias nacionales e internacionales durante los años 50 y 60".

Los primeros intentos de desarrollar el sector agropecuario en los países menos desarrollados, involucran, muchas veces, el traslado de tecnología exitosa desde climas templados a los trópicos, donde están situados la mayoría de estos países. Con frecuencia, esos intentos lograron magros resultados, debido a las marcadas diferencias entre los recursos físicos y económicos de los agricultores de ambas regiones y sus aspiraciones. Como resultado de esos fracasos, se reconoció la necesidad de desarrollar tecnología en condiciones más representativas; durante los últimos 20 años se ha visto la creación de centros internacionales de investigación agropecuaria instalados en los trópicos.

Algunos de los programas de esos centros internacionales alcanzaron mucho éxito (por ejemplo, las nuevas variedades de trigo y arroz del CIMMYT e IRRI), aunque otros han tenido

resultados más limitados. La falta de progreso, especialmente notoria en el caso de los agricultores con poco terreno y escasos recursos, habitual en los trópicos dio impulso a lo que se ha demoninado investigación de sistemas.

El enfoque de sistemas es una consecuencia lógica de la naturaleza específica de la tecnología agrícola. El énfasis de la investigación pasa de la orientación disciplinaria o por producto, al estudio del "complejo de suelos, agua, cultivos, animales, mano de obra y otros recursos y características del ambiente que maneja el agricultor según sus deseos, capacidades y tecnología disponible" (Shaner ℓt $a\ell$, 1982).

En un programa de investigación con enfoque de sistemas, normalmente se concentra el esfuerzo en un área o región definida, escogida de acuerdo con las prioridades del gobierno las perspectivas de aumentar la producción. Los limites del área de trabajo se seleccionarán de tal manera que ella lo más homogénea posible, aunque esos límites muchas veces siguen divisiones administrativo-políticas, según conveniencia. Se recopilan datos sobre los recursos área, tecnología actual, etc., datos secundarios y de encuestas; mediante la utilización de esa información, el equipo investigador propone cambios en la tecnología actual que puedan ser beneficiosos para el agricultor, y se comprueban esas tecnologías alternativas con ensayos y registros. La investigación de alternativas se hace, en la medida de lo posible, bajo condiciones reales que enfrentan los agricultores; según la complejidad de los ensayos, pueden llevarse a cabo en estaciones experimenta-(si existen) o en fincas del agricultor, manejado por los investigadores o por los mismos agricultores. Cualquiera que sea el procedimiento exacto de la investigación, como paso final es necesario comprobar la tecnologia propuesta en un número de fincas suficiente para determinar si realmente la alternativa representa un mejoramiento sobre la tecnologia tradicional.

La tendencia hacia áreas objetivo más pequeñas (y más numerosas) implica un aumento en el costo, aunque -se esperacon un aumento en la eficiencia. Una posible manera de mejorar la relación beneficio/costo de la investigación agropecuaria es asegurar que la tecnología desarrollada llegue al máximo de usuarios. Es posible, por ejemplo, que agricultores de un área distinta pero con rasgos semejantes a áquellas donde se desarrolló una tecnología, puedan beneficiarse con ella. El problema es la identificación de tales áreas secundarias.

En respuesta a ese problema, la Agencia de Desarrollo Internacional de los Estados Unidos, dentro del Proyecto AID N^{Ω} 596-0083, financió un componente con el objetivo de "desarrollar una metodología para extrapolar la investigación en sistemas de cultivos de un área a otras semejantes". Este informe describe los resultados de ese componente del Proyecto.

La transferencia de tecnología agrícola. Algunos antecedentes

La transferencia de tecnología agrícola se puede considerar como el hecho de llevar una innovación agrícola de un lugar a otro donde posiblemente también tendrá éxito (Uehara, 1981).

Como destacó Nix (1980), la mayoría de la investigación agrícola está basada en el concepto de transferencia por analogía. Como es imposible repetir cada experimento en cada finca, se selecciona un sitio representativo y los resultados se extrapolan a otros sitios que tengan características semejantes. La hipótesis central es que todos los sitios, dentro de una determinada clase, deberían responder de igual manera al manejo.

La zona que se supone representa el sitio de investigación escogido se ha denominado dominio de recomendación (Perrin et al, 1976), zona de extrapolación o complejo de producción (2andstra, 1981). Esta zona puede ser única o puede consistir en diferentes áreas, separadas geográficamente, que responden en forma semejante ante la tecnología definida.

El problema central al respecto es cómo identificar, en forma objetiva y cuantitativa, esa zona que será considerada como dominio de recomendación. Al describir la selección de áreas, Shaner $\ell\ell$ a ℓ (1982) afirman que, cuando el equipo investigador selecciona bien el área para investigación, los resultados serán transferibles a través del área objetivo; sin embargo, los criterios para seleccionar bien el área no están bien elaborados.

El problema de definir el área de aplicabilidad de la tecnología puede replantearse en el sentido de identificar un sistema de clasificación geográfica, de tal forma que una clase se aproxime al dominio de recomendación. Esta clasificación puede incluir tanto factores físicos como el clima y los suelos -que limitan la producción misma- como factores socioeconómicos, que influyen en la adopción de la tecnología por parte del agricultor.

Durante años, y con diferentes propósitos, se han propuesto clasificaciones de clima, suelos, vegetación. la tierra y zonas agroecológicas; muchas de éstas han sido reseñadas por Burgos (1968), Krishnan (1980), Young (1981), y Chang (1981), entre otros. Con más datos disponibles y más capacidad de computación ese tipo de clasificación se ha ido refinando, con el propósito de que la clasificación desarrollada pueda servir para propósitos de transferencia 1980: de agrotecnología (Russell, 1980; Virmani et $a\ell$, 1983).

Sin embargo, es evidente que la clasificación más apropiada dependerá de la naturaleza de la tecnología recomendada. La flor del frijol aborta a temperaturas mayores a un promedio aproximado de 24°C , de ese modo, la isoterma de 24°C puede

ser muy importante para la clasificación de áreas para tecnologías que involucran frijol, pero de menos importancia para el maíz. Además, cuanto más refinada sea alguna tecnología, más específica en cuanto a localización será, y más compleja tendrá que ser la clasificación utilizada. Por ejemplo, el maíz tiene una adaptación amplia en Centroamérica, pero las áreas donde se pueden lograr dos siembras en un año son más limitadas, y las áreas en que tienen validez recomendaciones específicas de fertilización son más limitadas aún.

clasificaciones generales (no específicas para determinada tecnología) muchas veces usan algún promedio anual o alguna combinación de valores mensuales como indices; por tal causa son más aptas para vegetación natural o cultivos perennes que para cultivos anuales (en este último caso sólo las condiciones durante el ciclo son importantes). Por esa Burgos concluyó que las clasificaciones genéticas tienen un valor puramente geográfico o climático, y no pueden aplicarse a problemas prácticos de producción. No obstante, tales clasificaciones se usan algunas veces para dar una idea del ambiente de un área objetivo y definir así prioridades de la investigación. Un ejemplo es el estudio del área objetivo del programa de producción animal del CIAT, ubicada en las regiones de suelos Oxisol y Ultisol del trópico americano, para "clasificar los recursos de tierra en términos de clima, fisiografía y suelos, y suministrar una sintesis económica orientada geográficamente, que pudiera servir como base para estrategia de transferencia tecnológica del programa". (CIAT, 1978).

Un ejemplo reciente del uso de una clasificación general para transferencia de tecnología es la de la Taxonomía de Suelos (Beinroth, 1982). Esta clasificación consiste en un sistema de seis niveles de organización jerárquica, compuesta de orden, sub-orden, gran grupo, sub-grupo, familia y serie (USDA, 1975). La comprensión del sistema, que incluye como criterios factores de disponibilidad de agua y de temperatura durante varias épocas del año, ha permitido concluir que la Taxonomía de Suelos es especialmente apta para definir 'nichos ecológicos' aprovechables en la producción agrícola (Beinroth ℓt $a\ell$, 1980).

Para comprobar esa hipótesis, el Proyecto de <u>Benchmark Soils</u> realizó una serie de experimentos para definir superficies de respuesta a fertilización, principalmente al fósforo. En general, se encontró que suelos de la misma familia respondieron en forma semejante a la fertilización con fósforo, aunque el uso previo del sitio afectó las curvas de respuesta (Beinroth, 1982).

Una limitación del uso de la Taxonomía de Suelos como vehículo universal de transferencia de tecnología es su aparente validez sólo para ciertos aspectos de la tecnología agrícola. En los experimentos descritos, por ejemplo, se utilizaron

diferentes variedades de maiz de acuerdo con el sitio. Otra limitación es que no todos los suelos están definidos en forma global, aunque pueden tener respuestas bastante similares. Existen varios miles de familias de suelos en sólo los Estados Unidos; es muy posible que diferentes familias de suelos respondan en forma parecida a alguna tecnología, pero esta semejanza no será reconocida si la transferencia se limita a suelos de la misma familia. Sin embargo, un logro importante del Proyecto Benchmark Soils fue el desarrollo de una metodología para evaluar cuantitativamente la transferencia de una tecnología agricola en un agroambiente específico (Cady et $a\ell$, 1982). Con base en esa experiencia, se llegó a definir la transferencia de tecnología como la "extrapolación de una relación respuesta-entrada, estimada a través de situaciones experimentales conocidas, a otras condiciones semejantes". (Wood y Cady, 1981).

El enfoque de establecer áreas análogas puede mejorarse creando una clasificación específica para la tecnología bajo consideración. Después de la Segunda Guerra Mundial, Nuttenson hizo una serie de estudios para definir en Norteamérica sitios semejantes a regiones de Europa Oriental y Japón desvastadas por la guerra, con el propósito de ofrecer con buena posibilidad de éxito el traslado de material vegetativo de un área a su contraparte climática. Los elementos de comparación utilizados por Nuttenson (1947) fueron promedios mensuales de temperatura y precipitación, latitud y longitud, y duración de la época libre de heladas. Sin embargo, resulta difícil encontrar evidencias de que los estudios de Nuttenson hayan sido utilizados en forma práctica.

Han sido sugeridas varias otras clasificaciones específicas de ciertos cultivos o tecnologías (Burgos, 1968 y Chang, 1981). Un ejemplo basado inicialmente en datos climáticos bien sencillos, es la aplicación de la clasificación agroclimática de zonas arroceras adoptado por IRRI (1977). El criterio principal de esa clasificación era el número de meses secos (100 mm de precipitación), o húmedos (200 mm). Se supuso que para el arroz inundado era necesaria una precipitación de más de 200 mm mes $^{-1}$ y para cultivos de secano más de 100 mm mes $^{-1}$. Utilizando ese criterio, se calificaron áreas con más de nueve meses húmedos como aptas para dos siembras de arroz, y áreas con 5-9 meses húmedos y 3-7 con 100-200 mm mes $^{-1}$, aptas para una siembra de arroz inundado seguida por un cultivo sucesivo de secano. Estudios sucesivos realizados en el IRRI refinaron esta clasificación básica con datos más detallados de clima y de suelos (por ejemplo, precipitación por década) que permitieron definir áreas de extrapolación para arreglos específicos de cultivos y tecnología componente (IRRI, 1978).

Otro ejemplo de análisis específico para identificar áreas donde pueda funcionar alguna tecnología dada, es el

descrito por Virmani (1980), quien relacionó la probabilidad de precipitación con los riesgos involucrados en sembrar en seco, mediante tecnología desarrollada en ICRISAT.

la recopilación de más información referida la relación cultivo-ambiente, es posible construir modelos de producción cada vez más complejos. Un ejemplo de ello es el estudio del Proyecto de Zonas Agroecológicas, patrocinado por la FAO para valorar el uso potencial de los recursos de tierra del mundo, basado en la suposición que la aptitud de tierra sólo tiene sentido con relación a un uso definido. Se hicieron estimaciones de productividad basadas en épocas de crecimiento y tipo de clima para un cierto número de cultivos. estimaciones de productividad luego se modificaron en virtud de las restricciones de suelo, clima, plagas, enfermedades y malezas, y fueron subdivididas de acuerdo con el uso de insumos (FAO, 1981a). El resultado de esta metodología fue la determinación de cuatro clases de aptitud para cada cultivo, expresadas como porcentajes del rendimiento teóricamente obtenible.

Esta revisión de los sistemas de clasificación existentes no pretende ser exhaustiva; sólo muestra algunos de los enfoques y conceptos que se han sugerido para facilitar la transferencia de tecnología. Algunas veces, métodos que difieren en su grado de análisis de la relación ambiente-tecnología, están divididos en transferencia basada en analogías, métodos basados en factores importantes de cada sitio (métodos de factorsitio) y simulación (Swindale, 1980). Sin embargo, se nota que todos los métodos tienen como objetivo, al fin y al cabo, definir áreas análogas; sólo el grado de pertinencia de la clasificación utilizada (por ejemplo, la precisión del modelo) difiere con la complejidad de la clasificación.

Marco Conceptual

Para describir una metodología destinada a transferir o extrapolar tecnología, es necesario precisar un marco conceptual que permita definir los elementos y establecer los objetivos. Las definiciones utilizadas aquí no pretenden ser universales; servirán sólo para clasificar los conceptos descritos en este Informe.

una metodología desarrollo de de extrapolación puede concentrar básicamente en los conceptos de determinantes tecnologia agricola y representatividad del En otras palabras, hay que entender cómo los factores ambientales influyen en la decisión del agricultor de escoger tecnología, cómo varían esos factores a través del área o la región donde la tecnología también pueda tener utilidad. Estos dos conceptos también se han descrito como la relación sitio-tecnología, y la relación sitio-sitio; el supone que ambas relaciones pueden ser cuantificadas.

Determinación de la tecnología

Las determinantes de la tecnología, o los factores ambientales que influyen en ella, pueden ser factores edafoclimáticos o socioeconómicos. Los factores edafoclimáticos normalmente son los que limitan la producción biológica de la tecnología definida; los factores socioeconómicos son los que determinan si la tecnología es compatible con las expectativas y recursos económicos del agricultor. Aunque es imposible divorciar completamente los factores edafoclimáticos de los socioeconómicos, es conveniente evaluar primero las determinantes de producción; antes de decidir si una tecnología es aceptable, es lógico ver si es posible.

Sistemas de producción de cultivos

El sistema de producción de una finca, puede involucrar sistemas de producción vegetal o sistemas de producción animal. El ámbito de este Proyecto está limitado a sistemas de producción La tecnologia agricola (la forma de hacerlo), cuando se refiere a la producción de cultivos puede subdividirse en los sistemas de cultivo escogidos y el manejo dado a esos sistemas de cultivos. El sistema de cultivos comprende la selección de uno o más cultivos y su arreglo cronológico en una parcela. Cuando dos o más cultivos están sembrados en la misma parcela en un mismo año, se habla de cultivos múltiples. Estos cultivos pueden ser sembrados de tal forma que estén mezclados en el espacio dentro de la misma parcela; algunas veces, una parte significativa de sus ciclos vegetativos son concurrentes, o sea que se trata de cultivos asociados: puede sembrarse un segundo cultivo en el área del primero cuando el ciclo vegetativo de éste casi está completo, y se habla entonces de cultivos en relevo; o puede sembrarse el segundo cultivo después de la cosecha del primero (cultivos sucesivos).

A un sistema de cultivos se le da un cierto <u>manejo</u>, que es el conjunto de prácticas que se utilizan para lograr la producción. Estas prácticas normalmente involucran la preparación de la tierra, la siembra, el combate de plagas y la cosecha. El agricultor toma decisiones en cuanto a las herramientas, insumos de semilla y químicos que va a utilizar, cómo distribuir las plantas en el espacio (el arreglo espacial), y cuándo va a hacer las operaciones.

Las decisiones del agricultor en cuanto al sistema de cultivos que escoja y qué manejo le dé, dependerá de las determinantes ambientales descritas arriba; se pueden considerar las determinantes del sistema y las determinantes de manejo. Una vez definida la tecnología, la producción dependerá de las determinantes de la producción, que ya no están bajo el control del agricultor.

Las determinantes del sistema, del manejo y de la producción están intimamente relacionadas; el agricultor no seleccionará

ningún sistema de cultivo ni le dará un cierto manejo, si ese sistema tiene como resultado poca producción.

Representatividad del área

área para la cual está diseñada una tecnología se denomina el área objetivo. Normalmente la tecnología Se determina por experimentación en sitios específicos, considerados represendel área objetivo. El proceso de transferencia de tecnología o extrapolación se define como la aplicación exitosa de tecnología desarrollada en sitios especificos a otros sitios o áreas. El proceso permite verificar el área objetivo, y ademas ampliar esta área objetivo para incluir otras (llamadas áreas objetivo secundarias) donde también puede aplicarse la misma tecnología.

El área de extrapolación se define aquí como el área donde la tecnología realmente puede tener éxito o alcanzar una producción esperada. El éxito que tendrá la tecnología dentro del área objetivo o cualquier área, dependerá de la representatividad de los sitios específicos, donde se desarrolló la tecnología en función de las determinantes de la tecnología.

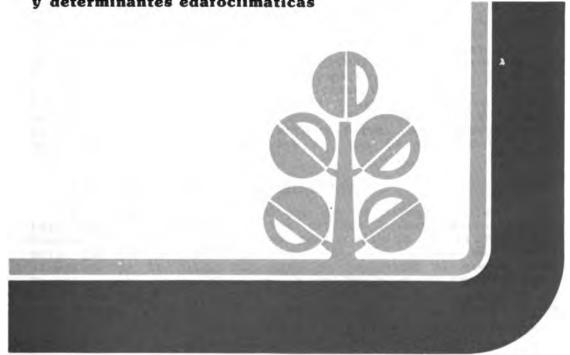
representatividad de un sitio puede considerarse términos puramente edafoclimáticos y también en términos de prácticas agrícolas ya existentes en el área, que reflejan esas condiciones edafoclimáticas. Así se han definido áreas de recomendación de tecnología, con base en los sistemas y el manejo ya practicados por los agricultores (ver el caso de ICTA en Guatemala, citado por Shaner et al, 1982). Obviamente, en el caso de alguna tecnología que involucra un cambio de manejo en un sistema de cultivo dado, el área de extrapolación potencial está limitada por el área donde el sistema tenga éxito. La localización de un sistema de cultivos, entonces, puede definir los límites para estudios posteriores de representatividad.

Metodología y objetivos del Proyecto

La metodología del Proyecto consistió en un proceso tendiente a investigar las determinantes de la tecnología y la representatividad del área. Este proceso requirió, además del aspecto experimental, la evaluación de una cantidad de información de factores edafoclimáticos y de cultivos, su ordenamiento y análisis.

En consecuencia, el Proyecto consistió en determinados pasos con los siguientes objetivos:

 Identificar los sistemas de cultivos principales del Istmo Centroamericano y su localización geográfica


- Construir un banco de datos geográficos de condiciones edafoclimáticas y de los sistemas de cultivos principales.
- Caracterizar las condiciones edafoclimáticas en las áreas de los principales sistemas de cultivo, e identificar las determinantes de los sistemas, utilizando datos secundarios.
- 4. Caracterizar el manejo de los principales sistemas de cultivo e identificar las determinantes de manejo.
- 5. Probar una tecnología en una red de sitios experimentales para definir las determinantes de la producción de la tecnología dada y desarrollar modelos que puedan predecir la producción de una tecnología específica.
- 6. Determinar la factibilidad de clasificar la región centroamericana con base en la producción prevista de una tecnología específica, utilizando información existente o alcanzable.

Los procedimientos y resultados de cada uno de estos pasos se describen en los siguientes Capítulos de este Informe.

CAPITULO I

LOS PRINCIPALES SISTEMAS DE CULTIVOS EN CENTROAMERICA.

Su distribución, descripción ambiental y determinantes edafoclimáticas

Objetivos

Los objetivos de esta fase del Proyecto fueron:

- Recopilar y resumir datos disponibles para la distribución de los cultivos y sistemas de cultivos (anuales) principales de la región.
- Recopilar la información de clima y suelos disponible para la región, y desarrollar un sistema para su manejo.
- Describir las condiciones ambientales en que se encuentran los diversos sistemas de cultivo.
- Analizar el efecto que tienen los factores edafoclimáticos sobre la localización de los sistemas de cultivo.

Los datos utilizados y su manejo

Los datos secundarios utilizados en esta fase incluyeron los de cultivos (tomados de censos agropecuarios nacionales), los de clima y suelos (de mapas existentes) y los de precipitación (de estaciones meteorológicas individuales). Las fuentes de esta información se detallan en el Anexo I.

Fueron construidos tres tipos de archivos. El primero se organizó por municipio e incluyó las áreas de los diferentes sistemas de cultivo y valores codificados para variables de clima y suelos disponibles. El segundo tipo de archivo se organizó por células de 1 km², utilizando el Sistema Comprensivo de Inventario y Evaluación de Recursos (CRIES, en inglés), descrito por USDA (1980) y Garro (1982). Los archivos de CRIES incluyeron variables principales de clima y suelos y también las divisiones administrativo-políticas, lo cual facilitó el uso de los datos de áreas de cultivos de los archivos organizados por municipio. El tercer tipo de archivo se organizó por estación meteorológica; la identificación del municipio también facilitó el uso de este archivo, en coordinación con los otros.

Principales cultivos de Centroamérica

El Cuadro 1 muestra el uso de la tierra en la región, tal como fue definido en los últimos censos nacionales; el Cuadro 2 muestra estimaciones más recientes de la FAO. Se nota que el uso principal en todos los países es pasto: alrededor de la mitad del área es explotada de ese modo en Panamá, Costa Rica, Nicaragua y Honduras, y la tercera parte en El Salvador y Guatemala. De los cultivos, los anuales corresponden al 60-70 % del área en todos los países, menos

Cuadro 1. Uso agropecuario de la tierra en Centroamérica (miles de hectáreas).

	Panamá	Costa Rica	Nicaragua	Honduras	El Salvador	Guatemala
Año del estudio	1970	1973	1963	1974	1971	1979
Area del país	7 665	5 090	12 878	11 208	2 100	10 889
Explotada	2 089	3 122	3 816	2 630	1 452	4 105
Pastos	1 140	1 558	1 771	1 348	555	1 122
Cultivos perennes	111	207	158	212	163	477
Cultivos anuales	214	141	389	366	382	1 249
Tierra en descaso	217	125	337	140	107	-
Montes y bosques,	345	1 000 (2)	1 048	533 ⁽³⁾	168	1 117
Café	-	83	-	116	147	255
Banano	-	35	-	19	-	6
Plátano	-	6	-	9	1	-
Cacao	-	20	-	-	-	-
Caña	24	39	21	29	23	107
Algodón	-	0	96	6	64	-
Tabaco	1	2	_	3	1	-
Arroz	99	65	19	15	14	13
Maiz	71	52	173	320	257	647
Frijol	18	27	40	70	51	162
Sorgo	-	4	33	59	127	61
Trigo	-	-	-	-	-	27
Papa	1	2	-	1	-	5
Yuca	5	2	-	4	1	-
Name	2	-	-	-	-	-
Haba	-	-	-	-	-	-
Ajonjoli	-	-	7	-	1	-
Tomate	2	0	_	<u>-</u>	' 1	-
Cardamomo	-	-	_	-	_	110

Fuente: Panamá, 1974; Costa Rica, 1974; Nicaragua, 1967; Honduras, 1978; El Salvador, 1975; Guatemala, 1983.

^{1.} Tierra cultivada en los cinco años previos (2 en el caso de Costa Rica).

^{2.} Incluye las clases "charrales y tacotales" (284) y "montes y bosques" (717).

^{3.} Incluye las clases "guamiles" (340); "otros árboles" (67) y "pinos" (126).

Cuadro 2. Area de cultivos principales en Centroamérica (miles de hectáreas).

	Panamá	Costa Rica	Nicaragua	Honduras	El Salvador	Guatemala
Area terreno	7 599	5 066	11 875	11 189	2 072	10 843
Tierra de labranza	458	283	1 340	1 560	560	1 480
Cultivos permanentes	116	207	176	197	165	354
Pastos permanentes	1 161	1 558	3 420	3 400	610	870
Café	24	81	110	125	166	250
Cacao	4	20	5	1		3
Caña	55	48	37	85	32	79
Algodón		10	35	9	85	122
Tabaco	1	2	2	6	2	5
Arroz	120	74	25	11	17	15
Maiz	68	40	197	348	275	650
Frijol	15	21	65	69	55	116
Sorgo		20	60	52	144	47
Trigo				1		54
Papa	2	2				8
Yuca	5	2	7	3	2	3
Haba						20
Ajonjoli			8	2	10	19

Fuente: FAO, 1982.

en Costa Rica, donde el área de cultivos anuales es más o menos igual al de cultivos perennes.

Con respecto a los cultivos anuales, el arroz es el cultivo más extensivo en el sur de la región (Panamá y Costa Rica) y cada vez menos importante hacia el norte. Por el contrario, el maíz es el cultivo dominante en el norte (Guatemala, El Salvador, Honduras y Nicaragua) y relativamente menos importante hacia el sur. El frijol es el cultivo que ocupa el segundo lugar, en términos de área sembrada, en Guatemala, Honduras, y Nicaragua, (después del maíz); tercero en Panamá y Costa Rica (después del maíz y el arroz) y El Salvador (después del maíz y el sorgo). Es difícil cuantificar con precisión el área de sorgo, debido al aumento del área de este cultivo en años recientes (Cuadros 1 y 2), pero es muy extensa en El Salvador, Guatemala, Honduras y Nicaraqua.

En comparación con estos cuatro cultivos de granos básicos, y con la caña de azúcar, el área dedicada a otros cultivos es muy reducida.

Como el Proyecto se dirige principalmente a agricultores de pequeña escala, se recopilaron datos para mostrar el uso de la tierra en fincas pequeñas (menores de 10 ha). El Cuadro 3 muestra que, al contrario de las fincas más grandes, el área dedicada a pastos en las pequeñas fincas es relativamente reducida. Más bien predominan los cultivos anuales como uso principal, con excepción de Costa Rica, donde juega un papel importante la caficultura. En El Salvador, Guatemala y Honduras, los agricultores de pequeña escala son responsables por la mayoría de la producción nacional de maíz, frijol y sorgo.

Distribución de los sistemas de cultivos más importantes

De los países de la región, Guatemala, El Salvador, Nicaragua y Honduras disponen de datos de la época y modalidad (cultivo sólo o asociado) de siembra, lo que da una idea de los sistemas de cultivos empleados. Por ser mayor la importancia del maíz, el frijol y el sorgo, se limitó este estudio a dichos cultivos.

Las épocas más importantes para sembrar en Centroamérica son la primera (mayo/junio) y la postrera (agosto/setiembre). Datos para áreas sembradas y producción de acuerdo con la época y modalidad de siembra de maíz, frijol y sorgo se resumen en los Cuadros 4, 5 y 6, respectivamente. Un resumen general, expresado como porcentaje del área total de cada cultivo, se preseta en el Cuadro 7.

Sistemas con maíz

En los Cuadros 4 y 7 se ve que la mayoría (60-80 %) del área total de maiz está sembrada en primera y como cultivo solo; el área de maiz asociado en primera y maiz solo en primera corresponde sólo al 5-25 % del área total, de acuerdo con el país.

Cuadro 3. Uso agropecuario y porcentaje de la tierra en fincas pequeñas (miles de hectáreas).

	Panamá	Cost	ta Ri	ca Ni	carag	ua H	onduras	El S	alva	dor	Guatemala	
Año del estudio	1970	19	73		1963		1974	197	1		1979	
No. de explotaciones	68 337 (65)		902 (60)				153 045 (78)	250 (9	539 2)		468 460 (88)	
Area explotada	167	(8)	124	(4)	133	(3)	440	(17)	394	(27)	677	(16)
Pastos	31	(3)	39	(2)	31	(2)	80	(6)	57	(10)	43	(4)
Cultivos perennes	29	(27)	42	(20)	14	(9)	62	(30)	32	(19)	57	(12)
Cultivos anuales	61	(29)	23	(16)	70	(18)	196	(53)	255	(52)	461	(37)
Tierra en descans	o ¹ 23	(11)		(4)		(1)		(26)		(28)	-	
Montes y bosques	15	(4)	12	(1)(2)	4	(0)	63	(12) ⁽¹	³⁾ 21	(12)	90	(8)
Café			29	(35)			37	(32)	26	(17)	37	(15)
Banano			1	(2)			2	(10)			1	(25)
Plátano			1	(21)					2	(50)		
Cacao			1	(5)			6	(21)				
Caña			3	(7)	1	(2)			4	(18)	4	(4)
Algodón					2	(2)			4	(6)		
Tabaco			1	(56)								
Arroz			6	(9)	4	(21)	6	(43)	7	(48)	3	(21)
Maiz			13	(25)	42	(24)	180	(56)	184	(77)	374	(58)
Frijol			7	(25)	13	(32)	41	(58)	40	(78)	112	(69)
Sorgo			0	(1)			37	(64)	21	(78)	32	(53)
Trigo											21	(77)
Papa							1	(36)			4	(79)
Yuca			1	(29)					1	(68)		

Fuente: Panamá, 1974; Costa Rica, 1974; Nicaragua, 1967; Honduras, 1978; El Salvador, 1975; Guatemala, 1983.

^{1.} Tierra cultivada en los cinco años previos (2 en el caso de Costa Rica).

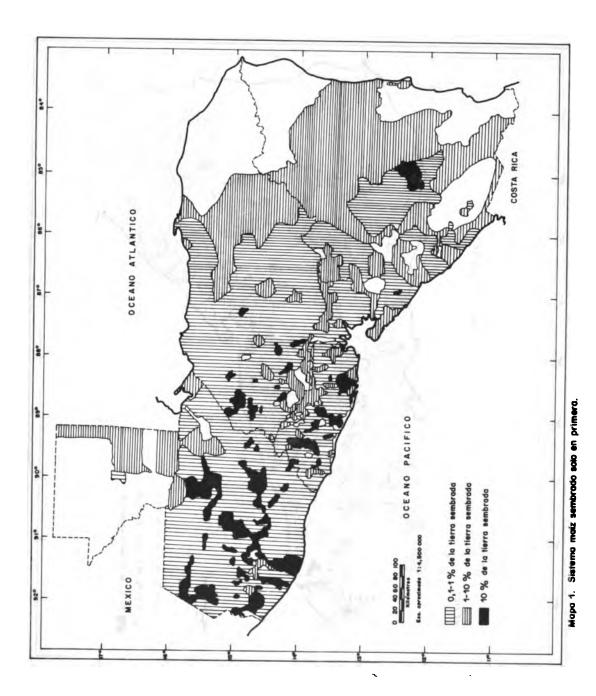
^{2.} Incluye las clases "guamiles" (56), "otros árboles" (3) y "pinos" (4).

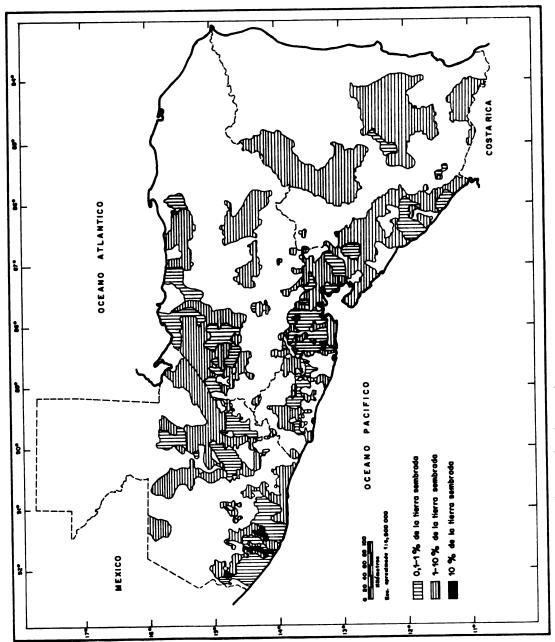
^{3.} Incluye las clases "charrales y tacotales" (7) y "montes y bosques" (5).

La distribución del maíz solo en primera se muestra en el Mapa 1, y la de maíz solo en postrera se encuentra en el Mapa 2 (los datos de la distribución de los diferentes sistemas de cultivos se expresan como porcentajes del área total de terreno sembrada).

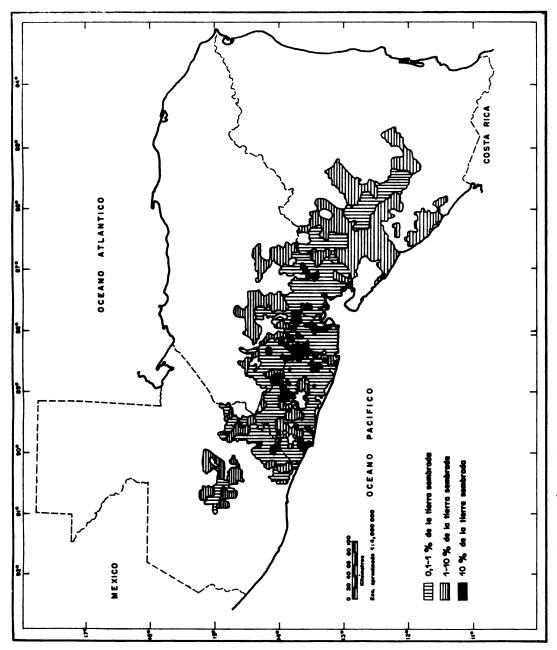
El maíz solo en primera está distribuido en toda el área estudiada, reflejando la amplia adaptación de este cultivo y la importancia en la dieta de la población. No hay centros específicos de producción, y las únicas áreas donde no se siembra el maíz son aquellas poco pobladas en las zonas húmedas de la vertiente atlántica. En la zona fronteriza entre Honduras y El Salvador las intensidades de siembra de maíz solo están reducidas debido a la práctica del asocio con sorgo (ver más adelante).

El maiz sembrado solo en postrera se encuentra principalmente en las costas del Atlántico y el Pacífico. Como área importante para el maiz en postrera se nota especialmente la región oriental de El Salvador.

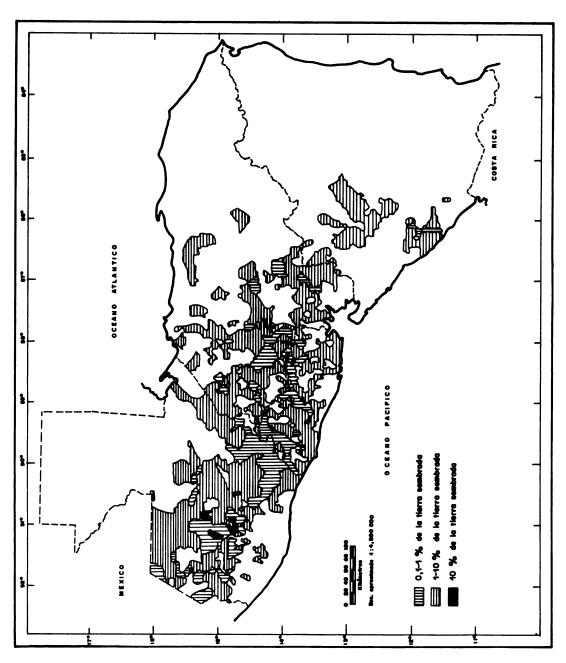

Sistema con frijol


Los sistemas con frijol varían de país a país (Cuadro 5 y 6). En Honduras, Nicaragua y El Salvador, la manera más frecuente de sembrar frijol es en postrera como cultivo solo (40-60 % del área de frijol), mientras que en Guatemala el 70 % del área se siembra en asocio en primera. Siembras en primera como cultivo solo también son importantes en los cuatro países; existen áreas significativas de frijol asociado en postrera en Honduras, Nicaragua y El Salvador.

La distribución de los diferentes sistemas de frijol se muestran en los Mapas 3, 4 y 5. Se nota que existen siembras extensivas de frijol solo, con concentraciones de la región central de El Salvador, y Olancho en Honduras. El frijol asociado se encuentra principalmente en el altiplano y el sudoeste de Guatemala. Es interesante observar que siembras de frijol solo en primera están en las mismas áreas que las de frijol solo en postrera, pero que el frijol asociado está sembrado en áreas distintas. Además, la distribución de las dos maneras de sembrar frijol son complementarias, de lo cual resulta que el frijol también es muy extensivo sembrado de una manera u otra. Las únicas áreas donde no hay frijol sembrado son las de poca población; también aquellas donde las temperaturas son muy altas y el cultivo no fructifica.


Sistema con sorgo

En los cuatro países del área estudiada, el método tradicional de sembrar sorgo está asociado con maíz. Mientras que este sistema cuenta para casi toda el área de sorgo sembrada en El Salvador y Honduras (Cuadros 6 y 7), el área de sorgo sembrado solo ha aumentado considerablemente en Guatemala y Nicara-



Mapa 2. Sistema maíz sembrado solo en postrera

Mapa 3. Sistema maíz asociado con sorgo.

24

Mapa 5. Sistema frijol sembrado solo en primera

Cuadro 4. Area sembrada y producción de maíz según modalidad de siembra.

		Sol	Solo Primera		Asc	Asociado Primera	8 :	ď	Solo Postrera		Aso	Asociado Postrera	ra
		Area 000 ha	Prod.	Rend. tm ha-1	Area 000 ha	Prod.	Rend1 tm ha	Area 000 ha	Prod.	Rend1 tm ha	Area 000 ha	Prod.	Rend. tm ha
HONDURAS	1974	214	267	1,23	0,	\$	0,62	90	31	1,03	e.	2	0,66
fincas < 1974	1974	115	142	1,23	;	28	0,64	18	19	1,05	7	,	99'0
10 h s	1980	179	246	1,26	1.3	3	0,88	79	105	1,32	∞	,	0.74
GUATEMALA		;	;	i	į	;	;	:	;	;	,		6
1964 fincas < 1964	1964	4.38 2.80	386 255	0,81	. 09	38	0,63	7 7	15	0,61	, ,	٠.	0,52
7 ha	1975	392	459	1,17	145	104	0,72	1			ı		1
	1979 ¹	487	565	1,22	160	162	1,01		•		•	,	1
EL SALVADOR	OR 1971	96	237	2,46	•	•	ı	19	88	1,39	1	1	ı
fincas < 10 ha	1971	69	159	2,30	•	•		14	18	1,28	i		ı
	1981	186	362	1,95	69	100	1,43	15	22	1,50	'n	7	1, 39
NICARAGUA	_												
	1963	117		•	53	1	•	22	•	,	-	•	
	1981	66	66	1,00	15	6	0,62	42	.	0,91	13	10	0,71

1. Cifras para Guatemala se refieren a todas las épocas de siembra. 000 ha - miles ha y 000 tm - miles de tm. Fuentes: Honduras, 1978, 1981; Guatemala, 1971, 1978, 1983; El Salvador, 1982; Nicaragua, 1967, 1982, 1983.

Cuadro 5. Area sembrada y producción de frijol según modalidad de siembra.

		So	Solo Primera		УВС	Asociado Primera		Š	Solo Postrera		увс	Asociado Postrera	ar a
		Area 000 ha	Prod.	Rend1 tm ha	Arec 000 ha	Prod.	Rend. tm ha-1	Area 000 he	Prod.	Rend. tm ha-1	Area 000 ha	Prod.	Rend1 tm ha
HONDURAS						1ب							
	1974 20	70	13	99.0	22	ø	0,26	76	14	0,55		1	0,45
fincas <													
10 ha	1974	2	,	99'0	13	m	0,27	16	•	95'0	7		0,49
	1980	19	15	0,78	18	7	0,38	92	15	95'0	so.	~	0,45
GUATEMALA													
	1964	19	12	0,64	79	15	0,23	7	ю	0,43	7	0	0, 31
fincas <													
7 ha		=	7	0.64	÷	•	0,23	•	7	0,41	-	•	0,31
	1975 ⁽¹⁾ 35	1) 35	20	0,57	68	1.1	0,20		ı	•	•	1	•
	1979 40	Ç	92	0,64	121	97	0,22	•		•	•	,	
EL SALVADOR	80												
	1971	==	60	0.72	11	12	0,72	21	16	0,79	m	7	0,86
fincas <		•	,	;	:	•	i	:	:	;	,	•	;
TO DE	19/1	ю	٥	0,72	:	07	0.72	91	13		7	-	, o
	1981	so.	•	66'0	15	•	0,55	22	19	0,84	'n	n	0,71
NICARAGUA													
	1983	*			•	4	•	18	•	•	e	•	•
	1981		•	0,48	m		0,33	7.	15	0,58	S	m	0,53

1. Cifras para Guatemala 1975 se refieren a todas las épocas de siembra. 000 ha = miles de ha y 000 tm = miles de tm.

Fuentes: Honduras, 1978, 1981; Guatemala, 1971, 1978; El Salvador, 1975, 1982; Nicaragua, 1967, 1982, 1983.

Cuadro 6. Area sembrada y producción de sorgo según modalidad de siembra.

		•	Solo Primera		Y	Asociado Primera	ra	Sol	Solo Postrera		Asoc	Asociado Postrera	8
	4 ŏ	Area 000 ha	Prod.	Rend1 tm ha	Area 000 ha	Prod.	Rend1 tm ha	Area 000 ha	Prod. 000 tm	Rend1 tm ha	Area 000 ha	Prod. 000 tm	Rend1 tm ha
HONDURAS													
	1974 ⁽¹⁾	•	s	0,85	53	38	0,67		•	ı	•	1	•
finces < 10 ha	1974 (1)	7		0,73	35	25	0,70	1	•	,	•	•	
	1980	7	т	1,20	52	4.1	06.0	•	•	1,00	-	m	0,87
GUATEMALA													
	1964	7	7	0,89	7.	12	0,50	7		99'0	0	0	0,47
*	1964	-	-	0,87	17	::	0,64			0,65	0	0	0,42
7 ha	1975(2)	10	16	1,73	9	87	0,61	•	1		•	•	•
	1979	11	31	1,87	;	31	0,69		•	•	,		•
EL SALVADOR	æ												
	1971(3)	7	•	1,24	115	116	1,01		•		•	'n	96,0
v .	1971(3)	so	9	1,27	96	76	1,00	1	•		-	•	0,99
10 ha	1981		•	1,60	113	129	1,15			•	ı		1
NICARAGUA													
	1963	9			74	ı		7	,		7	•	
	1981	19	28	1,55	14	17	1,20	26	46	1,63	٠	s	0,87

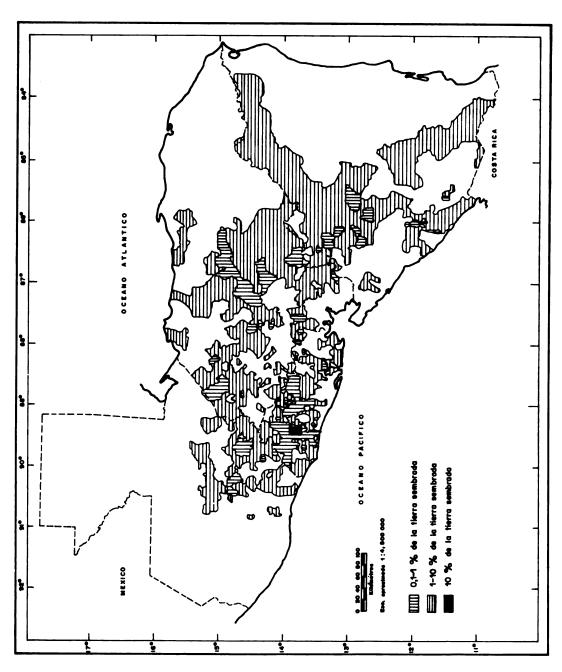
1. Cifras para Honduras 1974 se refieren a todas las épocas de siembra. 000 ha = miles de hectáreas; 000 tm = miles de toneladas.
2. Cifras para Gustemala 1975 serzéfieren a todas las épocas de siembra.
3. Cifras para El Salvador 1971, sorgo solo, se refieren a todas las épocas de siembra.
4. Cifras para El Salvador 1981 se refieren a todas las épocas de siembra.

Fuentes: Honduras, 1978, 1981; Guatemala, 1971, 1978, 1983; El Salvador, 1975, 1982; Nicaragua, 1967, 1982, 1983.

gua en años recientes. En el mapa 6 se ve que el sistema sorgo asociado es el sistema más concentrado en la región entre los seis sistemas aquí considerados; cubre una faja contínua desde la región sudoriental de Guatemala hasta el Lago de Nicaragua, en la vertiente pacífica del Istmo. Esa distribución más concentrada sugiere que la presencia del sistema está más vinculada con factores edafoclimáticos que los otros sistemas descritos.

Descripción ambiental de los sistemas de cultivo

Métodos


Utilizando los archivos de CRIES, se calculó la distribución de cada sistema de cultivo según la precipitación anual, número de meses secos (<50 mm mes-1), temperatura media anual y topografía predominante. Los resultados de estos análisis se presentan en los Cuadros 8 a 13. En las Figuras 1 a 6 se observa: a) el procentaje del área total del sistema bajo cada régimen del factor ambiental, y b) el porcentaje de la tierra sembrada del sistema en cada rango del factor ambiental. Así, la parte izquierda de cada figura muestra las condiciones en que se siembra la mayoría del sistema, mientras que la derecha es una indicación de cómo están influyendo los diferentes factores ambientales en la presencia o no del sistema.

Una clasificación ecológica de uso común en Centroamérica, que une los factores de precipitación y temperatura, es la de Holdridge (1978). La distribución de los sistemas de cultivo según esta clasificación se da en los Cuadros 14 a 19. Los análisis de la distribución de los sistemas de acuerdo con la clasificación del suelo están presentados por país en los Cuadros 20 a 22. (Se omitió Guatemala del análisis sistema/suelo por falta de información apropiada).

Para ilustrar las condiciones <u>típicas</u> de precipitación dentro del área de cada sistema se siguieron los siguientes pasos: primero se identificaron las estaciones meteorológicas con más de 10 años de datos en las áreas de los sistemas (donde la intensidad de siembra era mayor del 1 %); luego se calculó el valor mediano para las variables precipitación media mensual, precipitación confiable media mensual e indice de disponibilidad de agua (IDA) para cada país y sistema de cultivo. Se identificó la estación que más se aproximaba a las distribuciones promedio sumando las diferencias entre los valores de IDA para cada estación y los valores de la distribución promedio. Esas estaciones

Precipitación confiable es aquella que se puede esperar en 75 % de los años.

² El índice de disponibilidad de agua (IDA) es definido como la precipitación confiable/evapotranspiración.

30

Cuadro 7. Porcentaje de superficie sembrada con granos básicos según época y modalidad

		Pr	imera	Post	rera
		Solo	Asociado	Solo	Asociado
Maiz	Guatemala	77	15	7	0
	Honduras	53	22	23	2
	El Salvador	68	25	5	2
	Nicaragua	59	9	25	8
Frijol	Guatemala	21	70	8	0
	Honduras	28	26	38	7
	El Salvador	11	32	47	11
	Nicaragua	20	8	60	13
Sorgo	Guatemala	9	86	4	0
	Honduras	3	76	6	6
	El Salvador	2	98	-	-
	Nicaragua	29	22	40	9

Año de datos: Guatemala, 1964; Honduras, 1980; El Salvador, 1981; Nicaragua, 1981.

Cifras para sorgo (El Salvador) refiere a todas las épocas de siembra.

Fuentes: Ver Cuadros 7 a 9.

representativas se muestran en los Cuadros 23 a 28 por sistema y país. Para identificar una estación representativa de toda la región, se combinaron las distribuciones promedio para cada país utilizando un factor de peso de acuerdo con el número de estaciones meteorológicas dentro de cada país en las regiones correspondientes a los sistemas, para evitar una sobre-representación de los países con más estaciones por km².

Precipitación

Es muy difícil caracterizar adecuadamente la distribución de lluvia en las áreas de cada sistema, debido a la variación en tiempo y espacio. La precipitación muchas veces se define por el promedio anual, lo cual casi carece de sentido, sobre todo en el caso de cultivos anuales, porque implica poco con

Cuadro 8. Perfil ambiental de maiz monocultivo, primera.

PAIS	Area		<		800	1	200	1	600	2	000	2	400	2	800		>		
AIS	(km ²)		800	1	200	1	600	2	000	2	400	2	800	3	200	3	200		TAL
ICARAGUA	Total		349	9	111	15	634	11	510	17	978	28	421	21	005	14	806	118	859
	sistema		2		106		329		257		338		147		101		24	1	304
IONDURAS	Total	1	657	21	020	30	201	13	676	24	816	11	883	7	608	1	620	112	493
	sistema		31		481		881		361		435		187		58		0	2	434
L SALVADOR	Total		0		16		520	14	599	4	200		553		0		0	20	923
	sistema		0		0		78		724		172		10		0		0		985
WATEMALA	Total	6	940	11	053	6	796	34	772	14	234	12	867	8	779	12	824	108	265
	sistema		586		809		507		562		451		477		520		670	4	581
OTAL	Total	8	946	33	000	53	151	74	557	61	228	53	724	37	392	29	250	360	540
	sistema		619	1	396	1	795	1	905	1	396		821		679		694	9	304

b) Número de meses secos

PAIS	AREA (km²)	0		1		2	:	3		4	,	5		6		7	8	T	OTAL
NICARAGUA	Total 34	697	21	830	6	825	21	601	5	467	20	724	7	266		400	0	118	853
	sistema	58		54		97		599		79		281		119		6	0	1	304
HONDURAS	Total 21	484	10	643	6	575	18	580	14	339	24	345	16	017		311	179	112	475
	sistema	168		111		141		285		638		573		515		2	1	2	434
EL SALVADOR	Total	0		0		0		0	1	743	12	672	6	497		0	0	20	925
	sistema	0		0		0		0		77		649		259		0	0		985
GUATEMALA	Total 16	770	6	338	25	281	19	739	5	873	8	248	23	531	2	476	0	108	256
	sistema	734		143		215		473		459		525	1	850		181	0	4	581
TOTAL	Total 72	951	38	811	38	681	59	920	27	422	65	989	53	311	3	187	179	360	509
	sistema	970		308		453	1	358	1	254	2	028	2	743		190	1	9	304

c) Temperatura media

PAIS	AREA (km²)	6 - 129C	12 - 179C	17 - 2	49C :	249C	TO	TAL
NICARAGUA	Total	5	1 215	76 8	69	40 724	118	859
	sistema	0	19	9	37	347	1	304
HONDURAS	Total	0	7 478	100 3	30	4 673	112	484
	sistema	0	235	2 0	64	135	2	434
EL SALVADOR	Total	5	294	16 2	38	4 378	20	928
	sistema	0	9	8	54	139		985
GUATEMALA	Total	1 267	16 189	88 7	03	2 207	108	366
	sistema	72	1 362	3 1	13	34	4	581
TOTAL	Total	1 277	25 176	282 1	40	51 982	360	637
	sistema	72	1 625	6 9	69	655	9	304

PAIS	AREA		NURAS		ERROS		aras		
	(km²)	(10	l pend.)	(10-3	0 % pend.)	(30	% pend.)	T	OTAL
NICARAGUA	Total	73	187	24	388	21	191	118	856
	sistema		618		313		372	1	304
HONDURAS	Total	30	930	20	715	60	750	112	431
	sistema		441		241	1	751	2	434
EL SALVADOR	Total	7	542	9	242	4	028	20	839
	sistema		453		427		104		985
GUATEMALA	Total	42	196	28	845	37	162	108	203
	sistema	1	448	1	319	1	812	4	579
TOTAL	Total	153	855	83	185	123	131		329
	sistema	2	960	2	300	4	039	9	302

Cuadro 9. Perfil ambiental de maiz monocultivo, postrera.

PAIS	Area		<		800	_	200	_	600	_	000	_	400	_	800		>	TO	TAL
	(km²)		800	1	200	1	600		000		400		800		200	3	200		
NICARAGUA	Total		349	9	111	15	634	11	510	17	978	28	421	21	005	14	806	118	859
	Sistema		0		20		84		46		48		20		15		6		238
HOMDURAS	Total	1	657	21	020	30	201	13	676	24	816	11	883	7	608	1	620	112	493
	Sistema		1		23		86		79		85		49		18		0		341
EL SALVADOR	Total		0		16		520	14	599	4	200		553		0		0	20	923
	Sistema		0		0		7		118		48		2		0		0		176
SUATEMALA	Total	6	940	11	053	6	796	34	772	14	234	12	867	8	779	12	824	108	265
	Sistema		63		19		12		83		49		87		80		115		509
POTAL	Total	8	946	33	000	53	151	74	557	61	228	53	724	37	392	29	250	360	540
	Sistema		65		61		189		327		230		158		113		120	1	264

b) <u>Número de meses secos</u>

PAIS	Area (km²)		0		1		2		3		4		5		6		7	8	TO	TAL
NICARAGUA	Total	34	697	21	830	6	825	21	601	5	467	20	724	7	266		400	0	118	853
	Sistema		13		12		12		55		12		94		39		0	0		238
HONDURAS	Total	21	484	10	643	6	575	18	580	14	339	24	345	16	017		311	179	112	475
	Sistema		46		31		46		50		81		42		44		0	0		341
EL SALVADOR	Total		0		0		0		0	1	743	12	672	6	497		0	0	20	925
	Sistema		0		0		0		0		26		100		49		0	0		176
GUATEMALA	Total	16	770	6	338	25	281	19	739	5	873	8	248	23	531	2	476	0	108	256
	Sistema		36		21		35		75		118		64		123		36	0		509
POTAL	Total	72	951	38	811	38	681	59	920	27	422	65	989	53	311	3	187	179	360	509
	Sistema		95		64		94		181		237		301		254		37	0	1	264

c) Temperatura media

PAIS	Area (km²)	6-12ºC	12-17ºC	17 -249C	> 249C	TOTAL
NICARAGUA	Total	5	1 215	76 869	40 724	118 859
	Sistema	0	2	175	61	238
HONDURAS	Total	0	7 478	100 330	4 673	112 484
	Sistema	0	23	286	32	341
EL SALVADOR	Total	5	294	16 238	4 378	20 928
	Sistema	0	1	128	46	176
GUATEMALA	Total	1 267	16 189	88 703	2 207	108 366
	Sistema	1	13	492	3	509
TOTAL	Total	1 277	25 176	282 140	51 982	360 637
	Sistema	1	39	1 081	142	1 264

PAIS	AREA (km²)		NURAS % pend.)		RROS 0 % Pend.)		TAÑAS \$ Pend.)	TO	TAL
NICARAGUA	Total	73	187	24	383	21	191	118	856
	Sistema		124		76		38		238
HONDURAS	Total	30	930	20	715	60	750	112	431
	Sistema		111		38		192		341
EL SALVADOR	Total	7	542	9	242	4	028	20	839
	Sistema		60		72		43		176
GUATEMALA	Total	42	196	28	845	37	162	108	203
	Sistema		362		74		74		509
TOTAL	Total	153	855	83	185	123	131	360	329
	Sistema		657		259		347	1	263

Cuadro 10. Perfil ambiental de frijol monocultivo, primera.

PAIS	Area (km²)		8 00	1	800 200	-	200 600	_	600 000		000 400		400 800		800 200	3	> 200	TO	TAL
NICARAGUA	Total		349	9	111	15	634	11	510	17	978	28	421	21	005	14	806	118	859
	Sistema		2		29		39		21		23		15		9		3		142
HONDURAS	Total	1	657	21	020	30	201	13	676	24	816	11	883	7	608	1	620	112	493
	Sistema		3		44		74		34		40		23		6		0		223
EL SALVADOR	Total		0		16		520	14	599	4	200		553		0		0	20	923
	Sistema		0		0		4		82		21		0		0		0		107
GUATENALA	Total	6	940	11	053	6	796	34	772	14	234	12	234	12	867	8	779	108	265
	Sistema		45		39		31		27		28		12		11		11		205
TOTAL	Total	8	946	33	000	53	151	74	557	61	228	53	724	37	392	29	250	360	540
	Sistema		50		113		147		164		112		51		26		14		677

b) Número de meses secos

PAIS	Area (km2)		0		1		2		3		4		5		6		7	8	TO	TAL
NICARAGUA	Total	34	696	21	830	6	825	21	601	5	467	2	074	7	266		406	0	118	853
	Sistema		7		5		5		50		9		33		31		1	0		142
HONDURAS	Total	21	484	10	643	6	575	18	580	14	339	24	345	16	017		311	179	112	475
	Sistema		22		12		16		26		57		64		26		0	0		223
EL SALVADOR	Total		0		0		0		0	1	743	12	672	6	497		0	0	20	925
	Sistema		0		0		0		0		12		71		24		0	0		107
GUATEMALA	Total	16	770	6	338	25	281	19	739	5	873	8	248	23	531	2	476	0	108	256
	Sistema		24		6		8		10		15		29		98		16	0		205
TOTAL	Total	72	951	38	811	38	681	59	920	27	422	54	989	53	311	3	187	179	360	509
	Sistema		53		22		29		86		94		197		179		17	0		677

c) Temperatura media

PAIS	Area (km²)	6-129C	12-179C	17-24	1ºC	> 2	lec	TO	TAL
NICARAGUA	Total	5	1 215	76 8	869	40	724	118	859
	Sistema	0	4	1	103		35		142
HONDURAS	Total	0	7 478	100 3	330	4	673	112	484
	Sistema	0	18	1	191		14		223
EL SALVADOR	Total	5	294	16 2	238	4	378	20	928
	Sistema	0	1		90		17		107
GUATEMALA	Total	1 267	16 189	88 7	703	2	207	108	366
	Sistema	1	43	1	155		6		204
TOTAL	Total	1 277	25 176	282 1	140	51	982	360	637
	Sistema	1	65	5	539		72		677

PAIS	Area (km²)	LLANURAS (< 10 % pend.)	CERROS (10-30 % pend.)	MONTAÑAS (> 30 % pend.)	TOTAL
NICARAGUA	Total	73 187	24 383	21 191	118 856
	Sistema	49	38	56	142
HONDURAS	Total	30 930	20 715	60 750	112 431
	Sistemas	40	23	160	223
EL SALVADOR	Total	7 542	9 242	4 028	20 839
	Sistema	22	62	23	107
GUATEMALA	Total	42 196	28 845	37 162	108 203
	Sistema	34	76	94	204
TOTAL	Total	153 855	83 185	123 131	360 329
	Sistema	146	199	332	677

Cuadro 11. Perfil ambiental de frijol monocultivo, postrera.

PAIS	Area		<		800	1	200	1	600	2	000	2	400	2	800		>	-	TAL
	(km ²)		800	1	200	1	600	2	000	2	400	2	800	3	200	_ 3	200	10	IAL
NICARAGUA	Total		349	9	111	15	634	11	510	17	978	28	421	21	005	14	806	118	859
	Sistema		2		36		40		26		38		27		17		4		190
HONDURAS	Total	1	657	21	020	30	201	13	676	24	816	11	883	7	608	1	620	112	493
	Sistema		10		86		113		36		39		8		3		0		294
EL SALVADOR	Total		0		16		520	14	599	4	200		553		0		0	20	923
	Sistema		0		0		23		148		27		1		0		O,		199
Guatemala	Total	6	940	11	053	6	796	34	772	14	234	12	867	8	779	12	824	108	265
	Sistema		35		14		10		5		5		2		1		1		73
TOTAL	Total	8	946	33	000	53	151	74	557	61	228	53	724	37	392	29	250	360	540
	Sistema		46		137		187		214		110		38		21		5		757

b) <u>Número meses secos</u>

PAIS	Area (km²)		0		1		2		3		4	:	5		6		7	8	70	TAL
NICARAGUA	Total	34	697	21	830	6	825	21	601	5	467	20	724	7	266		400	0	118	853
	Sistema		9		15		15		64		10		36		37		3	0		190
HONDURAS	Total	21	484	10	643	6	575	18	580	14	339	24	345	16	017		311	179	112	475
	Sistema		7		5		5		24		68		128		57		1	1		295
EL SALVADOR	Total		0		0		0		0	1	743	12	672	6	497		0	0	20	925
	Sistema		0		0		0		0		10		128		61		0	0		199
GUATEMALA	Total	16	770	6	338	25	281	19	739	5	873	8	248	23	531	2	476	0	108	256
	Sistema		3		1		1		1		2		6		36		23	0		73
TOTAL	Total	72	951	38	811	38	681	59	920	27	422	65	989	53	311	3	187	179	360	509
	Sistema		19		21		21		89		90		297		191		27	1		757

c) Temperatura media

PAIS	Area (km²)	6-12ºC	12-179C	17-249C	> 24ºC	TOTAL
NICARAGUA	Total	5	1 215	78 869	40 724	118 859
	Sistema	0	5	132	54	190
HOMDURAS	Total	0	7 478	100 330	4 673	112 484
	Sistema	0	16	262	18	295
EL SALVADOR	Total	5	294	16 238	4 378	20 928
	Sistema	0	2	165	32	199
Guatemala	Total	1 267	16 189	88 703	2 207	108 366
	Sistema	0	2	70	1	73
TOTAL	Total	1 277	25 176	282 140	51 982	360 637
	Sistema	0	24	628	105	757

PAIS	Area (km²)		AMURAS % pend.)		ERROS D % pend.)		TAÑAS % pend.)	TO	TAL
NICARAGUA	Total	73	187	24	383	21	191	118	856
	Sistema		65		49		76		190
HONDURAS	Total	30	930	20	715	60	750	112	431
	Sistema		36		35		224		295
EL SALVADOR	Total	7	542	9	242	4	028	20	839
	Sistema		59		108		31		199
GUATEMALA	Total	42	196	28	845	37	162	108	203
	Sistema		16		27		30		73
TOTAL	Total	153	855	83	185	123	131	360	329
	Sistema		177		218		362		757

Cuadro 12. Perfil ambiental de frijol asociado, primera.

PAIS	Area (km²)		< 800	1	800 200		200 600		600 000	-	000 400		400 800		800 200	3	> 200	TO	TAL
MICARAGUA	Total	_	349	9	111	15	634	11	510	17	978	28	421	21	005	14	806	118	859
	Sistema		1		13		19		15		5		3		1		0		57
HONDURAS	Total	1	657	21	020	30	201	13	676	24	816	11	883	7	608	1	620	112	493
	Sistema		8		59		115		25		30		20		2		0		260
EL SALVADOR	Total		0		16		520	14	599	4	200		553		0		0	20	923
	Sistema		0		0		2		98		37		5		0		0		162
GUATEMALA	Total	6	940	11	053	6	796	34	772	14	234	12	867	8	779	12	824	108	265
	Sistema		95		229		111		67		102		27		19		30		679
TOTAL	Total	8	946	33	000	53	151	74	557	61	228	53	724	37	392	29	250	360	540
	Sistema		104		301		267		205		173		56		22		30	1	158

b) <u>Número de meses secos</u>

PAIS	Area (km²)		0		1		2		3		4		5		6		7	8	TO	TAL
NICARAGUA	Total	34	697	21	830	6	825	21	601	5	467	20	724	7	266		400	0	118	853
	Sistema		0		1		0		10		3		29		14		0	0		57
HONDURAS	Total	21	484	10	643	6	575	18	580	14	339	24	345	16	017		311	179	112	475
	Sistema		3		3		5		13		30		96		107		2	1		260
EL SALVADOR	Total		0		0		0		0	1	743	12	672	6	497		0	0	20	925
	Sistema		0		0		0		0		9		88		65		0	0		162
GUATEMALA	Total	16	770	6	338	25	281	19	739	5	873	8	248	23	531	2	476	0	108	256
	Sistema		19		7		1		48		40		139		380		36	0		679
TOTAL	Total	72	951	38	811	38	681	59	920	27	422	65	989	53	311	3	187	179	360	509
	Sistema		21		11		16		71		82		352		566		38	1	1	158

c) Temperatura media

PAIS	Area (km²)	6-12 9 C	12-179C	17-249C	249C	TOTAL
NICARAGUA	Total	5	1 215	76 869	40 724	118 859
	Sistema	0	2	45	11	57
HONDURAS	Total	0	7 478	100 330	4 673	112 484
	Sistema	0	39	210	12	260
EL SALVADOR	Total	5	294	16 238	4 378	20 928
	Sistema	0	4	119	39	162
GUATEMALA	Total	1 267	16 189	88 703	2 207	108 366
	Sistema	6	302	368	3	679
TOTAL	Total	1 277	25 176	282 140	51 982	360 637
	Sistema	6	346	740	65	1 158

PAIS	Area (km²)		NURAS % pend.)		RROS) % pend.)		TAÑAS % pend.)	TO	TAL
NICARAGUA	Total	73	187	24	383	21	191	118	856
	Sistema		14		22		22		57
HONDURAS	Total	30	930	20	715	60	750	112	431
	Sistema		25		17		218		260
EL SALVADOR	Total	7	542	9	242	4	028	20	839
	Sistema		44		81		36		162
GUATEMALA	Total	42	196	28	845	37	162	108	203
	Sistema		146		259		273		678
TOTAL	Total	153	855	83	185	123	131	360	329
	Sistema		229		379		549	1	158

Cuadro 13. Perfil ambiental de sorgo asociado.

	Area		<u> </u>		800		200		600		000		400		800		>		
PAIS	(km ²)		800	1	200	_	600	_	000	_	400		800	_	200	3	200	TO	TAL
NICARAGUA	Total		349		111	15	634	11	510	17	978	20	421	21	005	1.4	806	110	859
NICARAGUA	Sistema		9	,	102	13	79		30	• ′	18	20	10		4	.,	0	110	251
HONDURAS	Total	1	657	21	020	30	201	13	676	24	816	11	883	7	608	1	620	112	493
	Sistema		46		73		195		191		58		27		0		0		589
EL SALVADOR	Total		0		16		520	14	599	4	200		553		0		0	20	923
	Sistema		0		1		74		806		252		10		0		0	1	144
GUATEMALA	Total	6	940	11	053	6	796	34	772	14	234	12	867	8	779	12	824	108	265
	Sistema		60		55		31		37		65		0		0		0		247
TOTAL	Total	8	946	33	000	53	151	74	557	61	228	53	724	37	392	29	250	360	540
	Sistema		114		230		378	1	063		392		48		4		0	2	231

b) Número de meses secos

PAIS	Area (km²)		0		1		2	:	3		4		5		6	7	8	TO	TAL
NICARAGUA	Total Sistema	34	69 7 0	21	830	6	825 1	21	601 22	5	467 7	20	724 118	7	266 96	400 7	0	118	853 251
HONDURAS	Total Sistema	21	484 0	10	643 0	6	575 0	18	580 1	14	339 3	24	345 310	16	017 241	311 21	179 12	112	475 589
EL SALVADOR	Total Sistema		0		0		0		0	-	743 114	12	672 671	6	497 358	0 0	0 0		925 144
GUATEMALA	Total Sist ema	16	770 0	6	338 0	25	281 0	19	739 0	5	873 9	8	248 81	23	531 141	2 476 15	0	108	256 247
TOTAL	Total Sistema	72	951 1	38	811	38	681 1	59	920 23	27	422 134		989 180	53	311 836	3 187 43	179 12	360 2	509 231

c) Temperatura media

PAIS	Area (km ²)	6-129C	12-179C	17-249C	> 24ºC	TOTAL
MICARAGUA	Total	5	1 215	76 869	40 724	118 859
	Sistema	0	5	195	51	251
HONDURAS	Total	0	7 478	100 330	4 673	112 484
	Sistema	0	18	518	52	589
EL SALVADOR	Total	5	294	16 238	4 378	20 928
	Sistema	0	5	857	281	1 144
GUATEMALA	Total	1 267	16 189	88 703	2 207	108 366
	Sistema	0	14	226	8	247
TOTAL	Total	1 277	25 176	282 140	51 982	360 637
	Sistema	0	41	1 796	392	2 231

PAIS	Area (km²)		ANURAS % pend.)		RROS % pend.)		NTAÑAS 10 % pen.)	TO	TAL
NICARAGUA	Total	73	187	24	383		1 191	118	856
	Sistema		73		93		85		251
HONDURAS	Total	30	930	20	715		0 750	112	431
	Sistema		119		125		345		589
EL SALVADOR	Total	7	542	9	242		4 028	20	839
	Sistema		349		544		249	1	144
GUATEMALA	Total	42	196	28	845	3	7 162	108	203
	Sistema		72		75		100		247
TOTAL	Total	153	855	83	185	12	3 131	360	329
	Sistema		613		837		779	2	231

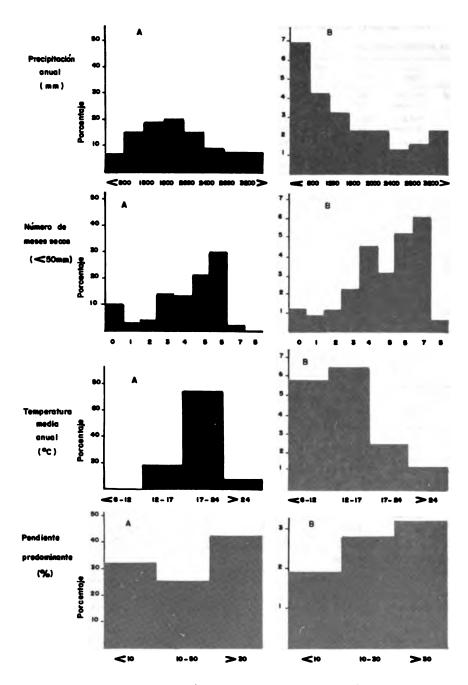


Figura I. Perfit ambiental de maíz solo en primera. A=Porcentaje del área total; B=Porcentaje del área del sistema en cada rango.

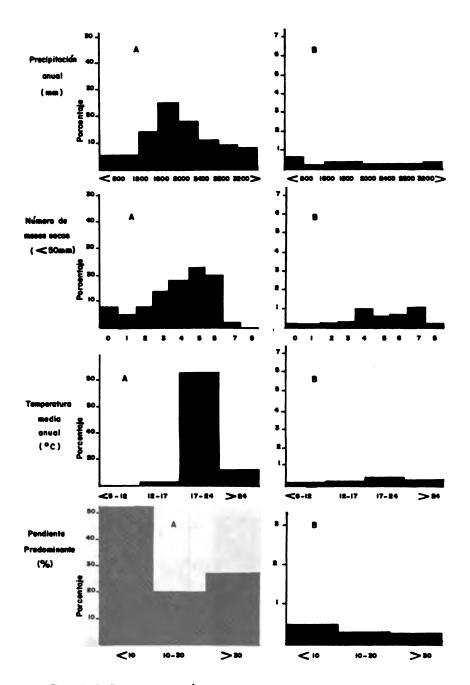
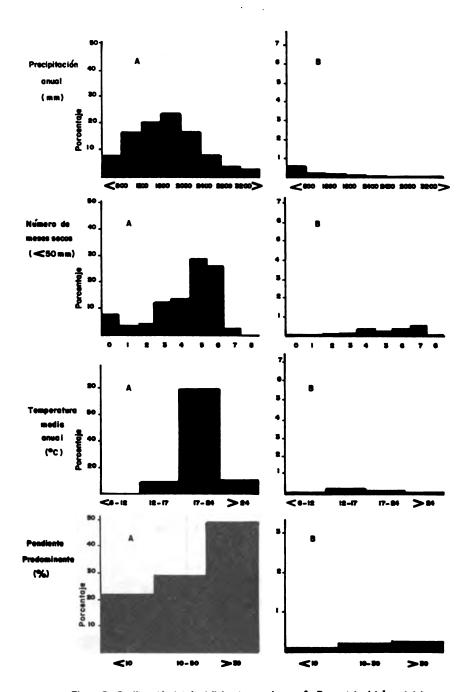



Figura 2. Perfii ambiental de mais solo en postrero. A= Porcentaje del área total; B= Porcentaje del área del sistema en cada rango.

Figuro 3. Perfit ambiental de frijal solo en primera. A=Porcentaje del área total; B=Porcentaje del área del sistema en cada rango.

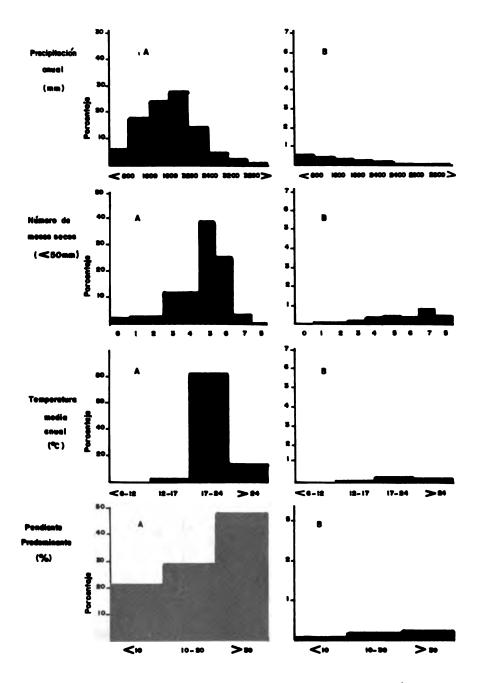


Figura 4. Perfit embiental de frijol solo en postrera. A=Porcentaje del área total; B=Porcentaje del área del sistema en cada rango.

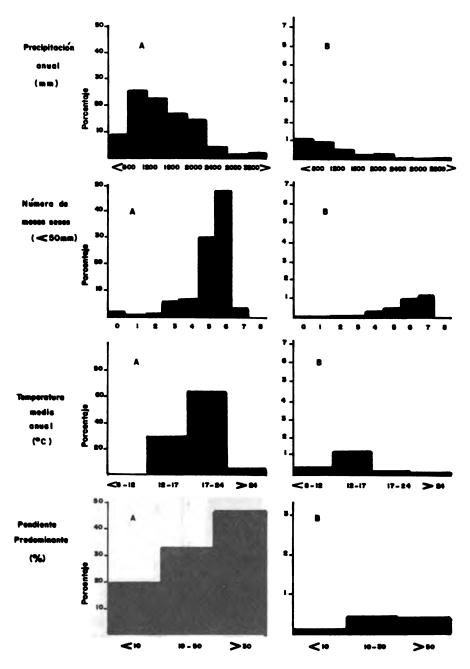
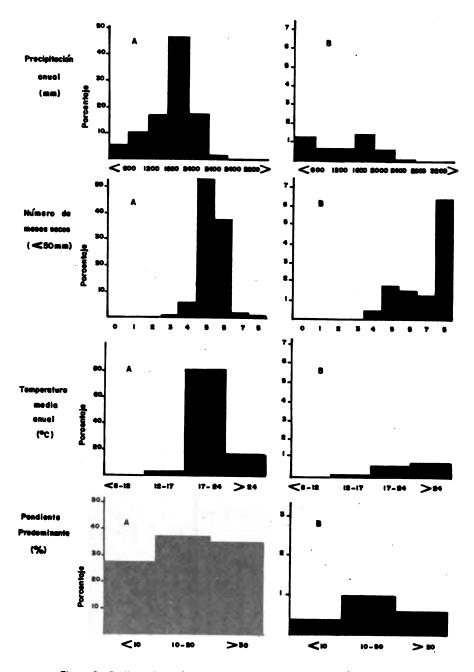



Figura 5. Perfil ambiental de trijol asociado en primera. A=Porcentaje del área total; B=Porcentaje del área del sistema en cada rango.

Figuro 6. Perfil ambiental de sorgo asociado. A= Porcentaje del área total; B= Porcentaje del área del sistema en cada rango.

Cuadro 14. Distribución de maíz solo en primera según zona de vida

	Nice	Nicaragua	Hono	Honduras	El Sa	El Salvador	Quat	Guatemala	Total	.a.1
	Total	Sistems	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema
Bosque seco tropical	5 636	11	3 052	06	2 224	82	148	S	11 060	248
Bosque húmedo tropical	31 317	274	1 372	7	2 154	57	0	0	34 846	372
Bosque hûmedo premontano	22 662	472	48 975	1 454	15 186	808	38 921	1 180	125 744	3 914
Bosque muy humedo premontano 47 092	47 092	406	48 300	537	1 052	78	43 367	1 572	139 811	2 543
Bosque may humedo montano bajo	795	12	3 098	80	292	•	5 829	447	10 014	548
Bosque húmedo montano bajo	420	7	4 335	153	7	•	9 426	827	14 183	987
Bosque muy hùmedo montano	s	•	0	•	s	0	1 163	99	1 173	99
Bosque muy hûmedo tropical	3 771	7	0	0	0	0	2 059	53	5 830	31
Bosque pluvial premontano	808	•	0	•	0	0	1 164	9	1 672	•
Bosque pluvial montano bajo	0	•	0	0	0	0	934	89	934	89
Bosque seco premontano	6 607	29	3 055	7.3	0	0	4 286	278	13 948	410
Bosque húmedo montano	0	•	0	0	0	0	104	v	104	v
Bosque muy seco tropical	0	0	246	e	0	0	0	1	246	m
Bosque seco montano bajo	0	•	45	7	0	0	0	1	45	7
Monte espinoso premontano	•	0	0	0	0	0	965	43	965	‡ 3

Cuadro 15. Distribución de maíz solo en postrera según sona de vida.

Total Sistems Total		Nic	Niceregua	Mond	Honduras	B	El Salvador	Quat	Guatemala	Total	. 10
27 3 052 33 1 372 100 48 975 1 56 48 300 1 3 098 0 4 335 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Total	Sistems	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema
33 1 372 100 48 975 1 56 48 300 1 3 098 0 4 335 0 0 0 0 19 3 055 0 0 0 0 19 3 055 0 246 0 45	seco tropical	5 636	27	3 052	6	2 224	1.2	148	0	11 060	63
100 48 975 1 56 48 300 1 3 098 0 4 335 0 0 0 0 19 3 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0		31 317	33	1 372	22	2 154	70	•	0	34 846	75
56 48 300 1 3 098 0 4 335 0 0 0 0 0 0 19 3 055 0 246 0 45		299 22	100	48 975	184	15 186	124	38 921	137	125 744	545
795 1 3 098 420 0 4 335 5 0 0 3 771 1 0 508 0 0 6 607 19 3 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 45	muy hûmedo premontano	17 092	99	48 300	66	1 052	s	43 367	298	139 811	458
420 0 4 3 771 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	muy hûmedo montano bajo		-	3 098	16	292	•	5 829	ĸ	10 014	22
5 0 3 771 1 508 0 6 607 19 3 0 0		420	•	4 335	,	7	0	9 426	'n	14 183	12
3 771 1 508 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	muy hûmedo montano	s	•	0	0	•	•	1 163		1 173	-
508 6 607 0 0 0 0 0 0	muy hûmedo tropical	3 771	1	0	0	•	0	2 059	m	5 830	-
6 607 19 3	pluvial premontano	208	•	0	0	•	•	1 164	~	1 672	7
6 607 19 3	pluvial montano bajo	•	•	0	0	•	•	934	7	934	~
	seco premontano	6 607	19	3 055	m	•	0	4 286	45	13 948	67
	húmedo montano	•	•	0	0	•	0	104	•	104	0
0 6	muy seco tropical	•	•	246	0	•	•	0	0	246	0
	seco montano bajo	0	•	45	0	•	0	0	0	45	0
	Monte espinoso premontano	•	•	•	•	•	•	945	11	965	11

Cuadro 16. Distribución de frijol solo en primera según zona de vida.

	Nice	Nicaragua	Hond	Honduras	E1 S	El Salvador	Quat	Guatemala	Total	11
	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema
Bosque seco tropical	5 636	14	3 052	10	2 224	9	148	1	11 060	31
Bosque húmedo tropical	31 317	21	1 372	•	2 154	11	0	•	34 846	36
Bosque hûmedo premontano	23 662	19	48 975	123	15 186	88	38 921	87	125 744	356
Bosque muy húmedo premontano	47 092	33	48 300	63	1 052	ĸ	. 43 367	42	139 811	143
Bosque muy hûmedo montano bajo	795	7	3 098	71	292	7	5 829	10	10 014	52
Bosque húmedo montano bajo	420	7	4 334	v	7	0	9 426	30	14 183	38
Bosque muy húmedo montane	s	0	•	0	•	0	1 163	-	1 173	-
Bosque muy hûmedo tropical	3 771	0	•	•	•	•	2 059	•	5 830	•
Bosque pluvial premontano	808	0	0	0	0	0	1 164	1	1 672	7
Bosque pluvial montano bajo	0	0	•	0	•	0	934	e	934	m
Bosque seco premontano	6 607	6	3 055	'n	•	0	4 286	22	13 948	36
Bosque húmedo montano	0	0		0	•	0	104	0	. 104	0
Bosque muy seco tropical	0	0	246	7	0	0	0	0	246	-
Bosque seco montano bajo	0	0	45	0	•	0	0	•	45	0
Monte espinoso premontano	0	•	0	0	0	o	965	e	965	m

Cuadro 17. Distribución de frijol solo en postrera según zonas de vida.

	Nic	Nicaragua	Honduras	uras	El Sa	El Salvador	Quat	Guatemala	Tota	
	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema
Bosque seco tropical	5 636	16	3 052	14	224	18	148	1	11 060	49
Bosque húmedo tropical	31 317	37	1 372	m	2 154	71	•	0	34 846	24
Bosque húmedo premontano	22 662	68	48 975	189	15 186	161	38 921	0	125 744	458
Bosque muy húmedo premontano	47 092	51	48 300	57	1 052	•	43 367	7	139 811	119
Bosque muy húmedo montano bajo	0 795	m	3 098	6	292	7	5 829 .	·.	10 014	7.
Bosque húmedo montano bajo	420	7	4 335	7	7	0	9 426	٦,	14 183	10
Bosque muy húmedo montano	s	0	•	0	ĸ	•	1 163	0	1 173	0
Bosque muy húmedo tropical	3 771	0	0		•	•	2 059	0	5 830	0
Bosque pluvial premontano	208	0	0	•	0	•	1 164	0	1 672	0
Bosque pluvial montano bajo	0	0	•	0	•	0	934	•	934	0
Bosque seco premontano	6 607	12	3 055	15	0	•	4 286	21	13 948	48
Bosque húmedo montano	0	0	0	•	•	0	104	0	104	
Bosque muy seco tropical	0	0	246	7	•	0.	•	.	246	-
Bosque seco montano bajo	0	0	45	0	0	0	•	0	45	0
Monte espinoso premontano \cdot	0	•	0	0	•	0	965	-	965	7

Cuadro 18. Distribución de frijol asociado según zona de vida.

		Nic	Nicaragua	Hond	Honduras	El Sa	El Salvador	Guat	Guatemala	Total	7
		Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistems	Total	Sistema
Bosque	Bosque seco tropical	5 636	80	3 052	s o	2 224	2.1	148	7	11 060	39
Bosque	Bosque hûmedo tropical	31 317	e	1 372	m	2 154	18	•	0	34 846	74
Bosque	Bosque húmedo premontano	22 662	32	48 975	180	15 186	113	38 921	247	125 744	572
Bosque	Bosque muy humedo premontano 47 092	47 092	٠	48 300	71	1 052	•	43 367	9/	139 811	101
Bosque	Bosque may humedo montano bajo	jo 795		3 098	•	292	•	5 829	93	10 014	102
Bosque	Bosque hûmedo montano bajo	420		4 335	38	7	0	9 426	506	14 183	302
Bosque	Bosque muy hûmedo montano	'n	•	0	0	S	•	1 163	9	1 173	•
Bosque	Bosque muy hûmedo tropical	3 771	•	0	0	•	•	2 059		5 830	-4
Bosque	Bosque pluvial premontano	808	•	•	0	•	•	1 164		1 672	7
Bosque	Bosque pluvial montano bajo	0	•	•	0	•	0	934	•	934	7
Bosque	Bosque seco premontano	6 607	٠	3 055	15	•	•	4 286	40	13 948	61
Bosque	Bosque hümedo montano	0	•	0	0	•	•	104	•	104	•
Bosque	Bosque muy seco tropical	•	•	246	-	•	•	•	0	246	-
Bosque	Bosque seco montano bajo	•	•	45	•	•	•	•	•	45	•
Monte e	Monte espinoso premontano	0	0	•	•	•	•	965	•	965	~

Cuadro 19. Distribución de sorgo asociado según zona de vida.

	Nice	Nicaragua	Honduras	uras	B1 Sa	El Salvador	Guat	Guatemala	Total	11
	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema	Total	Sistema
Bosque seco tropical	5 636	45	3 052	17	2 224	127	148	80	11 060	197
Bosque hûmedo tropical	31 317	٠	1 372	53	2 154	154	0	•	34 846	189
Bosque húmedo premontano	23 662	106	48 975	487	15 186	824	38 921	176	125 744	1 593
Bosque muy húmedo premontano 47 072	47 072	19	48 300	m	1 052	33	43 367	•	139 811	63
Bosque muy húmedo montano bajo	795		3 098	7	292	'n	5 829	0	10 014	•
Bosque húmedo montano bajo	420	2	4 335	11	7	•	9 426	13	14 183	32
Bosque muy húmedo montano	'n	•	•	0	s	0	1 163	•	1 173	•
Bosque muy húmedo tropical	3 771	•	0	0	0	•	2 059	•	5 830	•
Bosque pluvial premontano	208	0	•	0	0	0	1 164	0	1 672	0
Bosque pluvial montano bajo	0	0	0	•	•	0	934	•	934	0
Bosque seco premontano	6 607	1,1	3 055	53	•	0	4 286	0	13 948	140
Bosque húmedo montano	0	•	0	0	•	0	104	•	104	0
Bosque muy seco tropical	0	0	246	٠	•	0	•	•	246	9
Bosque seco montano bajo	0	0	45	0	0	0	0	•	\$	•
Monte espinoso premontano	0	0	•	•	•	•	962	7	965	7

Cuadro 20. Distribución de los sistemas de cultivo según clasificación de suelo. Honduras.

				AREA DEL	SISTEMA (km	2)	
Suelo	Area del suelo (km²)	Maiz solo la	Maiz solo 2a	Frijol solo la	Frijol solo 2a	Frijol Asoc. la	Sorgo Asoc.
Lithic Tropudalf	264	5,5	1,8	0,4	0,1	0,7	0,0
Lithic Haplustalf	1 228	62,0	2,9	3,5	2,6	2,7	0,2
Ultic Haplustalf	161	0,9	0,0	0,1	0,1	1,7	5,0
Tropic Fluvaquent	5 335	81,7	31,7	8,4	3,5	1,3	0,1
Typic Hydraquent	3 185	34,5	9,4	2,5	0,8	0,7	28,3
Aquic Tropofluvent	121	3,1	0,1	0,2	0,1	0,0	0,0
Typic Ustifluvent	1 427	45,3	18,7	4,3	1,5	1,1	17,5
Aquic Ustifluvent	242	10,2	2,9	0,6	0,1	0,2	0,6
Lithic Ustorthent	23 384	645,6	63,0	44,8	78,5	144,9	424,1
Psamments	783	4,8	0.7	0,4	0,1	0,1	0,0
Aeric Tropaquept	499	24,3	1,2	1,5	2,1	5,6	10,0
Typic Dystrandept	3 462	147,9	12,5	8,9	5,2	38,5	17,0
Lithic Eutropept	3 617	60,3	7.7	8,2	2,7	1,3	0,1
Typic Ustropept	8 936	211,3	22,3	20,6	40,9	15,6	66,5
Ustic Dystropept	2 788	62,0	14,8	8,4	17,8	1,9	12,1
Aquic Dystropept	1 806	0,6	0,0	0,3	0,1	0,2	0,0
Oxic Dystropept	4 134	1,1	0,1	0,5	0,1	0,4	0,0
Lithic Dystropept	12 337	302,8	24,2	34,7	65,9	10,7	1,4
Lithic Rendoll	1 848	40,9	. 11,3	2,5	1,4	2,0	0,0
Lithic Haplustoll	10 093	284,1	36,0	27,3	40,1	18,0	5,3
Umbric Tropaqualt	1 797	0,5	0.0	0,3	0,1	0,2	0,0
Typic Tropohumult	20 819	233,0	60,3	26,9	11,2	4,9	0,4
Ustic Tropohumult	1 705	155,1	14,9	15,8	19,4	7.0	0,1
Typic Tropofluvent	2 498	16,2	3,7	2,0	0,8	ò,4	0,0
TOTAL	112 474	2 433,9	340,5	223,1	295,3	259,7	588,7

Cuadro 21. Distribución de los sistemas de cultivo según clasificación de suelo. Nicaragua.

			Are	a del siste	ma (km²)		
Suelos	Area del suelo (km²)	Maiz solo la	Maiz solo 2a	Frijol solo la	Frijol solo 2a	Frijol Asoc. la	Sorgo Asoc.
Vertic Tropaqualf	49	2,4	0,2	0,0	0,2	0,0	ó,0
Typic Tropudalf	5 477	65,6	6,1	6,2	10,1	1,3	2,4
Lithic Tropudalf	21	0,1	0.0	0,0	0,0	0,0	0,0
Acuic Tropudalf	168	0,2	0,0	0,0	0,0	0,0	0,0
Ultic Tropudalf	3 225	33,4	3,1	3,9	5,8	1,1	4,2
Vertic Tropudalf	35	1,0	0,1	0,1	0,2	0,0	0.0
Udic Haplustalf	3 770	43,9	17,2	8,0	9,3	6,5	26,0
Tropic Fluvaquent	191	0,4	0,1	0,0	0,0	0,0	0,0
Typic Hydraquent	4 811	21,0	4,9	1,2	1,4,	0,1	3,9
Typic Troporthent	313	2,0	0,3	0,8	0,9	0,4	2,4
Lithic Troporthent	107	0,2	0,1	0,0	0,1	0,0	0,0
Typic Ustorthent	2 187	48,4	3,9	5,3	9,6	1,5	14,4
Lithic Ustorthent	3 080	45,4	11,0	4,6	8,4	3,7	27,0
Ustorthent indef	566	11,7	8,1	2,8	2,5	1,4	1,0
Aquic Troposamment	610	0,5	0,1	0,1	0,1	0,0	0,0
Aquic Ustipsannent	6	0,0	0,0	0,0	0,0	0,0	0,0
Hidric Tropohemist	476	1,4	0,6	0,2	0,6	0,0	0,0
Typic Durandept	830	17,3	12,1	3,2	3,0	6,7	2,6
Typic Eutrandept	1 161	32,2	4,0	1,9	1,7	0,2	1,1
Mollic Vitrandept	1 328	34,9	6,1	3,1	2,3	1,4	1,5
Typic Tropaquept	6 789	12,6	2,7	1,2	3,3	0,0	0,1
Aeric Tropaquept	212	0,6	0,3	0,1	0,2	0,0	0,0
Typic Dystropept	2 582	13,9	1,3	1,4	2,4	0,3	0,5
Ustic Dystropept	639	9,5	0,3	1,2	1,4	0,4	3,6
Typic Eutropept	378	9,1	0,2	0,8	1,1	0,2	0,5
Typic Ustropept	1 408	17,8	. 2,0	6,8	5,4	2,2	17,0
Lithic Ustropept	75	1,9	0.0	0,1	0,2	0,0	0,0
Typic Argioaquol1	88	2,7	1,4	0,1	0,1	0,1	0,1
Lithic Haplaquoll	106	1,9	1,0	0,1	0,1	0,1	0,1
Typic Argiudoll	4 226	173,9	14,1	10,8	16,7	1,7	7,0
Typic Hapludol1	544	12,7	0,7	1,8	1,4	0,4	1,2
Entic Hapludoll	47	0,0	0.0	0,0	0,0	0.0	0,0
Acuic Argiustoll	100	1,1	0,3	0,2	0,2	0,1	0,2
Duric Arguistoll	172	2,9	2,4	0,4	0,4	0,4	0.7
Udic Argiustoll	6 477	80,6	23,1	15,1	18,3	10,3	67,7
Typic Durustoll	613	22,6	16,3	3,0	2,7	2,2	1,0
Lithic Haplustoll	414	4,3	0,6	1,9	1,9	0,4	3,1
Acuic Haplustoll	291	4,4	2,0	0,4	0,5	0,1	1,0
Duric Haplustoll	135	3,6	2,6	0,9	0,8	0,3	0,2
Entic Haplustoll	388	6,2	0,3	1,5	1,4	0,8	3,5
Udic Haplustoll	50	0,6	0,3	0,2	0,2	0,6	0,3
Ultic Haplorthox	596	0,2	0,1	0,0	0,1	0,0	0,0
Typic Tropohumult	399	9,8	0,8	1,1	1,3	0,2	0.4
Acuic Tropohumult	559	1,0	0,2	0,1	0,1	0,0	0.0
Ustic Tropohumult	187	4,2	0,3	1,3	1,0	0,4	1,2
Orthoxic Tropohumult	5 223	24,6	3,5	1,9	1,9	0,0	0,0
Typic Tropudult	8 911	164,8	16,2	12,6	17,0	2,12	6,1
Dystropeptic Tropudult	795	2,4	1,2	0,2	1,0	0,0	0,0
Orthoxic Tropudult	14 673	96,0	10,4	6,8	9,6	0,0	0,7
Plinthaquic Tropudult	8 898	19,7	3,0	1,7	2,7	0,0	0,1
Oxic Haplustult	73	0.7	0,0	0,1	0,7	0,0	0,8
Typic Pelludert	482	1,9	0,3	0,1	0,7	0,0	0,0
Typic Pelustert	6 219	72,0	20,2	6,0	8,1	2,7	30,0
Sin información	15 846	124,7	28,1			5,7	7,8
TOTAL	118 851	1 303,7	238,3	142,2	190,3	57,1	241,4

Cuadro 22. Distribución de los sistemas de cultivo según clasificación de suelo. El Salvador.

					AREA DEL	SISTEMA	(km ²)	
SUELO*	Area sue		Maiz solo la.	Maiz solo 2a.	Frijol solo la.	Frijol solo 2a.	Frijol Asoc. la.	Sorgo Asoc.
1	1 6	45	136,1	19,3	4,2	16,3	6,6	57,5
2	6	18	33,8	1,9	1,7	7,3	4,4	30,3
3	1 2	61	81,7	6,9	5,8	7,1	6,0	27,4
4	4	97	50,2	1,3	0,3	0,3	0,2	19,9
5	1 1	46	65,3	9,0	10,6	9,2	11,0	32,7
6	9	17	53,3	7,4	2,7	20,0	17,8	49,1
7	5	16	44,7	9,3	12,7	6,0	8,7	12,5
8	4	56	22,1	3,0	1,7	3,0	1,4	33,7
9	5	02	18,8	0,6	0,9	7,5	3,8	16,7
10	. 21	87	100,8	10,7	21,1	27,3	26,0	111,1
11	7 6	31	251,8	79,3	38,5	78,4	58,2	567,6
12	5	06	8,6	0,7	1,6	0,9	5,3	10,8
13	1 8	92	62,8	21,1	4,4	13,3	8,8	139,7
14	8	73	45,9	4,0	0,4	0,9	0,8	26,0
15	2	00	6,6	0,0	0,3	0,6	2,8	3,6
TOTAL	20 8	28	985,4	175,7	107,1	198,7	162,4	1 143,6

- 1. ENTISOLES (Ustipsamments y Ustifluvents). Fase casi a nivel a ligeramente inclinada.
 - ENTISOLES y VERTISOLES (Ustifluvents, Pellusterts y Cromusterts). Fase profunda ligeramente a nivel.
 - INCEPTISOLES y ENTISOLES (Vitrandepts y Typic Ustorthents). Fases de onduladas a alomadas.
 - ALFISOLES E INCEPTISOLES (Haplustalfs y Vitrandepts). Fases cenizas volcânicas profundas, onduladas a alomadas.
 - ENTISOLES, ALTISOLES E INCEPTISOLES (Typic Ustorthents, Haplustalfs y Vitrandepts). Fases alomadas a montañosas accidentadas.
 - ALFISOLES (Haplustalfs). Fases de cenizas volcânicas profundas, de onduladas a fuertemente alomadas.
 - ENTISOLES (Typic Ustorthents y Ustipsamments Liticos). Fases de Tobas consolidadas onduladas a fuertemente alomadas.
 - ALFISOLES (Haplustalfs y Haplustalfs Liticos). Fases onduladas a fuertemente alomadas de pedregosidad variable.
 - ALFISOLES E INCEPTISOLES. (Haplustalfs y Vitrandepts con subgrupos Líticos).
 Fases ondulada a montañosa accidentada, de pedregosidad variable.
 - ENTISOLES (Ustipsamments y Ustipsamments Liticos). Fase ondulada a montafiosa muy accidentada.
 - ALFISOLES (Haplustalfs con subgrupos Líticos). Fase pedregosa superficial de ondulada a montañosa muy accidentada.
 - (No diferenciados). Fase pedregosa, de ondulada a montañosa muy accidentada.
 - VERTISOLES Y ALFISOLES (Pellusterts y Haplustalfs, con subgrupos Líticos).
 Fases de casi a nivel a fuertemente alomadas.
 - 14. ENTISOLES (Ustifluvents y Acuents).
 - 15. OXISOL (Typic Acrustox). Fase de montañas elevadas y accidentadas.

Cuadro 23. Distribución de la lluvia en áreas de maíz monocultivo sembrado en primera (mm).

	E	F	M	A	М	J	J	A	s	0	N	D.	ANUAL
HONDURAS													
Lluvia media	25	32	14	44	112	206	188	136	147	159	65	27	1 124
Lluvia confiable	5	1	0	6	52	127	123	117	112	110	40	6	987
IDA	0,05	0,01	0,00	0,04	0,31	0,89	0,83	0,77	0,86	0,84	0,38	0,06	
		(36 ob	servac	iones;	estac	ión re	presen	tativa	: Hda.	San I	sidro)		
GUATEMALA													
Lluvia media	23	20	58	124	349	566	372	364	620	415	83	34	3 028
Lluvia confiable	0	0	24	77	257	431	276	269	474	310	44	5	2 625
IDA	0,00	0,00	0,16	0,56	1,77	3,31	2,03	1,99	3,74	2,67	0,38	0,04	
		(37 o	bserva	ciones	esta	ción r	eprese	ntativ	a: Los	Tarra	les*)		
EL SALVADOR													
Lluvia media	6	6	7	51	168	307	314	294	348	253	53	7	1 814
Lluvia confiable	0	0	0	5	108	225	243	244	276	170	3	0	1 625
IDA	0,00	0,00	0,00	0,03	0,65	1,60	1,53	1,63	2,11	1,31	0,02	0,00	
		(46	observ	acione	s; est	ación	repres	sentati	va: I	f oliner	(ao		•
NICARAGUA													
Lluvia media	16	5	4	25	155	258	162	175	255	266	79	34	1 425
Lluvia confiable	0	0	0	0	60	169	97	106	154	220	29	7	1 185
IDA	0,01	0,00	0,00	0,00	0,52	0,95	0,70	0,70	1,08	1,63	0,24	0,06	
		(2 8 o	bserva	ciones	esta	ción r	eprese	ntativ	a: La	Prima	vera)		
RANGOS DE MEDIAS MENSUALES (REGION)												
Lluvia media													
Máx.	340	227	174	335	672	805	668	705	932	811	551	402	5 153
Min.	0	0	0	1	30	104	56	59	106	53	4	0	471
Lluvia confiable													
Máx.	197	91	120	246	516	622	512	542	724	627	350	251	4 538
Min.	0	0	0	0	2	3 5	13	15	41	20	0	0	324
IDA													
Måx.	1,68	0,75	0,76	1,67	3,40	4,68		4,12			2,91	2,22	
Min.	0.00	0.00	0.00	0.00	0 01	0,21	0 00	0 00	0 26	0.14	0.00	0.00	

[·] Estación más representativa del sistema a nivel regional.

Cuadro 24. Distribución de la lluvia en áreas de maiz monocultivo sembrado en postrera (mm).

	E	P	М	A	M	J	J	A	s	0	N	D	AN	UAL
HONDURAS	_													
Lluvia media	1	2	11	42	271	371	194	222	451	316	48	4	1	933
Lluvia confiab		0	0	5	135	265	120	123	329	211	6	0	1	653
IDA	0,00			0,02	0,66	1,40					0,04	0,00		
		(5 obse	rvacion	es; es	tación	repre	sentat	iva: A	mapala	1)			
GUATEMALA														
Lluvia media	14	12	84	146	463	612	584	414	666	426	129	21	3	671
Lluvia confiabl	e 0	0	45	95	348	458	445	309	511	399	81	0	3	204
IDA	0,00	0,00		0,67	2,28	3,32	3,06				0,68	0,00		
		(9	observ	aciones	; esta	ción r	eprese	ntativ	a: Co	ncepci	ón)			
EL SALVADOR														
Lluvia media	3	3	5	43	205	352	332	333	385	280	46	8	1	995
Lluvia confiabl	e 0	0	0	5	136	256	240	265	295	197	2	0	1	773
IDA	0,00	0,00	0,00	0,04	0,85	1,94	1,70	1,72	2,20	1,40	0,02	0		
		(10 o	bserva	ciones;	estac	ión re	presen	tativa	: San	Vicer	te*)			
NICARAGUA														
Lluvia media	0	0	0	5	151	303	135	149	365	426	89	2	1	625
Lluvia confiabl	.e 0	0	0	0	16	171	36	63	185	183	9	.0	1	215
IDA	0,00	0,00		0,00	0,09	1,07		0,36	1,16		0,06	0,00		
		(5	observ	aciones	; esta	ción r	eprese	ntativ	a: Mo	ntelin	ar)			
RANGOS DE MEDIDAS MENSUALES (REGION														
Lluvia media														
Máx.	292	154	178	335	672	727	593	604	796	735	454	370	4	922
Min.	0	0	0	5	39	123	78	96	123	53	4	1		541
Lluvia confiabl	-													
Máx.	180	74	120	246	516	560	452	451	615	566	307	248	4	330
Min.	0	0	0	0	9	76	13	15	76	20	0	0		387
IDA														
Máx.	1,49	0,62	0,76	1,67	3,4	4,17	3,06	3,53	5,16	4,37	2,58	2,22		

^{*} Estación más representativa del sistema a nivel regional.

Cuadro 25. Distribución de la lluvia en áreas de frijol monocultivo sembrado en primera (mm).

	E	F	M	A	M	J	J	A	s	0	N	D	ANUAL
HONDURAS							-					-	
Lluvia media	13	9	7	29	133	236	151	131	186	156	45	14	1 110
Lluvia confiable	1	0	0	4	64	158	101	89	131	46	11	1	931
IDA	0,00	0,00	0,00	0,03	0,36	1	0,62	0,54	0,90	0,33	0,09	0,01	
				(1 obse	rvació	n; Zam	orano)					
GUATEMALA													
Lluvia media	23	22	68	120	400	583	369	402	704	394	52	27	3 164
Lluvia confiable	0	0	32	74	298	444	273	300	541	293	20	0	2 748
IDA	0,00	0,00	0,20	0,55	1,98	3,20	1,88	2,16	4,33	2,38	0,17	0,00	
		(3 ol	bserva	ciones;	estac.	ión rep	presen	tativa	Las	Delic	ias)		
EL SALVATOR													
Lluvia media	3	3	5	43	205	352	332	333	385	280	46	8	1 995
Lluvia confiable	0	0	0	5	136	256	240	265	295	197	2	0	1 773
IDA	0,00	0,00	0,00	0,04	0,85	1,94	1,70	1,72	2,20	1,40	0,02	0	
		(8 ob	serv 10	iones;	estaci	ón rep	resent	ativa	San	Vicent	te*)		
NICARAGUA													
LLuvia media	14	4	6	32	121	175	75	115	198	163	47	11	959
Lluvia confiable	0	0	0	0	64	100	48	71	111	98	25	2	750
IDA	0	0	0	0	0,42	0.74	0,36	0,49	0,83	0,79	0,24	0,02	
		(3 0	bserva	ciones	; estac	ión re	preser	ntativa	: La	Conco	rdia)		
RANGOS DE MEDIAS MENSUALES (REGION)													
Lluvia media													
Máx.	23	22	68	120	400	583	483	437	704	446	77	27	3 164
Min.	0	1	0	3	103	140	56	78	180	107	38	0	761
Lluvia confiable													
Máx.	1	0	32	74	298	444	364	328	541	335	38	2	2 748
Min.	0	0	0	0	64	82	23	55	64	46	1	0	647
IDA													
Máx.	0,00	0,00	0,20	0,55	2,00	3,20	2,50	2,41	4,33	2,70	0,32	0,02	
Min.	0.00	0.00	0.00	0.00	0.38	0.57		0.36				0	

^{*} Estación más representativa del sistema a nivel regional.

Cuadro 26. Distribución de la lluvia en áreas de frijol (monocultivo) sembrado en postrera (mm).

	E	F	м	A	M	J	J	A	s	0	N	D	ANUA
HONDURAS													
Lluvia media	25	32	14	44	112	206	158	136	147	159	65	27	1 124
Lluvia confiable	5	1	0	6	52	127	123	117	112	110	40	6	987
IDA	0,05 (2		0,00 rvacior	0,04 nes; e	0,31 stación	0,89 repr	0,83 esenta	•	0,86 Hda. :	0,84 San Is	0,38 idro)	0,06	
GUATEMALA													
Lluvia media	4	5	11	46	391	437	483	437	603	320	75	22	2 834
Lluvia confiable	0	0	0	15	291	328	364	328	460	234	38	0	2 450
IDA	0,00		0,00		2,00		2,50	- • -	- •		0,32	0,00	
		1	(l obse	ervació	n; esta	sción :	repres	entatí	va: CU	ILAPA)			
EL SALVADOR													
Lluvia media	3	1	7	48	188	305	289	299	334	177	26	5	1 68
Lluvia confiable	0	0	0	2	123	232	216	215	253	102	0	0	1 404
IDA	0,00		0,00 serva		0,73 estaci	1,65 Lón rej		1,46 tativa	1,92 : San		0,00 Fes)	0.00	
NICARAGUA													
Lluvia media	14	. 4	6	32	121	175	75	115	198	163	47	11	959
Lluvia confiable	0	0	0	0	64	100	48	71	111	98	25	2	750
IDA	0	0	0	0	0,42	•	0,36	•		•	•	0,02	
		(5 (DBerva	ciones	; estac	cion r	prese	ntativ	a: La (concor	ala)		
ESTACION REPRESENTA					•		-						
Lluvia media	2	1	8	53	139	265	280	272	287	154	29	5	1 496
Máx.	99	49	34	79	391	437	483	437	603	380	113	81	2 834
Min.	1	1	3	5	92	133	75	91	147	154	20	3	837
Lluvia confiable	0	0	0	12	94	187	212	215	215	94	1	0	1 29
Måx.	27	28	25	45	291	337	364	328	460	234	73	49	2 450
Min.	0	0	0	0	40	67	32	56	93	67	0	0	656
IDA	0,00	0,00	0,00	0,07	0,56	1,30	1,35	1,42	1,60	0,71	0,01	0,00	
Máx.	0,29	0,28	0,14	0,13	2,00	2,36	2,50	2,41	3,77	2,16	0,74	0,53	
Min.	0,00	0.00	0,00	0,00	0,27		0,21				0,00		

Cuadro 27. Distribución de la lluvia en áreas de frijol asociado, sembrado en primera (mm).

	В	P	M	A	M	J	J	A	s	0	N	D	ANUAL
HONDURAS													
Lluvia media	26	17	23	68	181	146	111	98	154	145	76	49	1 085
Lluvia confiable	15	0	2	8	118	84	81	47	70	102	34	17	933
IDA	0,15	0 (3	0,01 obser	0,05 vacion	0,77 es; es t	0,63 ación		0,35 sentat	0,59 iva: 1	- •	0,37 a)	0,18	
GUATEMALA													
Lluvia media	0	0	3	37	166	280	329	265	378	259	58	17	1 792
Lluvia confiable	0	0	0	8	111	202	241	190	280	185	24	0	1 513
IDA	0,00		0,00			1,43			2,15		0,19	0	
		(8 c	bserva	ciones	; estac	ión re	prese	ntativ	a: La	Virge	n*)		
EL SALVADOR													
Lluvia media	2	3	11	62	194	323	309	298	342	193	30	6	1 772
Lluvia confiable	0	0	0	9	127	254	233		274	110	0	0.	1 569
IDA	0,00			0,05		1,72	1,45		2,00		0,00	0,00	
NICARAGUA		(12 OE	servac	:10n es ;	estaci	on rep	resen	tativa	ı Texi	s Jun	ction))	
Lluvia media	28	13	7	27	184	297	159	177	344	296	109	53	1 693
Lluvia confiable	3	1	0	0	74	183	112	103	226	184	55	27	1 374
IDA		0,01	0	0	0,49		0,82			1,41		0,25	
	(3 obse	rvacio	nes; es	tación	repre	sentat	iva:	Hda. C	asa Co	lorad	a)	
RANGOS DE MEDIAS MENSUALES (REGION)													
Lluvia media													
Máx.	28	17	23	75	391	502	483	437	603	446	109	53	3 456
Min.	0	0	3	5	88	146	82	98	116	109	15	31	722
Lluvia confiable													
Máx.	15	1	4	40	291	403	286	328	460	335	55	ל2	2 450
Min.	0	0	0	0	10	62	33	33	41	30	0	0	359
IDA													
Máx.	0,15		0,03	0,25		3,12			3,77	2,70	0,49	0,25	
Min.	0,00	0,00	0,00	0,00	0,05	0,35	0,18	0,18	0,26	0,22	0,00	0,00	

^{*} Estación más representativa del sistema a nivel regional.

Cuadro 28. Distribución de la lluvia en áreas de sorgo asociado (mm).

	E	P	М	A	М	J	J	A	S	0	N	D	ANUA
HONDURAS													
Lluvia media	1	2	11	42	271	371	194	222	451	316	48	4	1 93
Lluvia confiable	0	0	0	5	135	265	120	123	329	211	6	0	1 65
IDA	0,00	0,00	0,00	0,02	0,66	1,40	0,59	0,64	1,96	1,31	0,04	0,00	
		(4	obser	vacion	es; est	ación	repre	sentat	iva: A	mapal	a)		
GUATEMALA													
Lluvia media	1	2	14	25	148	262	201	232	324	149	19	10	1 38
Lluvia confiable	0	0	0	0	96	187	139	164	237	97	5	0	1 14
IDA	0,00	0,00	0,00	0,00	0,66	1,37	0,99	1,15	1,81	0,78	0,00	0,00	
		(3	observ	acione	s; esta	ción r	epres	entati	va: Ca	stane	da)		
EL SALVADOR													
Lluvia media	1	1	4	31	181	314	296	293	397	317	54	5	1 89
Lluvia confiable	0	0	0	1	93	212	212	229	307	225	2	0	1 64
IDA	0,00	0,00	0,00	0,00	0,52	1,39	1,24	1,42	2,15	1,60	0,01	0,00	
	(:	30 obs	rvaci	ones; e	stació	n repr	esenta	tiva:	San Ma	arcos	Lempa	•)	
NICARAGUA													
Lluvia media	4	2	6	21	117	175	67	77	177	191	45	5	88
Lluvia confiable	0	0	0	0	53	96	38	40	90	94	16	0	68
IDA	0,00	0,00	0,00	0,00	0,31	0,65	0,24	0,26	0,64	0,72	0,14	0,00	
		(1	otse:	rvacion	es; es	tación	repre	sentat	iva: S	Sebalo)		
RANGOS DE MEDIAS MENSUALES (REGION)													
Lluvia media													
Máx.	65	31	35	88	391	437	483	437	603	423	130	81	3 45
Min.	'n	0	0	3	39	83	87	56	77	53	4	1	54
Lluvia confiable													
MAx.	i 1	0	1	21	291	337	364	328	460	256	80	5 ·	2 45
Min.		ō	ō	0	9	63	20	32	64	20	0	Ō	38
IDA													
Máx.	0,12		0,10					2,45	-	- •	0,99		
M á n.	0,00	0,0)	0,00	0,00	0,05	0,37	0,13	0,20	0,46	0,14	0,00	0,00	

^{*} Estación más representativa del sistema a nivel regional.

relación a la distribución durante el año o la época de crecimiento. Aun las cifras mensuales pueden ocultar la ocurrencia de épocas secas u otros factores que pueden afectar seriamente el crecimiento de un cultivo.

La variación extrema existente en las condiciones de precipitación, puede ilustrarse mediante la consideración de los datos de algunas estaciones meteorológicas dentro del área donde existe el sistema maíz solo en primera. En Morelia (Guatemala) la precipitación promedio anual es de 5 153 mm y existen valores mensuales muy altos (por ejemplo: 932 mm promedio, setiembre). Por otro lado, en Zapata (Guatemala) la precipitación media anual es de 471 mm, y la precipitación promedio confiable es sólo 324 mm. En este sitio existe en sólo dos meses un índice de disponibilidad de agua (IDA) mayor de 0,33, el mínimo de lo que se considera suficiente para mantener cultivos sin riesgo (Hargreaves, 1975).

En Santa Rita (Nicaragua) hay una estación lluviosa de seis meses y un total anual de precipitación de 1 390 mm; condiciones que, a primera vista, parecen adecuadas para un rango de cultivos anuales. Al considerarlo más a fondo, sin embargo, se nota que la lluvia en julio y agosto es extremadamente irregular, de tal forma que la precipitación confiable en estos meses es sólo 13 y 15 mm, respectivamente. En realidad, entonces, hay una distribución bimodal de lluvia y sólo los meses de junio, setiembre y octubre tienen un valor de IDA de 0,33. Además, la lluvia 25 % probable en setiembre (la cantidad que se puede esperar un año en cuatro), es 501 mm lo que implica un riesgo de inundaciones y lavados. Sitios como Santa Rita, entonces, oscilan entre épocas de sequía y épocas de exceso de agua; ninguna de esas condiciones es propicia para el buen desarrollo de cultivos anuales.

Aunque existe este rango amplio en condiciones de precipitación dentro del área donde se siembra maíz, la Figura 1 indica que la mayoría del maíz se encuentra en áreas donde existe una época seca definida. Esta tendencia se confirma en el Cuadro 23, donde se ve que en las estaciones representativas hay de 6 a 8 meses con un IDA en exceso de 0.33.

Los sistemas de frijol también se encuentran en áreas muy variadas en cuanto a sus condiciones de precipitación (ver Fig. 3 a 5 y Cuadros 25 a 28). Como en el caso del maiz, hay diferencias marcadas en las condiciones de precipitación de cada país, con un promedio mensual de lluvia que alcanza 600 mm en algunas áreas. Condiciones tan húmedas son perjudiciales para el cultivo, debido a las inundaciones del suelo y difusión de enfermedades por la humedad relativa alta y salpique de agua; esto explica quizás, por que se prefiere en muchos casos terrenos en ladera para este cultivo

Las áreas de sorgo están caracterizadas principalmente por su época de lluvia bien definida, desde noviembre hasta abril (Fig. 6 y Cuadro 28). Sin embargo, las condiciones durante los seis meses lluviosos son distintas en los países estudiados; la estación representativa de El Salvador tiene un promedio anual doble a la precipitación promedio de la estación representativa en Nicaragua (Cuadro 26). También la severidad de la canícula tiende a ser más fuerte en las áreas de sorgo de Nicaragua y Honduras que en El Salvador, hecho que tiene implicaciones importantes para la transferencia de tecnología entre estos países.

Temperatura

Dedido a la latitud (11 a 18° N), la región no sufre en la temperatura media mensual variaciones anuales mayores de unos 4° C (Schewerdtfeger, 1976). Se supone que la temperatura media anual se aproxima a la temperatura de la época de crecimiento.

Alrededor de 80 % del área en estudio se caracteriza por una temperatura promedio anual que fluctúa entre 17°C y 24°C; la mayoría de los diferentes sistemas de cultivo se encuentra dentro de este rango. Es interesante notar, sin embargo, que la siembra de maíz solo en primera es mayor en áreas más frías; sucede lo contrario con maíz solo en postrera (Figs. 1 y 2). Esta distribución de maíz con respecto a la temperatura refleja mayor rendimiento potencial de maíz en zonas más frías, y la posibilidad de compensar con dos cosechas al año cuando la temperatura es suficientemente alta para madurar dos cultivos durante la época lluviosa. En las zonas más calientes también existe la posibilidad de asociar el maíz con el sorgo (Fig. 6), lo cual refleja una transigencia entre el maíz (preferido) y el sorgo que es más adaptado.

Zonas de vida

Aproximadamente 39 % del área en estudio fue clasificada como bosque muy húmedo premontano; 35 % bosque húmedo premontano; 10 % bosque húmedo tropical; 4 % bosque seco premontano; 4 % bosque húmedo montano bajo; 3 % bosque seco tropical y 3 % bosque muy húmedo montano bajo.

La mayoría de la extensión de maíz se encuentra en las preponderantes zonas de bosque húmedo premontano y bosque muy húmedo premontano (Cuadros 14 y 15). Sin embargo, las intensidades de siembra (proporción del terreno sembrado) son mayores en las áreas más frías de montano bajo (5-9 %) para maíz en primera, y las clases más calientes y secas del bosque seco tropical y monte espino premontano para maíz en postrera.

Como sucede en el caso del maíz, las extensiones de frijol están principalmente dentro de zonas de bosque seco tropical y bosque húmedo premontano (74 % y 77 % para frijol en primera y postrera respectivamente). La intensidad de las siembras de frijol es mayor en el bosque seco tropical y bosque húmedo premontano (Cuadros 16 y 17). El frijol asociado se localiza en su mayoría en zonas de bosque húmedo premontano (45 % de la extensión total del sistema) y bosque húmedo montano bajo (25 %),

con intensidades de siembra mayores en bosque muy húmedo montano bajo y bosque húmedo montano bajo (Cuadro 18).

En el Cuadro 19 se observa que el 71 % de la extensión del sorgo asociado se localiza en la zona de bosque húmedo premontano, con extensiones significantes también en el bosque seco tropical, bosque húmedo tropical y bosque seco premontano. Las intensidades de siembra más altas se encuentran en las áreas de bosque seco tropical y bosque húmedo premontano.

Topografia y suelos

El área de estudio se distribuye entre planicies (23 % del área total), cerros (29 %) y montañas (48 %). La topografía no parece ser un factor muy importante en la distribución de los sistemas de cultivo, aunque hay una tendencia para siembras más intensivas en laderas. Esa tendencia puede reflejar una situación en la cual las laderas son más aptas para los cultivos, o puede significar que las tierras planas tienen otros usos más preferidos. En este caso, tienen validez las dos explicaciones: mucha tierra plana en áreas de alta precipitación está mal drenada y las planicies costeras se dedican a cultivos comerciales y mecanizados como el algodón, caña de azúcar o sorgo hídrido.

Algunos estudios realizados a nivel local también confirman la siembra de cultivos anuales en todo el terreno, e indican que la proporción de cultivos asociados es mayor en terrenos de ladera (De León, et $a\ell$, 1975; Cutié, 1975; CATIE, 1983).

El rango de suelos que se encuentra dentro de la región es muy amplio; incluye Alfisoles, Entisoles, Inceptisoles, Ultisoles y Vertisoles. Son comunes los sub-grupos líticos, especialmente en Honduras y El Salvador (Cuadros 20 a 22).

En general, los análisis muestran que los sistemas de cultivo se extienden a través de todo tipo de suelo, aunque se advierten diferencias en la localización de los diferentes sistemas asociados. En El Salvador, por ejemplo, donde hay extensiones semejantes de maiz solo y asociado, (se puede suponer que el sorgo está asociado con maiz), el maiz solo está concentrado en los mejores suelos (Haplustalfs, Typic Ustorthents, Ustifluvents, Vitrandepts), y el maiz asociado con sorgo en los peores suelos (Lithic Haplustalfs). De igual manera, en Honduras, el maiz asociado con sorgo está especialmente concentrado en los Lithic Ustorthents, de tal forma que el 72 % del área total de sorgo asociado está situado en suelos clasificados en este subgrupo en comparación con 26 % del maiz solo en primera.

Análisis de las Determinantes Edafoclimáticas de los Sistemas

Para conocer más a fondo la relación entre la distribución de los diferentes sistemas de cultivo y los factores ambientales,

se analizaron los datos organizados por municipio, utilizando técnicas de regresión múltiple. Para esos análisis se usaron datos de Honduras y Guatemala, por la complementariedad de datos de suelos (las clasificaciones de Simmons de 1956 y 1969 respectivamente) y el amplio rango de condiciones ambientales que se encuentran en esos dos países.

La variable dependiente utilizada en el análisis fue la intensidad de siembra, o sea el porcentaje del área total del municipio sembrado al sistema. Sin embargo, esa variable no sigue una distribución normal, aunque está sesgada a valores más bajos. Se probaron varias transformaciones para normalizar los datos; se encontró que la más exitosa para los diferentes sistemas fue el logaritmo de la intensidad de siembra (Fig. 7). Datos codificados para las variables independientes fueron estandarizadas a un promedio de 0 y una desviación estándar de + 1.

Sistemas de maíz

El Cuadro 29 muestra los resultados de los análisis de regresión stepwise. En el caso del maíz sembrado solo en primera, las variables más relacionadas con la intensidad de siembra fueron: altitud (+) (relación positiva), espesor del suelo (+), pH del suelo (+), precipitación en mayo (-) (relación negativa) y peligro de erosión (-).

Estas cinco variables explicaron el 28 % de la variación en intensidad del sistema.

Con respecto al maiz en postrera, las variables más importantes fueron temperatura (+), clasificación del suelo, precipitación en setiembre (+) y peligro de erosión (-); explican el 21 % de la variación.

En general, los resultados del análisis respaldan los análisis discutidos anteriormente. El maíz solo tiende a sembrarse en terrenos planos, con el cultivo en primera sembrado más a elevaciones mayores, y en postrera en elevaciones más bajas.

Sistemas con frijol

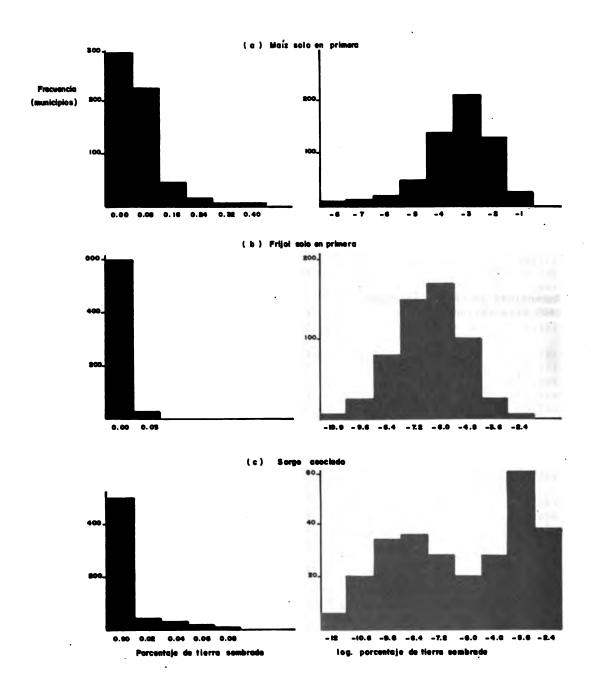
La localización del frijol sembrado solo se explica menos por las variables edafoclimáticas que los otros sistemas. Las variables más significativas en el caso de frijol solo en primera fueron: precipitación mayo (-), textura (+) y elevación (+); y precipitación anual (-), capacidad de facilitar agua (-) y precipitación, julio (-), en el caso de frijol solo en postrera. El frijol sembrado asociado está principalmente relacionado con altura (-), precipitación octubre (-) y textura (+) (Cuadro 24). Estas relaciones indican que los factores importantes para localización de frijol en general son los relacionados con humedad y drenaje; es más cultivado sin precipitación excesiva en suelos arenosos y en laderas.

Sorgo asociado

De los sistemas estudiados, el sorgo asociado muestra más interrelación entre área sembrada y factores ambientales. La variable más vinculada con intensidad de siembra es la precipitación en enero (-); sugiere que la presencia de una época seca y confiable en el momento de la maduración del cultivo (que evita pudrición del grano) es clave para la siembra de ese cultivo. Otras variables importantes fueron altura (-), la profundidad de una capa que impide raíces (-) y textura (+); muestra que hay más sorgo asociado en condiciones que pueden tener menos facilidad de suministrar aqua.

Estuvieron ausentes del modelo de los factores que afectan la localización de sorgo asociado, la precipitación anual y la precipitación en los meses de julio y agosto. Ese resultado no apoya la hipótesis de que la presencia del sorgo está principalmente determinada por la sequía o por la canícula específicamente; sin embargo, puede ser que épocas secas como la canícula no se reflejen en las cifras de precipitación mensual.

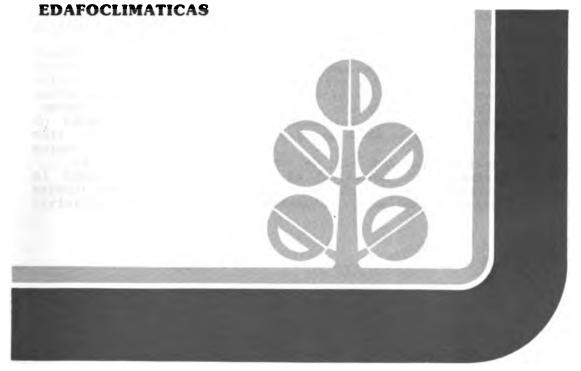
Cuadro 29. Regresión "Stepwise" de intensidad de siembra de los sistemas de cultivos contra variables edafoclimáticas.


Variable dependiente	Variable independiente*	R ²
Intensidad maiz solo primera	Altura	0,177
(597 observaciones)	Espesor de suelo	0,222
	pH de suelo	0,245
	Precipitación mayo	0,260
	Peligro de erosión	0,276
	Capa que impide raíces	0,289
	Precipitación anual	0,297
	No. meses sin déficit agua	0,307
	Avenamiento	0,314
	Textura (FAO)	0,320
	Precipitación setiembre	0,324
	Precipitación octubre	0,330
	Precipitación marzo	0,341
	Precipitación abril	0,345
	Temperatura media	0,348
	Precipitación noviembre	0,352
Intensidad maiz solo postrera	Temperatura	0,126
(476 observaciones)	Clas. de suelo (FAO)	0,174
	Precipitación, setiembre	0,196
	Peligro de erosi ó n	0,214
	No. meses sin déficit agua	0,230
	Precipitación febrero	0,257
	Altura	0,266
	Textura (FAO)	0,271
	Precipitación octubre	0,275
	Precipitación marzo	0,282
Intensidad frijol solo, primera	Precipitación mayo	0,061
(557 observaciones)	Textura	0,099
	Textura (FAO)	0,131
	Altura	0,152
	Precipitación noviembre	0,160
	Precipitación abril	0,174
	Capacidad de facil.agua	0,183
	Espesor de suelo	0,199
	Topografia	0,210
	Precipitación anual	0,215
	pH de suelo	0,220
	Precipitación junio	0,224
	Precipitación febrero	0,229
	Precipitación julio	0,233

Continúa...

Continuación Cuadro 29.

Variable dependiente	Variable independiente*	R ²
Intensidad frijol solo, postrera	Precipitación anual	0,095
(549 observaciones)	Capacidad de facil. agua	0,116
	Precipitación julio	0,133
	Precipitación abril	0,145
	Clas. de suelo (FAO)	0,156
	Topografia	0,164
•	Espesor de suelo	0,172
	Temperatura media	0,180
Intensidad maiz solo postrera	Precipitación diciembre	0,286
(476 observaciones)	Precipitación noviembre	0,292
	Precipitación abril	0,299
	Precipitación anual	0,303
Intensidad de frijol asociado	Altura	0,184
(405 observaciones)	Precipitación octubre	0,273
	Textura	0,296
	Clas. de suelo (FAO)	0,313
	Precipitación setiembre	0,321
	Precipitación anual	0,326
	Precipitación noviembre	0,345
	Precipitación junio	0,349
	Textura (FAO)	0,353
Intensidad de sorgo asociado	Precipitación enero	0,356
(266 observaciones)	Altura	0,409
	Capa que impide raíces	0,438
	Precipitación junio	0,466
	Textura	0,493
	Topografía	0,512
	Fertilidad	0,530
	Espesor de suelo	0,538
	Clas. de suelo (FAO)	0,545
	Precipitación octubre	0,550
	Precipitación setiembre	0,555


^{*} Variables independientes que alcanzan un nivel de significancia de 0,15.

Flaura 7. Distribución de la intensidad de siembra.

CAPITULO II

EL MANEJO TRADICIONAL DADO A LOS SISTEMAS DE CULTIVOS Y SUS DETERMINANTES

Objetivos

Los objetivos de esta fase del Proyecto fueron:

- Investigar la posibilidad de utilizar una encuesta como herramienta para determinar la relación entre el manejo de los sistemas de cultivo y el ambiente edafoclimático.
- Caracterizar el manejo tradicional dado por los agricultores a los sistemas de cultivos intercalados.
- Identificar las variables edafoclimáticas que más determinan el manejo dado por el agricultor a los sistemas.

La base de información

La fuente principal de los datos usados en esta fase fue una encuesta llevada a cabo en Honduras durante la epoca de crecimiento (1981). Se consideró como universo del estudio el área de Honduras, donde la densidad de los sistemas de interés fue mayor del 1 %, es decir, el sector en el cual más de una hectárea de cada 100 estuvo sembrada, según el censo agropecuario de 1974.

Dos sistemas de cultivo fueron escogidos originalmente: maíz asociado con frijol y maíz asociado con sorgo; sin embargo, fue más conveniente para el análisis considerar el asocio de los tres componentes, maíz más frijol más sorgo, como un tercer sistema.

En el área de estudio definida, las coordenadas geográficas fueron escogidas al azar; se entrevistó a una sub-muestra de cinco agricultores en el poblado más cercano a las coordenadas definidas. Inevitablemente, los sitios y fincas visitados representaron una situación de transigencia entre una muestra completamente lograda al azar y la que era posible logísticamente. En total, 368 fincas fueron encuestadas; 173 con parcelas de maíz + frijol, 109 con maíz + sorgo y 85 con maíz + frijol + sorgo.

La encuesta se estructuró en dos partes, para incluir: a) características generales de la finca; b) características específicas de la parcela del sistema de cultivo. Ciertas características del sitio, como elevación, pendiente y otras fueron medidas directamente, así como el espaciamiento entre plantas, etc. Sin embargo, muchas variables del manejo dependieron de la respuesta verbal dada por el agricultor. De cada parcela fueron escogidas muestras de suelo para su análisis posterior.

La encuesta completa, y una lista de las fincas encuestadas, se encuentra en el Anexo II (A y B). Una descripción más detallada de la metodología fue dada por Díaz Donaire (1982).

Ambiente climático

En la Figura 8 se muestran características de la precipitación y de la temperatura en los sitios visitados (identificado a través de fuentes secundarias, mapas, etc., detallados en el Anexo I). Las fincas fueron localizadas en regimenes de lluvia con un promedio anual de 800 mm hasta 2 400 mm; y con un rango de días con lluvia de 80 hasta 220. Hubo una diferencia marcada entre los sistemas de cultivo en cuanto a las características de la canícula (Fig. 8 c); los sistemas de maíz + sorgo y maíz + frijol + sorgo existen en áreas donde la merma en las lluvias es más marcada, o sea con patrón de lluvia de tipo bimodal.

La distribución de las fincas de acuerdo con su régimen de temperatura también es distinto, de acuerdo con el sistema de cultivo. El sistema maíz + frijol generalmente se encuentra en áreas de temperatura más baja que el sistema maíz + sorgo. Fincas con el sistema maíz + frijol + sorgo se encuentran en temperaturas intermedias a aquellas en que existen los otros dos sistemas (Fig. 8 d).

Características de las fincas

El tamaño de la finca, tenencia, grado de comercialización y presencia de animales se encuentran detallados en la Figura 9. La mayoría de las fincas fueron pequeñas, de dueño propio y que venden poco o nada de sus productos de maiz, frijol o sorgo. No hubo diferencias marcadas en la utilidad de los diferentes granos para propósitos de venta.

Alrededor de la mitad de los agricultores criaron ganado; la mayoría tuvieron cerdos y casi todos aves. Quizás a las cifras exactas para posesión de animales no se les debería dar demasiado peso, debido a la modalidad de los agricultores de ser reservados cuando hablan con desconocidos de sus bienes.

Características de las parcelas

El tamaño de las parcelas muestreadas, la elevación sobre el nivel del mar, su pendiente máxima y el pH del suelo se pueden observar en la Figura 10. Las características de las muestras de suelo se encuentran en esa figura y en el Cuadro 29.

Hubo pocas parcelas de tamaño mayor de tres ha; el tamaño mediano fue de 0.7, 1.0 y 1.2 ha para los tres sistemas de M

+ F, M + F + S y M + S, respectivamente. La elevación de las parcelas refleja la distribución en cuanto a la temperatura mencionada arriba, con parcelas de M + F con elevaciones superiores de las de M + S, y M + F + S intermedio.

Medidas efectuadas en cada sitio indicaron que los sistemas se encontraban en pendientes entre 0 y 100 %, con la mayoría de las parcelas en terrenos de mayor inclinación a 10 %.

Casi todos los sitios se consideraron deficientes en fósforo y zinc, y adecuados en contenido de potasio. Los niveles de calcio y magnesio fueron más variables, con diferencias observadas en el estatus de los suelos bajo los distintos sistemas (hasta ahora no se ha planteado ninguna hipótesis para explicar esas diferencias).

Características del manejo tradicional

Rotación en el uso de la tierra

Los sistemas de uso de la tierra varían entre sistemas de rotación (unos años de labranza seguidos por unos años de descanso) y sistemas de labranza permanente. El número de años en uso de la parcela varió entre un año y más de 20, con un promedio modal de tres años en el caso de M + S y dos años en el caso de M + F + S (Fig. 11). Una proporción mayor de agricultores, que sembraron M + F (65 %), declararon que no dejan descansar su parcela sino que la usan en forma permanente, a diferencia de aquellos con siembras de M + S (50 %) y M + F + S (32 %).

Al ser interrogados sobre el número de años que dejan descansar la tierra entre épocas de labranza, el promedio modal fue de tres años en todos los sistemas (Fig. 11 b). De ese modo, los períodos de descanso fueron generalmente menores que los de 5 a 6 años reportados por DeWalt y DeWalt (1982) para Pespire dentro del área del presente estudio.

El uso de las parcelas en los tres años previos al estudio se presenta en la Figura 12. En el año inmediatamente anterior, cerca de la mitad de las parcelas se había sembrado con los mismos sistemas de cultivo anuales y 15 - 25 % estaba en descanso. (Otros usos, cerca de un 5 %, consistieron primordialmente en pastos, en el caso de M + F, y bosques en el caso de M + F). En años anteriores, una proporción mayor de las parcelas estuvo en descanso y una proporción menor con cultivos.

Preparación de la tierra y método de siembra

La mayoría de los agricultores contó con herramientas de mano para efectuar la preparación de sus tierras y para la siembra (Fig. 13). Entre el 56 y 80 % de la muestra total (de acuerdo con los sistemas de cultivo) sembraron con un chuzo; los demás sembraron en surcos abiertos por el arado. Sólo se encontraron seis agricultores (todos con M + F) que usaron tractores para preparar su terreno; ellos sembraron atrás de un arado jalado por bueyes.

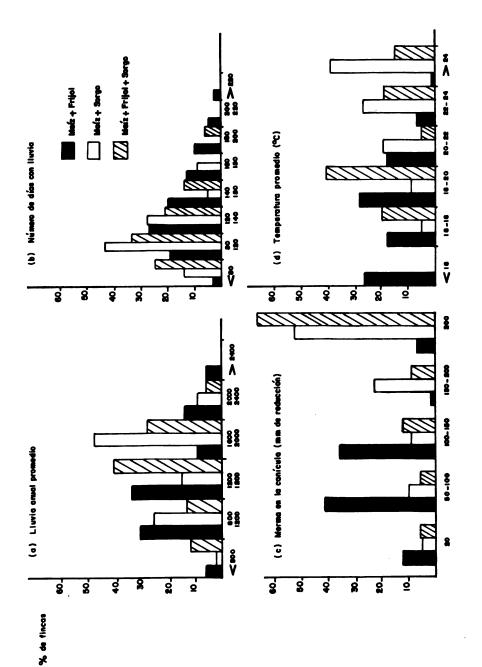


Figura B. Ambiente climático de las fincas encuestadas, según sistema de cuttivos.

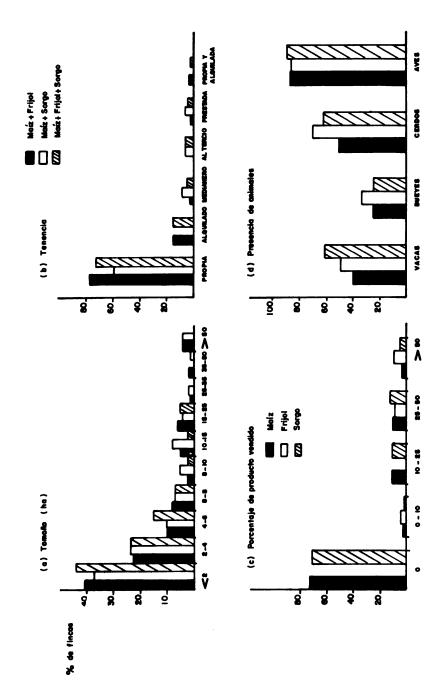
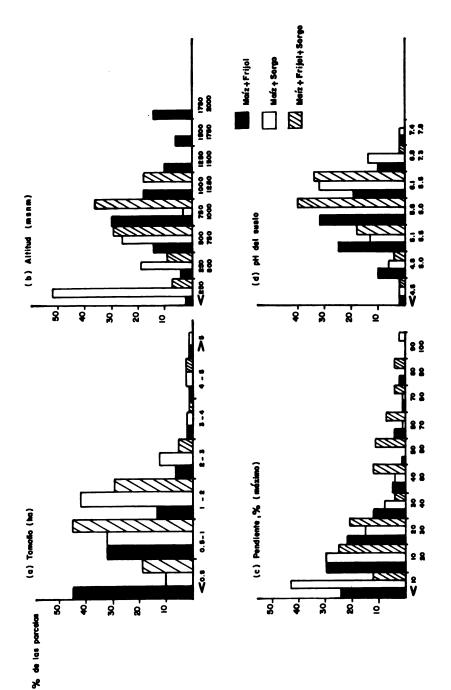
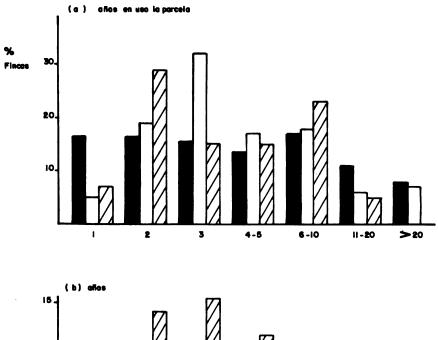




Figura 9. Caracteríaticas socioeconómicas de las fincas encuestadas, según sistema de cultivos.

Figuro IO. Características de los parcelas según sistemas de certivos.

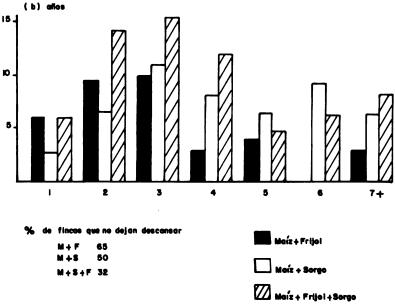


Figura II. Rotación en el uso de la tierra.

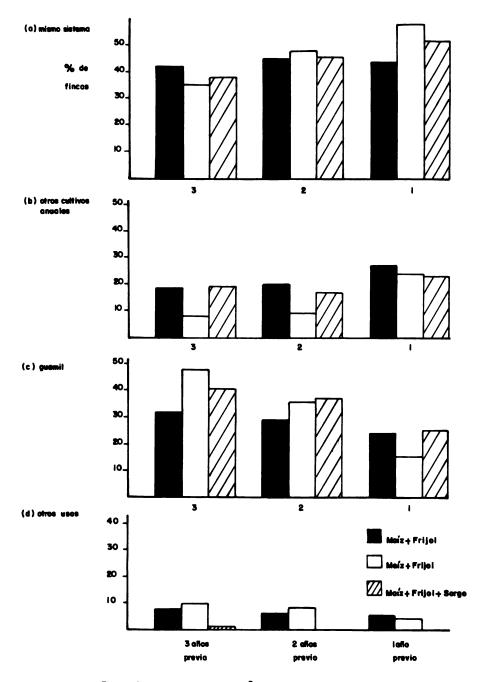


Figura 12. Uso de la parcela en años anteriores.

Arreglo cronológico de los cultivos

La Figura 14 muestra las frecuencias relativas de las semanas de siembra y cosecha para los diferentes sistemas. Se nota que las fechas de siembra que normalmente coinciden con el inicio de las lluvias estaban mucho más sincronizadas que las fechas de cosecha; sólo la cosecha de sorgo cayó dentro de una época bien definida durante las primeras dos semanas de enero. Las siembras en seco, antes del inicio de las lluvias, fueron generalmente consideradas como riesgosas por los agricultores, aunque se admitió hacerlo de vez en cuando en áreas donde la época lluviosa es relativamente corta.

La época de cosecha de maiz fue muy variable, en parte porque muchas veces se dejan plantas dobladas (práctica del 67 % de los agricultores) en la parcela, bastante después de que estén maduras, como forma de almacenamiento hasta que haya mano de obra para cosecharlas. También el ciclo del maiz varia con la temperatura; es más largo en los sitios de altura. En el sistema M + F, la época de cosecha del frijol tiene carácter bimodal, reflejando los dos tipos de frijol usados: frijol voluble de ciclo largo y arbustivo de ciclo corto (ver más adelante).

Los arreglos cronológicos más comunes se representan en la Figura 15. Se consideró como siembra simultánea, la forma predominante, aquella donde la diferencia en fechas de siembra de los dos cultivos fue menor de 10 días; siembra escalonada aquella en la cual la diferencia era mayor de 10 días. De ese modo, se consideraron siembras simultáneas aquellas en las que se esperó la germinación de un cultivo para facilitar la siembra del cultivo asociado en un cierto arreglo espacial.

Arreglo espacial de los cultivos

Fueron identificados 59 arreglos espaciales distintos de los tres sistemas de cultivo asociados. Los arreglos más comunes se presentan en la Figura 16.

La población de plantas sembradas se ilustra en la Figura 17; la población de maiz fue generalmente menor en el sistema M + F (promedio modal 30-40 000 plantas ha^{-1}) que en los otros sistemas (promedio modal 40-50 000plantas ha^{-1})

Las poblaciones de frijol fueron extremadamente variables, desde menos de 20 000 plantas ha $^{-1}$ hasta superior a 500 000 plantas ha $^{-1}$. Las poblaciones de sorgo estuvieron generalmente dentro del rango 40 - 160 000 plantas ha $^{-1}$ con un promedio modal entre 80 y 120 000 plantas ha $^{-1}$.

Cultivares utilizados

Fue imposible identificar adecuadamente los cultivos usados, ya que muchas de las variedades usadas no tienen nombre y las

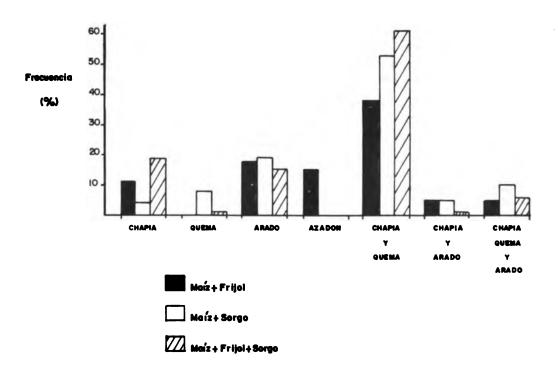
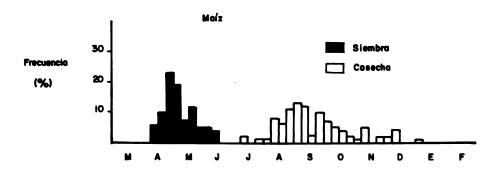
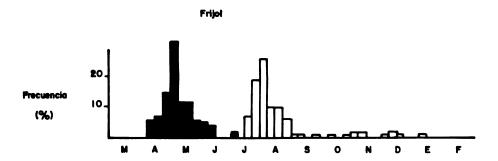
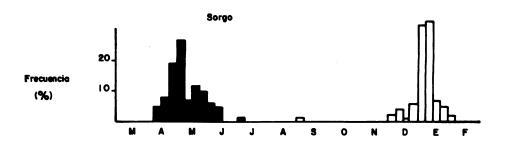
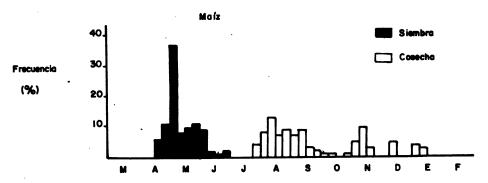
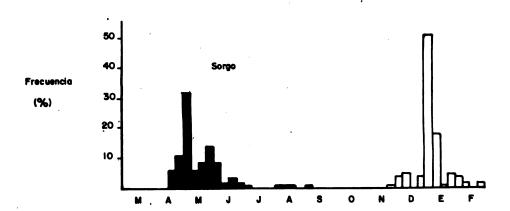
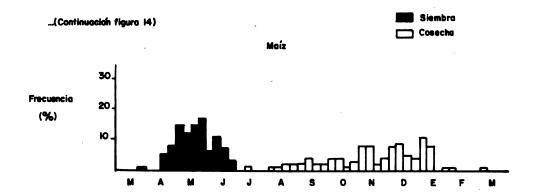
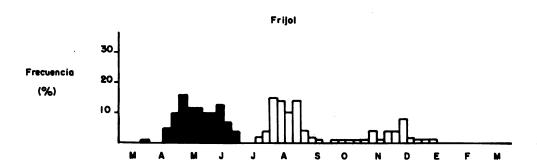




Figura 13. Preparación del terreno.


Figura 14. Fechas de siembra y cosecha de los cultivos según sistema.

...(Continuación figura 14)

SISTEMA	ARREGLO CRONOLOGICO	DESCRIP	FRECUENCIA (%) DENTRO DEL SISTEMA
Ī	FRIJOL MAIZ	Siembra simu tanea	II- 88.4
M+F	FRIJOL	Siembra escal da, primero mai	
	FRIJOL	Siembra escalo da, primero frij	
M+S	MAIZ SORGO	Siembra simu tánea	1- 86. 4
	MAIZ SORGO	Siembra esca nada, primero n	
M+F+S	FRIJOL MAIZ SORGO	Siembra simul tánsa	- 87. 6
	FRIJOL MAIZ SORGO	Siembra simul nea MyF. Sor escolonado.	

Figura 15. Arregios cronológicos más comunes.

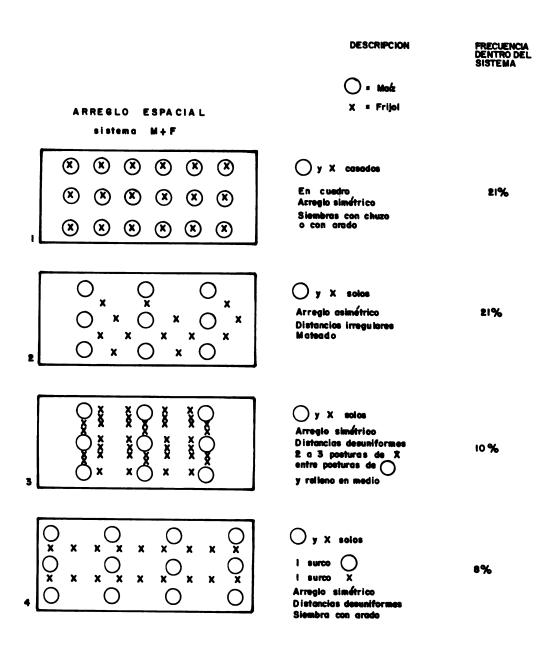
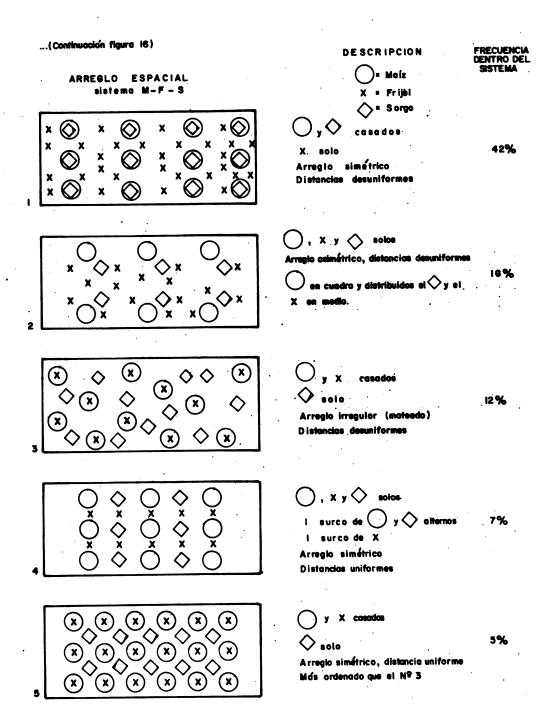



Figura 16. Arreglos espaciales más comunes

...(Continuación figura 16)

					DESCRIPCION	FRECUENCIA DENTRO DEL
	ARI	REGLO ES M + S	PACIAL		O= Maíz	SISTEMA
	0	0	O .		. 🔷= Sorgo O y 🔷 casados	
		\Diamond			Arregio simétrico	34%
	\Diamond	\Diamond			Distancias desuniforme	
•			·			•
	(O		\Diamond	Oy 🔷 casados	
	0			>	Al tres bolillo o pata de gallina	31%
2	0					
			,			
	Ô	0	0	0	l surco de ◯ solo l surco de ◇ solo	
	\$		>	\Diamond	(mayor distancia entre 🔷	12%
3	\Diamond		>	$\begin{array}{c} \bullet \\ \bullet \\ \end{array}$	Arregio simetrico Distancias uniformes	
					Sistematical districtions	
			\Diamond		O y 🔷 solos	8%
	00		♦ •		y otternos en el surco	
4	$\bigcirc \diamondsuit$	$\bigcirc \Diamond \bigcirc$	<u> </u>	\Diamond	Surcos iguales	
					O ^	
		$^{\circ}$	\rangle^{\diamond}	0	y 🔷 solos en cuadro	•
		$O_{O_{O}}$	0	>	en cuadro	8%
5	0	0 0	0 0	0	rodeado de 🔷	
					Sembrado en surcos	

(Continuación figura 16) ARREGLO ESPACIAL sistema M+F	DESCRIPCION = Maíz X = Frijel	FRECUENCIA DENTRO DEL SISTE MA
	y X solos Arregio simétrico Distancias desuniformes De 3 a 4 posturas de X por postura de O Lleno el espacio intermedio	7%
(x)	y X casados Arregio irregular (mateado) Distancias desuniformes	6%
O O O O O O X X X X X X X X X X X X X X	y X solos I surco de O por 3 de X Arregio simétrico Distancios regulares	5 %
	y X solos Cuatro posturas de X por postura de Arregio simétrico Distancias desuniformss	5%

Figura 17. Poblaciones de plantas sembradas.

mismas variedades tienen nombres diferentes según el lugar. Sin embargo, la gran variedad de fenotipos fue obvia.

Los maíces encontrados fueron principalmente de color blanco (66 %) y amarillos (23 %). Otros colores incluyeron zarco (amarillento), rosado, negro y morado. En el frijol también predominan dos colores: el rojo (64 %) y el negro (18 %), con cantidades menores de retintes morados y mezclas de colores donde aparecen blancos, amarillos, pintados, etc. En el sorgo predominaba el color blanco (83 %), aunque se encontraron también sorgos amarillos (10 %), cremas o amarillentos (5 %) y mezclas de amarillo y blanco (2 %).

En el caso de frijol, se encontraron además cinco de los seis tipos de crecimiento usados en la clasificación del CIAT (CIAT, 1979). No se encontró frijol de crecimiento determinado, o sea de tipo I. La Figura 18 presenta el uso de los diferentes frijoles de crecimiento según los sistemas.

Uso de insumos químicos

Aproximadamente 19 % de los agricultores en total utilizaron fertilizantes inorgánicos (25 %, 14 % y 12 % en los casos
de M + F, M + S y M + F + S, respectivamente). El uso más extensivo de fertilizante se produjo en los departamentos de Intibucá y La Paz, donde la práctica ha sido fomentada por la
producción de papa, que involucra el uso extensivo de insumos
agrícolas. Los tipos de fertilizante utilizados incluyeron
12-24-12 (47 % de los agricultores del estudio lo utilizaron),
urea (15 %) o ambos formularios (15 %).

Los insecticidas fueron aplicados a aproximadamente 11% de las parcelas, y herbicidas al 8 %. El uso de herbicida fue encontrado principalmente en parcelas de M + S (19 % de lotes con este sistema); 2-4-D y paraquat fueron los tipos más usados:

. Control de malezas

Cerca de la mitad de los agricultores efectuó el control no-químico de malezas con el machete y la otra mitad con el azadón. Sólo un 4 % dijo depender de la tracción animal o combinar ésta con herramientas de mano; sin embargo, es posible que los agricultores no dieran suficiente peso a la contribución del aporco (muchas veces efectuado con arado) en este aspecto.

Rendimientos esperados

Los rendimientos de los cultivos, tal y como fueron estimados por los agricultores, se muestran en la Figura 19. Allí se comprueba que las perspectivas para alrededor de 75 % de las parcelas eran rendimientos menores a 1 000, 500 y 1 200 kg ha $^{\rm 1}$ de maíz, frijol y sorgo, respectivamente. Esos rendi-

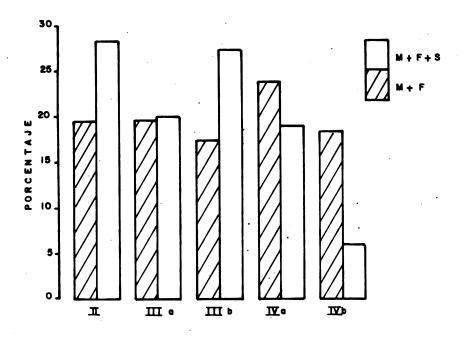


Figura 18. Tipo de crecimiento del trijol según sistema.

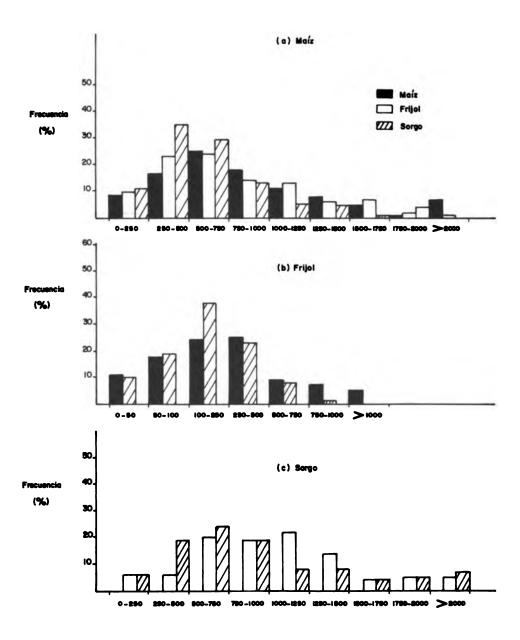


Figura 19. Rendimientos esperados (kg ha-1).

mientos concuerdan con los promedios nacionales (Cuadros 4, 5 y 6).

Análisis de variables de manejo

Metodología

El proceso seguido para deducir cuáles variables ambientales influían en el manejo de los sistemas fue el siguiente:

- a. Se hicieron análisis de los componentes principales para identificar las variables que más contribuían a la variación total en el manejo.
- b. Se realizaron análisis de correlación para determinar cuáles variables de manejo fueron interrelacionadas entre ellas.
- c. Se hizo una regresión de variables de manejo, contra las variables independientes (estandarizadas) de clima y suelo.

Maiz asociado con frijol

Un resumen de los resultados del análisis de componentes principales para el sistema maíz + frijol se da en el Cuadro 30. Las variables de manejo que más contaban para la variación total fueron las relacionadas con el componente frijol: distancia entre surcos, distancia entre golpes, cantidad de semilla, arreglo espacial, tipo de crecimiento y fecha de cosecha. Variables importantes del segundo componente fueron los métodos de siembra del maíz y del frijol, y del tercer componente las fechas de siembra del maíz y del frijol. Los primeros tres componentes contaban (en forma acumulativa) por 17,5, 26,8 y 34,5 % de la variación, respectivamente.

Las fechas de siembra de maíz y de frijol fueron altamente correlacionadas, como era de esperar, dada la naturaleza del sistema de cultivos asociados. También fueron correlacionados diferentes aspectos del arreglo espacial: así, la distancia entre surcos y la distancia entre golpes de frijol fueron correlacionados (r=0,74), y estas variables fueron correlacionadas con el número de plantas por golpe (r=-0,53 y -0,55, respectivamente). Un hecho interesante: hubo poca correlación entre los espaciamientos del maíz y frijol, lo que muestra que el arreglo de los dos cultivos componentes tendió a ser independiente dentro de la asociación.

Las prácticas de manejo más variables, identificadas por el análisis de componentes principales y eliminando aquellas que fueron correlacionadas entre ellas, fueron relacionadas con las variables ambientales que podrían ser cuantificadas (Cuadro 31). La variable más relacionada con el manejo del componente

Cuadro 30. Resumen del análisis de componentes principales: variables de manejo, sistema maís + frijol.

5 C C C C C C C C C C C C C C C C C C C				FACTOR	FACTOR PATTERN			
ARIABLE	1	2	3	7	s	•	7	€
Mos de uso terreno	0,251	-0,157	0,390	0,168	0,201	0,372	0,342	0,256
shos descanso terreno	-0,133	0,495	٥60,0	0,080	-0,335	0,206	-0,411	0,030
Fecha siembra, maíz	-0,371	0,116	0,531	-0,430	0,029	0,095	0,076	-0,146
Plantas por golpe, maiz	0,177	0,378	-0,403	0,461	-0,042	-0,246	0,272	0,063
Dist. entre golpes, maiz	-0,295	0,531	0,272	0,177	-0,381	0,032	0,045	0,201
Dist. entre surcos, maiz	-0,511	-0,023	0,378	900'0	-0,261	0,032	0,071	0,143
Plantas por golpe, frijol	-0,698	0,128	-0,266	0,226	0,185	-0,210	-0,019	0,016
Dist. entre golpes, frijol	0,776	0,258	0,222	0,197	-0,182	0,104	0,033	0,038
Dist. entre surcos, frijol	0,804	0,049	0,228	0,213	-0,034	-0,064	0,084	0,047
reparación de suelo	-0,298	0,277	0,361	0,381	-0,070	0,124	0,146	-0,314
Método siembra maiz	-0,117	-0,585	0,367	0,263	-0,047	0,149	0,303	-0,123
Jso de fertilizante	-0,430	0,142	-0,176	0,271	-0,032	-0,048	0,179	0,001
Control de malezas	0,086	0,073	-0,011	-0,171	0,104	0,109	0,041	0,684
lipo de deshierbe	0,051	-0,214	0,322	0,151	0,067	-0,364	-0,616	-0,163
Control de plagas	0,034	0,250	-0,053	-0,226	0,162	-0,365	0,383	-0,278
echa dobla maíz	0,284	0,658	0,209	0,086	0,129	0,003	0,032	-0,223
Pecha cosecha maiz	0,339	-0,073	-0,464	-0,275	0,010	0,374	0,158	-0,032
Fecha cosecha frijol	0,575	0,009	0,048	-0,226	-0,316	0,183	0,097	-0,145
Jso forraje maiz	0,228	-0,316	0,055	0,490	0,264	0,138	-0,102	0,201
Color grano maiz	-0,090	0,205	0,339	-0,432	0,116	0,046	0,059	0,391
Color grano frijol	-0,417	-0,128	-0,041	0,112	-0,059	0,453	0,266	0,114
ariedad maiz	0,112	0,063	0,185	0,213	0,703	0,347	-0,140	-0,105
/ariedad frijol	0,041	0,257	0,032	0,282	0,592	0,311	-0,049	0, 193
Variación acumulativa explicada \$	14.8	23.6	31,5	38,9	45.6	51.0	56.2	61.3

Cuadro 31. Resumen de las regresiones de variables de manejo contra factores ambientales. Sistems maíz + frijol.

	۲,				Correlació	n con vari	ibles individ	Correlación con variables individuales del ambiente (r)	ente (r)			
Variable de manejo	regresión múltiple	No. días lluvia	Pecha inicio iluvia	Merma canícula	Elevación	Relieve	Pendiente	Relieve Pendiente Pedregosidad Erosiôn	Erosiôn	Materia orgânica	Nivel P	#d
Dist. entre golpes, maîz	0,30				-0,27			0,27			0,21	
Plantas por golpe, frijol	0.47				-0,57			0,41				0,29
Dist. entre surcos, frijol	01 0,39				0,55			-0,33				
Método siembra, maíz	0.48			0,20	-0,21	-0,28	-0,44	-0,36	-0,28	0,37		
Tipo crecimiento, frijol	0,34				0,47							
Fecha siembra, maíz	0,45	0,26	0,30	-0,30								
Fecha cosecha, frijol	0.27				0,28			-0,21		-0,28		
Rendimiento maíz	0,17			-0,24		•						
Rendimiento frijol	0,38			-0,27	-0,39							

Número de observaciones: 170. Niveles de significancia de correlación: r> 0,20; p,> 0,01; r> 0,25; p>0,001; r> 0,29; p> 0,0001 cotas variables independientes incluidas en regresión multiple, pero sin correlación significativa individual: precipitación anual, facha de canícula, drenaje interno, nivel de K texturar, fecha fin de lluvia.

Correlaciones entre vertables independientes (r> 0,30): elevación y pH (r =-0,38); pendiente y predregosidad (r = 0,35) nivel de P y nivel de K (r = 0,48); M.O. y precipitación anual (r = 0,39); pH y precipitación anual (r =-0,40). 3/ 7 %

frijol fue la elevación. Una regresión múltiple, usando todas las variables independientes, mostró que se podía explicar 47 %, 39 % y 34 % de la variación en los factores de plantas por golpe, distancia entre surcos y tipo de crecimiento del frijol, respectivamente (Cuadro 31).

En realidad, la mayoría de los cambios del manejo de la asociación maíz-frijol estudiado, se pueden relacionar con el cambio del tipo de crecimiento del frijol. El frijol arbustivo tendía a predominar en las alturas menores, y el frijol voluble en alturas mayores (Fig. 20). Así, poblaciones medianas de frijol entre 250-750 msnm fueron del orden 50-60 000 plantas ha-1 con 30-40 000 plantas ha-1 entre 750 y 1 250 m y 0-10 000 encima de 1 250 m. El rango de hábitos de crecimiento del frijol incluyó un número de especies distintas, todas conocidas localmente como frijol. Las plantas de tipo IV encontradas en elevaciones superiores a los 1 500 m fueron generalmente Phaseolus coccineus, llamado frijol chinapopo, y en alturas muy bajas (0-250 m) se encontraron variedades volubles de Vigna unguiculata (frijol de costa). Las plantas de tipo crecimiento II-IVa fueron generalmente Phaseolus vulgaris, aunque existen algunas variedades arbustivas de Vigna.

El rendimiento del frijol también varía con la altitud. En las elevaciones mayores, donde predomina el frijol voluble, ningún agricultor esperaba rendimientos mayores de 500 kg ha-1, y el rendimiento mediano esperado fue de 50-100 kg ha-1, mientras que en terrenos más bajos los rendimientos medianos fueron de 250-500 kg ha-1 con algunos reportes de 1 000 kg ha-1.

Los rendimientos del maíz asociado con frijol generalmente fueron más explicables en términos de las variables ambientales estudiadas que los de frijol; aunque hubo una correlación negativa con la merma de la canícula, como en el caso del frijol.

Maiz asociado con sorgo

El análisis de correlación mostró que, a diferencia del sistema maíz y frijol, el arreglo espacial de los dos componentes del asocio maíz y sorgo sí fue relacionado (r=0.52 y 0.78 para las distancias entre golpes y entre surcos respectivamente). Altamente correlacionados también fueron los métodos de siembra <math>(r=0.97), fechas de siembra (r=0.96) y cantidad de semilla usada (4=0.96). El número de años de descanso también se correlacionó con el método de siembra (r=0.44).

Los aspectos más variables del manejo del sistema fueron la rotación (años de uso, años de barbecho), método de siembra y control de malezas (ver análisis de componentes principales, Cuadro 32). La correlación de las variables de manejo en variables independientes del ambiente mostró que los factores que más influyen aparentemente en la rotación y métodos de siembra fueron la pendiente y la pedregosidad de la parcela (Cuadro 33).

Cuadro 32. Resumen del análisis de componentes principales: variables de manejo. Sistema maís + sorgo.

6 4 4				FACTOR	PACTOR PATTERN			
91081	1	2	3	1	5	9	7	8
Años de uso terreno	0,515	-0,079	0,352	0,339	0,030	-0,020	0,025	-0,036
Años de descanso terreno	-0,625	0,075	-0,013	-0,034	-0,335	0,115	-0,046	0,117
Fecha stembra, maiz	0,602	-0,026	-0,076	0,164	-0,048	0,114	0,065	-0,082
Plantas por golpe, maiz	-0,334	-0,279	0,278	0,570	0,323	0,092	0,011	0,060
Dist. entre golpes, mais	-0,531	0,422	0,324	-0,003	0,047	-0,118	0,022	0,247
Dist. entre surcos, maíz	-0,121	0,356	-0,015	0,069	0,324	-0,406	0,025	0,439
Plantas por golpe, sorgo	-0,038	0,309	-0,014	0,679	-0,018	-0,150	0,336	-0,048
Dist. entre golpes, sorgo	-0,244	0,497	0,488	-0,076	-0,125	-0,187	0,026	-0,236
Método siembra, maíz	0,739	0,071	0,240	-0,083	0,165	0,167	0,021	0,007
Control de malezas	-0,395	-0,367	0,475	0,018	0,127	-0,096	0,081	-0,193
Tipo de deshierbe	0,551	0,380	0,012	-0,177	0,218	0,148	-0,084	0,153
Control de plagas	0,061	0,400	-0,238	0,441	-0,172	0,186	-0,240	0,098
Fecha de dobla	0,519	-0,195	0,132	-0,182	0,018	-0,159	0,177	0,338
Fecha cosecha maiz	0,157	-0,493	-0,085	0,305	-0,035	0,296	-0,245	0,491
Fecha cosecha sorgo	-0,132	-0,007	0,377	-0,253	0,238	-0,107	-0,561	0,221
Uso forraje sorgo	-0,130	-0,052	0,566	-0,021	0,166	0,505	0,170	-0,081
Color de grano maíz	-0,280	0,108	-0,365	-0,253	0,505	0,359	0,036	-0,196
Color de grano sorgo	0,105	-0,344	-0,270	0,065	0,511	-0,506	0,080	-0,143
Variedad sorgo	-0,096	0,360	-0,141	0,105	0,493	0,312	0,116	0,052
Variedad maíz	-0,099	+ 60′0-	-0,000	-0,284	-0,107	0,103	0,717	0,390
Variación acumulativa explicada (%)	14.7	23,4	31,4	39,0	45,7	51,9	57,7	62,9

Cuadro 33. Resumen de la regresión de variables de manejo contra factores ambientales. Sistema maíz + sorgo.

Page		۲,				Correlació	n con vari	Correlación con variables individuales del ambiente (r)	duales del	ambiente	r)			
0,35 0,33 0,35 0,35 0,35 0,36 0,27 0,24 -0,37 0,24 -0,25 0,29 0,20 0,27 0,27 -0,49 0,27 0,27 0,29 0,29 0,29 0,29	Variable de manejo	regresión múltiple	Precip.	No.dias lluvia	Fecha ini- cio lluvia	Fecha canicula	Merma canícula	Elevación	Pendiente	Drenaje interno	Drenaje Pedrego- Erosión pH Nivel interno cidad Erosión pH K	Erosión	¥.	Nivel K
0,33 0,27 0,24 -0,37 0,31 -0,25 0,29 0,36 0,37 0,31 -0,25 0,29 0,36 0,27 0,27 -0,31 -0,49 0,20 0,20 0,27 0,27 0,23 0,29 0,23 0,29 0,29 0,28 0,30 0,16	Años de uso terreno	0,35					-0,36	0,30	0,42					
0,35 0,27 0,24 -0,37 0,31 -0,25 0,29 0,36 0,37 0,31 -0,25 0,29 0,36 0,27 0,27 0,27 -0,31 -0,49 0,27 0,23 0,23 0,29 0,28 0,30 0,16	Aftor de descanso	0,33									0,31	0,25		
0,35	Fecha siembra mais	0,35			0,27	0,24	-0,37	0,31	-0,25		-0,26			
0,36 0,27 -0,49 0,20 0,20 0,20 0,20 0,20 0,20 0,30 0,23 0,30 0,23 0,36 0,30 0,16	Dist.entre golpes, maíz	0,35		-0,25					0,29	0,25	0,28	0,26		
0,20 0,44 0,27 0,23 0,29 0,29 -0,26 0,30	Plantas por golpe, maíz	0,36	0,27					-0,49						-0,25
12 0,27 -0,30 -0,30 0,23 0,29 0,30 0,16	Plantas por golpe, sorgo	0,20					-0,31							
0,27 -0,30 0,23 -0,26 -0,26	Método siembra, maíz	0,44							-0,43		-0,44	-0,37		
0,23 0,29 0.16	Tipo de deshierbe	0,27					-0,30				-0,30	•	-0,36	
0,29 -0,26	Fecha cosecha, maiz	0,23												
	Rendimiento maíz	0,29					-0,26	0,30			-0,33			
	Rendimiento sorgo	0,16												

Otras variables independientes incluidas en regresión múltiple sin correlación significativa individual: fecha de fin de lluvis, materia orgánica, 1/ Número de observaciones: 109. Niveles de significancia de correlación: r > 0,25; p > 0,01; r > 0,31; p > 0,001; r > 0,36; p > 0,0001.

nivel de P, textura, relieve. 7

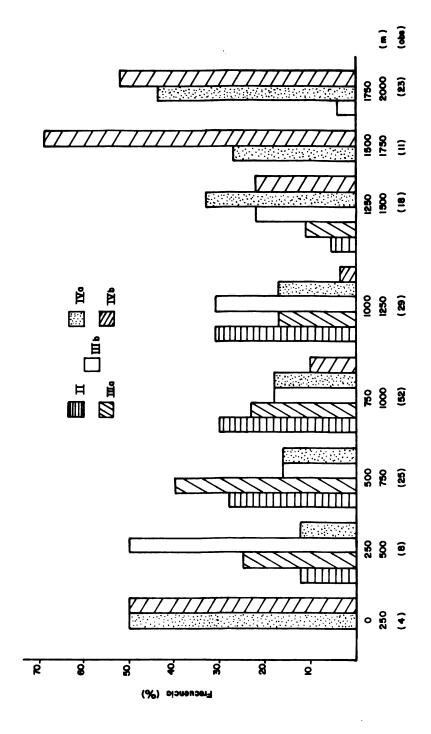


Figura 20. Distribución del tipo de crecimiento del trijol según altura.

La relación que existe entre rotación, método de siembra y pendiente está señalada en el Cuadro 34. Alrededor de la mitad de las parcelas visitadas tuvo una pendiente (máxima) menor de 12 %, y de éstas un 60 % fueron sembradas utilizando el arado. En inclinaciones mayores de 12 %, todas las parcelas fueron sembradas con el chuzo. Donde se usó el chuzo para sembrar, 34 % de las parcelas fueron de baja labranza permanente, en comparación con 84 % de esas parcelas en las que se sembraba con arado.

Cuadro 34. Distribución de las parcelas muestreadas, según pendiente, método de siembra y uso de la tierra. Sistema maíz + sorgo.

Método de	Uso de la	Pendier	te %	
siembra	tierra	0 - 12	> 12	
	Continuo	8	15	23
Chuzo				
	Con descanso	13	32	45
	Continuo	27	0	27
Arado				
	Con descanso	5	0	5
		53	47	100

Número de observaciones: 109

Pendiente: pendiente máxima de la parcela muestreada.

Se puede postular que la relación entre pendiente, método de siembra y rotación es un resultado de la facilidad de controlar malezas. Las poblaciones de malezas aumentan años después del barbecho, y los agricultores muchas veces citan la mano de obra necesaria para limpiar una parcela como una razón principal para volverla al descanso. Cuando se puede usar el arado, en terrenos planos y libres de rocas, el control de malezas puede efectuarse en parte por el aporco, con arado, y así los requerimientos de mano de obra se reducen. (De unos 30 días ha¹ hasta unos 10 días ha¹ (Hawkins, 1984). Con la limpieza así facilitada, la parcela se puede mantener cultivada continuamente, a pesar del incremento en la población de malezas.

El hecho de que aun así algunos agricultores cultiven continuamente con herramientas de mano, probablemente refleja la presión demográfica sobre la tierra. Una región donde esta situación es bastante común es la zona fronteriza de Honduras con El Salvador, donde los agricultores dicen que desean dejar des-

cansar sus terrenos, como es tradición, pero que no tienen suficiente terreno para dejarlo en barbecho. Esos agricultores han caído en lo que Ruthenberg (1980) llama "la trampa del bajo equilibrio", una situación en la cual la fertilidad del suelo es baja, los requisitos de mano de obra son altos, y los rendimientos son bajos año tras año.

Maiz, frijol y sorgo asociados

El asocio de los tres componentes manifiesta una combinación de las características mostradas por las dos asociaciones descritas anteriormente. Las fechas y métodos de siembra para los tres cultivos fueron altamente correlacionadas (4 = 0.82 - 0.97 respectivamente); mientras que la distancia entre las plantas fue correlacionada para maíz y sorgo (r = 0.86 y 0.83 para distancia entre golpes y surcos respectivamente), no ocurrió lo mismo para maíz y frijol (r = 0.12 y 0.07 respectivamente).

Igual que en el sistema maíz y frijol, hubo una relación entre tipo de crecimiento y la distancia entre plantas, con los tipos volubles en poblaciones más bajas.

El análisis de componentes principales mostró que los aspectos más variables de manejo fueron el arreglo espacial del componente frijol, la variedad de frijol, la rotación del terreno y el método de siembra (Cuadro 35).

Los factores más correlacionados con el espaciamiento de frijol fueron la elevación y la precipitación anual (Cuadro 36). Es interesante notar que la relación entre el espaciamiento de frijol y la elevación de este sistema fue negativa, y la de frijol asociado con maiz (sin el componente sorgo) fue positiva. Estas relaciones se deben al hecho de que los frijoles trepadores (realmente Vigna) en el sistema maiz + frijol + sorgo, se encontraban en bajas elevaciones, y no en tierras altas.

De las 84 parcelas de maíz + frijol + sorgo muestreadas, 32 % fueron de baja labranza permanente, y 79 % fueron sembradas con chuzo. Igual que en el sistema maíz + sorgo, hubo una interacción entre estos dos factores y la inclinación de la parcela. La interacción fue detectada principalmente en parcelas con pendientes en exceso de 12 %, en las que se practica la rotación de cultivos sembrados a mano, y en terrenos más planos con sistemas de cultivo permanentes sembrados con arado (Cuadro 37).

Cuadro 35. Resumen del análisis de componentes principales; variables de manejo, sistema maíz + sorgo + frijol.

Variable								
	1	2	3	•	s	9	7	8
Años de uso terreno	0,121	0,757	-0,080	-0,245	0,188	-0,075	0,214	0,119
Años de descanso terreno	-0,583	-0,227	0,005	0,139	0,044	-0,318	0,193	-0,269
Fecha siembra, maíz	-0,125	0,735	-0,029	-0,025	0,113	0,194	0,146	-0,036
Plantas por golpe, maiz	-0,225	-0,204	0,415	0,066	0,117	-0,564	-0,120	0,191
Dist. entre golpes, maix	-0,025	-0,016	0,413	0,179	0,034	0,012	0,396	-0,079
Plantas por golpe, frijol	0,740	-0,177	0,028	0,059	-0,016	-0,315	0,028	0,030
Dist. entre golpes, frijol	-0,665	0,214	0,381	0,145	0,077	0,091	0,222	0,100
Plantas por golpe, sorgo	0,436	0,434	-0,266	-0,269	-0,208	-0,338	0,036	-0,139
Preparación de suelo	0,318	-0,079	0,567	-0,193	0,118	0,088	-0,193	-0,052
Método siembra, maíz	0,117	0,520	0,485	0,145	-0,093	0,127	-0,004	-0,315
Uso de fertilizante	0,053	-0,484	-0,350	-0,026	-0,024	-0,006	-0,196	-0,157
Control de malezas	0,076	-0,234	0,126	-0,038	0,131	0,234	0,364	0,342
Tipo de deshierbe	0,478	0,217	-0,050	0,540	0,003	0,203	-0,234	-0,033
Control de plagas	-0,001	-0,082	-0,453	0.470	0,001	0,207	0,374	0,293
Fecha de dobla	-0,468	-0,086	0,186	-0,350	-0,203	0,149	0,186	0,353
Fecha cosecha, maiz	0,355	060'0	0,073	0,021	-0,543	0,462	-0,203	0,125
Fecha cosecha, frijol	-0,460	0,380	0,184	0,255	-0,248	-0,022	-0,050	-0,003
Fecha cosecha, sorgo	0,218	0,130	0,133	-0,666	-0,115	-0,112	-0,025	0,057
Uso de sorgo forraje	0,195	-0,049	0,233	0,129	0,386	0,119	0,274	-0,486
Color de grano maíz	0,150	0,460	-0,232	0,140	0,299	-0,346	0,204	0,220
Color de grano frijol	0,524	-0,296	0,411	-0,099	0,314	0,204	0,243	0,240
Color de grano sorgo	0,145	0,221	0,162	0,311	0,209	-0,216	-0,421	0,487
Variedad, maîz	0,026	-0,034	-0,144	-0,090	0,684	0,204	-0,372	-0,070
Variedad, frijol	-0,413	0,126	-0,310	-0,248	0,392	0,307	-0,149	0,009
Variación acumulativa explicada (%)	12,9	23,9	32,2	39,2	45,8	51,9	57,4	62,5

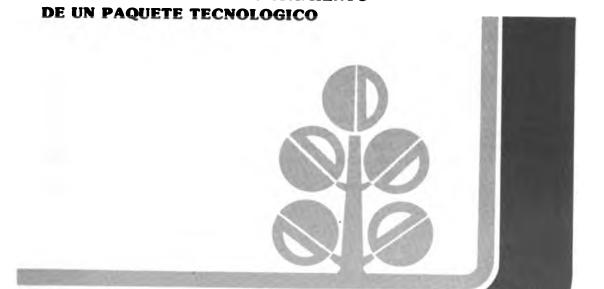
Cuadro 36. Resumen de la regresión de variables de manejo contra factores ambientales. Sistema maíz + sorgo + frijol.

	r 2		0		8	Correlación con variables individuales del ambiente (r)	n variables	individuale	s del	ambiente (r)	
variable de manejo	regresión múltiple	Precip. anual	No.días lluvia	Merma canícula	Elevación Pendiente	Pendiente	Pedrego- cidad	Drenaje interno	Hď	Materia orgánica	Nivel K
Años de uso terreno	0,34						-0,31			-0,29	
Años de descanso	0,46			0,32		0,29	0,33				
Fecha siembra maíz	0,58		0,43						0,38		
Plantas por golpe, frijol	0,67		-0,53			-0,41		0,36	-0,29		0,30
Dist. entre golpes, frijol	1 0,65		0,34	0,30	-0,49			-0,30	0,29		-0,30
Plantas por golpe, sorgo											
Método siembra, maíz	0,47					-0,34	-0,38			-0,29	
Tipo de deshierbe	95'0	-0,39		-0,43		-0,35				0,35	
Fecha coseha, frijol	0,46				-0,30						
Rendimiento maíz	0,34					-0,31					
Rendimiento frijol	0,26										
Rendimiento sorgo	0,39					-0,34					

Número de observaciones: 84. Niveles de significancia: 1 > 0,28; p > 0,01; r > 0,35; p > 0,001; r > 0,41; p > 0,0001.

Otras variables independientes incluídas en regresión múltiple, sin correlación significativa individual: fecha inicio lluvia, fecha fin lluvia, brecha canícula, relieve, erosión, textura, nivel de P. 21

Correlaciones entre variables independientes (1 > 0,30), No. días lluvia y pendiente (r = 0,52), pedregosidad y erosión (4 = 0,52) merma y precipitación anual (r = 0,78), precipitación anual (r = 0,78), precipitación anual y elevación (r = -0,40). έl


Cuadro 37. Distribución de las parcelas muestreadas según pendiente, método de siembra y uso de la tierra. Sistema maíz + sorgo + frijol.

Método de	Uso de la	Pendie	nte %	
siembra	tierra	0 -12	> 12	
	Continuo	2	15	17
Chuzo				
	Con descanso	6	56	62
	Continuo	11	4	15
Arado				
	Con descanso	4	2	6
		23	77	100

Número de observaciones: 84.

CAPITULO III

PREDICCION DEL COMPORTAMIENTO

Objetivos

Los objetivos de esta fase del Proyecto fueron:

- Determinar si la producción de un paquete tecnológico puede relacionarse con factores ambientales, utilizando una red de sitios experimentales.
- Valorar la capacidad de predicción de un modelo empírico, utilizando datos de los sitios experimentales.

Experimentos 1982

Los paquetes tecnológicos

Para cumplir con los objetivos arriba mencionados, y para dar seguimiento a dos fases anteriores del Proyecto, se buscó un paquete tecnológico desarrollado como alternativa a uno de los sistemas de producción estudiados. Por su distribución en los cuatro países ya estudiados, se escogió el sistema maíz asociado con sorgo, para el cual se había desarrollado una alternativa bajo el Proyecto CATIE/ROCAP: "Sistemas de Cutivos para Pequeños Agricultores", 1975-1979 (CATIE, 1979).

La alternativa, desarrollada para el municipio de Tejutla, en Chalatenango (El Salvador), contempla básicamente un cambio de variedad de maíz, fertilización, con protección de plagas y malezas, y sembrado con labranza mínima (por chuzo). Además de esta alternativa, que no involucra ningún cambio en los cultivos componentes, se decidió probar una segunda alternativa en proceso de desarrollo en el oriente de El Salvador, que estaba basada en una sustitución del sorgo asociado con maíz por vigna en relevo. Se creía que este paquete era apto para áreas más secas que Tejutla, e incluyó la variedad de M3B que se había identificado como promisoria en áreas más secas. La razón para incluir esta segunda alternativa fue la suposición de que el sistema maíz/vigna sería más sensible a condiciones edafoclimáticas que el sistema maíz + sorgo, y así podría proporcionar más información sobre la relación comportamiento-ambiente.

Los paquetes de recomendación que forman estas dos alternativas se resumen en los Cuadros 38 y 39.

Cuadro 38. Paquete tecnológico de maiz asociado con sorgo.

EPOCA	ACTIVIDAD	INSUMO
Inicio de lluvia	Aplicación de herbicida	Gramox.3 1 ha ⁻¹ Gesaprim 2 kg ha ⁻¹
	Siembra maíz (0.9 x 0.4; 2 sem por	H9 o M3B
	Aplicación de insecticida (mezclado con semilla)	Volatón 65 kg ha ⁻¹
10 dias	Primera fertilización (chuzo) (1 y 3)	20-20-0 (200 kg ha ⁻¹
	• •	Volatón
21	. Siembra sorgo (surco alterno) (0,9 x 0,4; 6 sem per golpe)	Criollo leche o sapo
35 días	Segunda fertilización (tirado) (limpia manual)	Sulfato de amonio 258 kg ha ⁻¹
Capa negra (90 dias)	Dobla de maíz limpia (manual) de surco	
160 días (1 semana nov.)	Cosecha del maiz	
220 dias (1 semana enero)	Cosecha del sorgo	

Cuadro 39. Paquete tecnológico de maíz con vigna en relevo.

EPOCA	ACTIVIDAD	INSUMO
Inicio de lluvia	Aplicación de herbicida	Gramox.3 1 ha ⁻¹
	Siembra de maiz	н9
	(0,9 x 0,4 m; 2 sem.por golpe)	
	Aplicación de insecticida	Volatón 65 kg ha ⁻¹
	(mezclado con semilla)	-
10 días	Primera fertilización	20-20-0 (200 kg ha ⁻
	(chuzo)	· · · · · ·
	Control de insectos (opcional)	Volatón
35 días	Segunda fertilización	Sulfato de amnio
	Aplicación de herbicida	258 kg ha ⁻¹
		Gramox.2 1 ha-1
Capa negra	Aplicación de herbicida	$Gramox, 2 l ha^{-1}$
(90 días)	Dobla de maiz	
100 días	Siembra de vigna	VR1
	Fertilización (chuzo)	20-20-0
		(130 kg ha ⁻¹)
21 días + siembra	Limpia (manual)	
vigna		
(Madurez)	Arranque	
90 días + siembra	Secado	
Vigna	Cosecha vigna	
	Cosecha maiz	•

Diseño experimental

En cada uno de los cuatro países donde existe el sistema (Guatemala, El Salvador, Nicaragua y Honduras), se pretendió escoger los sitios al azar dentro del área donde existe una intensidad de siembra mayor de 1 % (Mapa 6). En realidad, las condiciones climáticas (ver abajo) y administrativas del Proyecto motivaron que esta distribución al azar no se lograra en Guatemala y Honduras; los experimentos en estos dos países fueron centrados en las regiones de Jutiapa y Comayagua.

En cada sitio se escogieron dos agricultores que estuvieron dispuestos a cooperar. En el marco de esa cooperación, el Proyecto proporcionó los insumos y mano de obra para el manejo, y
el agricultor proporcionó el terreno y tuvo derecho a la cosecha.
Una lista de los agricultores y su localización se encuentra
en el Anexo III.

El diseño experimental fue de bloques al azar aumentados. Este diseño permitió incluir otros tratamientos, además de los dos paquetes bajo prueba; se pretendió mantenerlo uniforme a través de todos los sitios. El tamaño de la parcela experimental fue de un cuarto de manzana (1 750 m²).

Resultados

Las condiciones de precipitación durante 1982 fueron atípicas en algunas partes de la región. Las fuertes lluvias de finales de mayo (hasta 900 mm en tres días) causaron inundaciones y estados de emergencia en el sur de Honduras y en la zona nordoccidental de Nicaragua. En julio y agosto hubo una canícula muy prolongada en las mismas zonas (hasta 80 días sin lluvia efectiva); con referencia a los datos de Hargreaves, la probabilidad de una sequía de esta duración es menor de 1 en 20.

Las tormentas y fuertes lluvias en la época de siembra afectaron el trabajo en estas áreas. Varias parcelas ya sembradas fueron lavadas, y la circulación dentro de las áreas fue difícil debido al daño ocurrido a carreteras y puentes, etc. La sequía prolongada también causó la pérdida de siembras, tanto para el maiz como para el sorgo, y tanto para las alternativas como para las siembras del agricultor.

Además de los problemas causados por los fenómenos naturales, hubo problemas de comunicación entre el personal del Proyecto; como resultado, los tratamientos no fueron uniformes en todos los países. Hubo también dificultades para conseguir información sobre suelos de los sitios experimentales.

Se cosechó en experimentos realizados en 52 fincas. En Guatemala, Nicaragua y Honduras, el componente sorgo fracasó completamente, lo cual se debió en gran medida a la sequía prolongada en estos países, que empezó en la época de siembra del sorgo. Los datos sobre vigna sólo se obtuvieron en algunos sitios de El Salvador y Guatemala.

Los rendimientos de los ensayos cosechados se encuentran en el Anexo III (B, C, D y E). Hubo una gran variación en los rendimientos según los sistios; utilizando técnicas de regresión múltiple fue posible relacionar una parte de esa variación con factores de lluvia recibida en cada sitio, principalmente la lluvia caída durante la época de floración en el caso del maíz. Estos análisis fueron detallados por Guillén (1984).

Debido a los problemas encontrados en la experimentación realizada en 1982, el cumplimiento de los objetivos de esta fase fue menos que satisfactorio y se decidió repetir la experimentación en 1983. Debido a la mejor calidad de los datos de 1983, sólo se describirá el proceso de modelaje para los datos de ese año.

Experimentos 1983

Diseño Experimental

A la luz de la experiencia realizada en 1982, se hicieron varios cambios en el diseño de la experimentación. Primero se aceptó la dificultad de localizar experimentos al azar dentro de la región, y se decidió localizarlos en forma más concentrada en cada país, por facilidad logística. En segundo término, se utilizaron los paquetes tecnológicos tal como fueron descritos en los Cuadros 38 y 39, aunque también se incluyó un tratamiento de maíz H9 asociado con sorgo leche sin fertilizantes, En tercer lugar, se mantuvo el diseño experimental de bloques aumentados, pero se incluyeron cuatro repeticiones con parcelas de 150 m² en cada tratamiento. Estos cambios fueron diseñados para facilitar los análisis estadísticos de validación de los modelos que se describen al final de este Capítulo.

Resultados agronómicos

Resultados generales

Se sembraron 67 experimentos: 15 en Nicaragua, 20 en El Salvador, 14 en Guatemala y 18 en Honduras (Cuadro 40).

De los experimentos sembrados, se perdió el maíz en 7 (todos en Honduras), debido a sequía después de la siembra. Tampoco se pudo evaluar un sitio en Guatemala por pérdida de replicaciones.

Con respecto al sorgo, hubo mal establecimiento del cultivo en siete sitios de Honduras, tres de Guatemala y 12 de Nicaragua. No fue posible evaluar el sorgo en tres sitios más en Honduras, ni los tres sitios en Nicaragua que sí produjeron sorgo. Así se cosechó un total de 39 experimentos con datos de producción de maíz y sorgo.

Fue sembrada vigna en 54 sitios; se perdió en cuatro y no fue evaluada en tres; quedan 47 sitios con datos de rendimiento.

Cuadro 40. Identificación de los sitios experimentales, 1983. El Salvador.

1 Ahuachapán Guaymango Platanares Domingo Hidalgo 13°45' 2 Chalatenango Nueva Concepción Conacastio Jesús Rodríguez 14°60' 20 Ahuachapán Guaymango Morro Grande Aadán Mejía 13°45' 21 Ahuachapán Guaymango Platanares Antonio Escalante 13°45' 23 Ahuachapán Guaymango Puatanares Antonio González 13°46' 24 Ahuachapán Guaymango Puatanares Antonio Castanada 13°46' 25 Ahuachapán Guaymango Puentecito Antonio Castanada 13°46' 26 Chalatenango Nueva Concepción Conacastio Antonio Aldana 14°00' 27 Chalatenango Nueva Concepción Conacastio Antonio Goutisada 14°00' 28 Chalatenango Nueva Concepción Conacastio Romei Jiménez 14°00' 29 Chalatenango Nueva Concepción Conacastio Atinio Gontáerez 14°00' 31 <th>CODIGO</th> <th>DEPARTAMENTO</th> <th>MUNICIPIO</th> <th>LOCALIDAD</th> <th>AGRICULTOR</th> <th>LATITUD</th> <th>LONGITUD</th>	CODIGO	DEPARTAMENTO	MUNICIPIO	LOCALIDAD	AGRICULTOR	LATITUD	LONGITUD
ChalatenangoNueva ConcepciónConacastioJesús RodríguezAhuachapánGuaymangoMorro GrandeAdan MejíaAhuachapánGuaymangoPlatanaresAntonio EscalanteAhuachapánGuaymangoPlatanaresAntonio EscalanteAhuachapánGuaymangoPlatanaresRicardo GonzálezAhuachapánGuaymangoPuentecitoJulio CastafhedaAhuachapánGuaymangoPuentecitoCarlos HernándezChalatenangoNueva ConcepciónConacastioAntonio AldanaChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónConacastioJacobo RodríguezChalatenangoNueva ConcepciónConacastioJacobo RodríguezChalatenangoNueva ConcepciónConacastioJacobo RodríguezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaEl PedregalConcepción PereiraMorazánJocoroLoma LargaSantos GranadosMorazánJocoroLoma LargaMartín MolinaMorazánJocoroPresitaMartín Molina	1	Ahuachapán	Guaymango	Platanares	Domingo Hidalgo	13°45'	89° 51'
AhuachapánGuaymangoMorro GrandeAdán MejíaAhuachapánGuaymangoPlatanaresAntonio EscalanteAhuachapánGuaymangoPlatanaresAntonio EscalanteAhuachapánGuaymangoPuentecitoJulio CastañedaAhuachapánGuaymangoPuentecitoGarlos HernándezChalatenangoNueva ConcepciónObrajitoAntonio AldanaChalatenangoNueva ConcepciónConacastioAngel RodríguezChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónConacastioJacobo RodríguezChalatenangoNueva ConcepciónConacastioJacobo RodríguezChalatenangoNueva ConcepciónConacastioJacobo RodríguezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaPen. AbajoAtilio GonzálezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroLoma LargaBattin MolinaMorazánJocoroFlamencoDomingo Flores	2	Chalatenango	Nueva Concepción	Conacastio	Jesús Rodríguez	14°00'	89° 19'
AhuachapánGuaymangoMorro GrandeNarciso GómezAhuachapánGuaymangoPlatanaresAntonio EscalanteAhuachapánGuaymangoPlatanaresRicardo GonzálezAhuachapánGuaymangoPuentecitoJulio CastañedaAhuachapánGuaymangoPuentecitoCarlos HernándezChalatenangoNueva ConcepciónConacastioAntonio AldanaChalatenangoNueva ConcepciónConacastioRomel JinénezChalatenangoNueva ConcepciónConacastioRomel JinénezChalatenangoNueva ConcepciónConacastioRomel JinénezChalatenangoNueva ConcepciónConacastioMáximo GutiérrezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaPen. AbajoAtilio GonzálezMorazánJocoroLoma LargaFlorentín BenitezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroPresitaMartín MolinaMorazánJocoroPresitaDomingo Flores	20	Ahuachapán	Guaymango	Morro Grande	Adán Mejía	13°45'	89° 51'
AhuachapánGuaymangoPlatanaresAntonio EscalanteAhuachapánGuaymangoPuentecitoJulio CastanedaAhuachapánGuaymangoPuentecitoJulio CastanedaAhuachapánGuaymangoPuentecitoCarlos HernándezChalatenangoNueva ConcepciónConacastioAntonio AldanaChalatenangoNueva ConcepciónConacastioAngel RodríguezChalatenangoNueva ConcepciónConacastioAngel RodríguezChalatenangoNueva ConcepciónConacastioAngel RodríguezChalatenangoNueva ConcepciónConacastioMáximo GutiérrezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaPen. AbajoAtilio GonzálezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroLoma LargaSantos GranadosMorazánJocoroFlamencoDoningo Flores	21	Ahuachapán	Guaymango	Morro Grande	Narciso Gómez	13°45'	89~ 51'
AhuachapánGuaymangoPlatanaresRicardo GonzálezAhuachapánGuaymangoPuentecitoJulio CastanedaAhuachapánGuaymangoPuentecitoCarlos HernándezChalatenangoNueva ConcepciónConacastioAntonio AldanaChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónConacastioPidencio QuijadaChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónConacastioMáximo GutiérrezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaEl DedregalConcepción PereiraMorazánJocoroLoma LargaAtilio GonzálezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroLoma LargaMartín MolinaMorazánJocoroPresitaMartín MolinaMorazánJocoroPresitaMartín Molina	22	Ahuachapán	Guaymango	Platanares	Antonio Escalante	13°45'	89° 51'
AhuachapánGuaymangoPuentecitoJulio CastañedaAhuachapánGuaymangoPuentecitoCarlos HernándezChalatenangoNueva ConcepciónConacastioAngel RodríguezChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónConacastioJacobo RodríguezChalatenangoNueva ConcepciónObrajitoJacobo RodríguezChalatenangoNueva ConcepciónConacastioJacobo RodríguezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaPen. AbajoAtilio GonzálezMorazánJocoroLoma LargaFlorentín BenítezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroLoma LargaMartín MolinaMorazánJocoroFlamencoDomingo Flores	23	Ahuachapán	Guaymango	Platanares	Ricardo González	13°46'	89° 51'
AhuachapánGuaymangoPuentecitoCarlos HernándezChalatenangoNueva ConcepciónConacastioAntonio AldanaChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónConacastioJacobo RodríguezChalatenangoNueva ConcepciónConacastioMáximo GutiérrezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaPen. AbajoAtilio GonzálezMorazánJocoroLoma LargaFlorentín BenítezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroPresitaMartín MolinaMorazánJocoroPresitaDomingo Flores	24	Ahuachapán	Guaymango	Puentecito	Julio Castafieda	13°46'	89° 51'
Chalatenango Nueva Concepción Obrajito Antonio Aldana Chalatenango Nueva Concepción Conacastio Angel Rodríguez Chalatenango Nueva Concepción Conacastio Ridencio Quijada Chalatenango Nueva Concepción Obrajito Jacobo Rodríguez Chalatenango Nueva Concepción Conacastio Jacobo Rodríguez Chalatenango Nueva Concepción Conacastio Máximo Gutiérrez La Paz Izacatecolmca El Pedregal Concepción Pereira La Paz Izacatecolmca Pen. Abajo Atilio González Morazán Jocoro Loma Larga Santos Granados Morazán Jocoro Presita Martín Molina Morazán Jocoro Flamenco Domingo Flores	25	Ahuachapán	Guaymango	Puentecito	Carlos Hernández	13°46'	89° 51'
ChalatenangoNueva ConcepciónConacastioAngel RodríguezChalatenangoNueva ConcepciónConacastioRomel JiménezChalatenangoNueva ConcepciónObrajitoJacobo RodríguezChalatenangoNueva ConcepciónConacastioMáximo GutiérrezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaPen. AbajoAtilio GonzálezMorazánJocoroLoma LargaFlorentín BenítezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroPresitaMartín MolinaMorazánJocoroFlamencoDomingo Flores	26	Chalatenango	Nueva Concepción	Obrajito	Antonio Aldana	14°07'	89° 19'
Chalatenango Nueva Concepción Conacastio Fidencio Quijada Chalatenango Nueva Concepción Conacastio Romel Jiménez Chalatenango Nueva Concepción Obrajito Jacobo Rodríguez La Paz Izacatecolmca El Pedregal Concepción Pereira La Paz Izacatecolmca Pen. Abajo Atilio González Morazán Jocoro Loma Larga Santos Granados Morazán Jocoro Presita Martín Molina Morazán Jocoro Flamenco Domingo Flores	27	Chalatenango	Nueva Concepción	Conacastio	Angel Rodríguez	14°00'	89° 19'
Chalatenango Nueva Concepción Obrajito Jacobo Rodríguez Chalatenango Nueva Concepción Obrajito Gonacastio Máximo Gutiérrez La Paz Izacatecolmca El Pedregal Concepción Pereira La Paz Izacatecolmca Pen. Abajo Atilio González Morazán Jocoro Loma Larga Santos Granados Morazán Jocoro Loma Larga Santos Granados Morazán Jocoro Presita Martín Molina Morazán Jocoro Flamenco Domingo Flores	28	Chalatenango	Nueva Concepción	Conacastio	Fidencio Quijada	14°00'	89° 19'
ChalatenangoNueva ConcepciónConacastioJacobo RodríguezChalatenangoNueva ConcepciónConacastioMáximo GutiérrezLa PazIzacatecolmcaEl PedregalConcepción PereiraMorazánJocoroLoma LargaAtilio GonzálezMorazánJocoroLoma LargaFlorentín BenítezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroPresitaMartín MolinaMorazánJocoroFlamencoDomingo Flores	29	Chalatenango	Nueva Concepción	Conacastio	Romel Jiménez	14°00'	89 19
ChalatenangoNueva ConcepciónConacastioMáximo GutiérrezLa PazIzacatecolmcaEl PedregalConcepción PereiraLa PazIzacatecolmcaPen. AbajoAtilio GonzálezMorazánJocoroLoma LargaFlorentín BenítezMorazánJocoroLoma LargaSantos GranadosMorazánJocoroPresitaMartín MolinaMorazánJocoroFlamencoDomingo Flores	30	Chalatenango	Nueva Concepción	Obrajito	Jacobo Rodríguez	14° 07'	89° 19'
La Paz Izacatecolmca El Pedregal Concepción Pereira La Paz Izacatecolmca Pen. Abajo Atilio González Morazán Jocoro Loma Larga Florentín Benítez Morazán Jocoro Presita Martín Molina Morazán Jocoro Flamenco Domingo Flores	31	Chalatenango	Nueva Concepción	Conacastio	Måximo Gutiérrez	14°00'	89° 19
La Paz Izacatecolmca Pen. Abajo Atilio González Morazán Jocoro Loma Larga Florentín Benítez Morazán Jocoro Presita Martín Molina Morazán Jocoro Flamenco Domingo Flores	32	La Paz	Izacatecolmca	El Pedregal	Concepción Pereira	13° 29'	89° 00
Morazán Jocoro Loma Larga Florentín Benítez Morazán Jocoro Loma Larga Santos Granados Morazán Jocoro Presita Martín Molina Morazán Jocoro Flamenco Domingo Flores	33	La Paz	Izacatecolmca	Pen. Abajo	Atilio González	13° 29'	88 29
Morazán Jocoro Loma Larga Santos Granados Morazán Jocoro Flamenco Domingo Flores	34	Morazán	Jocoro	Loma Larga	Florentín Benítez	13° 36'	83 03
Morazán Jocoro Presita Martín Molina Morazán Jocoro Flamenco Domingo Flores	35	Morazán	Jocoro	Loma Larga	Santos Granados	13° 36'	88 03
Morazán Jocoro Flamenco Domingo Flores	36	Morazán	Jocoro	Presita	Martín Molina	13° 37'	88 01
	37	Morazán	Jocoro	Flamenco	Domingo Flores	13° 37'	88 01

Cuadro 41. Identificación de los sitios experimentales, 1983. Guatemala.

CODIGO	DEPARTAMENTO	MUNICIPIO	LOCALIDAD	AGRICULTOR	LATITUD	LONGITUD
-	Jutiapa	Progreso	Las Pozas	Carmen González	14°21'	89°48'
4	Jutiapa	Progreso	San Antonio	Isabel Mejía	14.19	89°52'
9	Jutiapa	Quezada	San Fernando	Hipólito Esquivel	14°15'	,00.06
6	Jutiapa	Quezada	Río de Paz	Trinidad Alvarado	14°15'	90.01
11	Santa Rosa	Oratorio	Las Cabezas	Tomás Fallas	14°12'	180,06
12	Santa Rosa	Oratorio	Montetigre	Carlos Palma	14°16'	90,131
14	Jutiapa	Asunción Mita	La Arenera	Balbino Rodríguez	14°22'	89°44'
15	Jutiapa	Asunción Mita	Guevara	Apolonio Lecinos	14°21'	89°46'
16	Jutiapa	Progreso	Las Impresiones	Segundo Florián	14°21'	89° 481
17	Santa Rosa	Oratorio	Tempisquito	Fermin García	14°08'	180 06
18	Santa Rosa	Oratorio	Rocalinda	Raúl Hernández	14° 09'	,80°06
19	Santa Rosa	Oratorio	La Ceiba	Macario Calandra	14°09'	,60 ,06
21	Jutiapa	Quezada	Argelia	Jesús Arriola	14° 17'	89° 591

Cuadro 42. Identificación de los sitios experimentales, 1983. Honduras.

CODIGO	DEPARTAMENTO	MUNICIPIO	LOCALIDAD	AGRICULTOR	LATITUD	LONGITUD
7	Comayagua	Сотауадиа	Palo Pintado	Jesús Castro	14° 33°	87° 47'
13	Comayagua	El Rosario	Carboneras	Jesús Rivera	14° 33'	87°47'
14	Comayagua	Comayagua	Agua Salada	Manuel Yanez	14° 32°	87° 42'
15	Comayagua	Comayagua	Palo Pintado	José Zelaya	14° 30'	87° 40
16	Comayagua	Comayagua	El Porvenir	Joaquín Buezo	14° 28'	87° 42'
17	Comayagua	Comayagua	El Porvenir	Mauricio Galo	14° 28'	87°41'
18	Comayagua	Comayagua	Tenguaje	Andrés Moreno	14° 26'	87°38
19	Comayagua	Comayagua	Tenguaje	Luis Doblado	14° 26°	87° 38
21	Comayagua	Villa San Antonio Palillos	Palillos	Doroteo Alvarado	14° 20'	87°35'
22	Comayagua	Villa San Antonio El Varillal	El Varillal	Grupo el Varillal	14° 16'	87° 33
23	Comayagua	Villa San Antonio El Varillal	El Varillal	Saúl Almendarez	14° 16'	87° 33
24	Comayagua	Lamaní	Los Pintores	Teófilo Moreno	14° 12"	87°36
25	Comayagua	San Sebastían	San Sebastían	Miguel Guillén	14° 15°	87° 381
27	La Paz	La Paz	Miravalle	Arturo Martinez	14° 22'	87° 38¹
28	La Paz	La Paz	Miravalle	Víctor Mejía	14° 21'	87° 38
29	Comayagua	Lejamaní	Palo Verde	Humberto Aplicano	14° 21'	87° 42'
30	Comayagua	Comayagua	El Taladro	José López	14° 27°	87° 43
32	Comayagua	Villa San Antonio Pifluelas	Pinuelas	José Rivas	14° 21'	87° 34'

Cuadro 43. Identificación de los sitios experimentales, 1983. Nicaragua.

CODIGO	DEPARTAMENTO	MUNICIPIO	LOCALIDAD	AGRICULTOR	LATITUD	LONGITUD
11	Madriz	Somoto	Cacaulí	Próspero Jiménez	13°36'	86°35'
13	Madriz	Somoto	Cacaulí	Alfredo Mendoza	13° 30'	86°35'
17	Estelí	Estelí	Estelí	Centro Experimental 13°07'	13° 07'	86°22'
18	Estelí	Santa Cruz	Sabana Larga	Cooperativa A. Chavarría	13°01'	86°20'
19	Estelí	Santa Cruz	Sabana Larga	Bartolo Rocho	13°01'	86°20"
20	Madriz	Somoto	Cacaulí	Luis Alfaro	13° 30'	86°35'
21	Madriz	Somoto	Cacaulí	Marcelino Dawrk	13° 36'	86°35'
22	Madriz	Somoto	Cacaulí	Carlos Espinoza	13° 30'	86°35'
23	Madriz	Somoto	Cacaulí	Isac Dávila	13° 30'	86° 24'
24	Madriz	Palacagüina	Musuli	Cooperativa El Rillito	13°26'	86°24'
25	Madriz	Palacagüina	Musuli	Alfonso Córdova	13° 26'	86°24'
26	Madriz	Palacagüina	Palacagüina	Catolino García	13° 27'	86° 24'
27	Madriz	Palacagüina	Musuli	Hipólito Martínez	13° 27'	86°24'
28	Madriz	Palacagüina	Musuli	Cooperativa M. Martínez	13° 26'	86° 24'
29	Madriz	Somoto	Cacaulí	Antonio Cornejo	13° 30'	86°35°

Un resumen de los datos de rendimiento para los cuatro países se presenta en el Cuadro 44.

Maiz

Los rendimientos de maíz, en los sitios que produjeron, varian de 500 kg ha-1 a 5 400 kg ha-1. El análisis de varianza por sitio mostró que hubo pocas diferencias significativas en rendimientos de maíz entre tratamientos. De los 54 sitios con datos, hubo un efecto positivo del fertilizante en 21 (uno en Honduras, cuatro en Guatemala, seis en El Salvador y diéz en Nicaragua), significante a nivel de 5 % (Cuadro 44). El análisis combinado por país mostró que el efecto del fertilizante fue significativo (a nivel de 5 %) en los cuatro países.

La comparación de los tratamientos 1 y 2 (maíz híbrido H9 sembrado en asocio con maíz y solo) muestra que no hubo ningún efecto de la competencia del sorgo sobre el maíz. Es interesante comparar este experimento, donde el sorgo se sembró 20-25 días después del maíz, con siembras simultáneas, donde sí hay una reducción del rendimiento de maíz en asocio (Smith y Corrales, 1984).

La comparación de los tratamientos 1 y 3 indica que la variedad de maíz M3B rindió un poco menos que el híbrido H9, una reducción significativa (5 %) en El Salvador y Guatemala.

Sorgo

La situación con el sorgo es interesante, principalmente debido a la marcada diferencia en su establecimiento en los países. En El Salvador, donde se originó la tecnología bajo prueba, la práctica tradicional de los agricultores es sembrar el sorgo al aporco, y en los dos años de experimentación no hubo problemas de establecimiento de sorgo en ese país. En Honduras y Nicaragua, la práctica tradicional es sembrar los dos cultivos simultáneamente, y el fracaso de sorgo sembrado al aporco en los experimentos en estos dos países fue casi uniforme.

El análisis de la distribución de la lluvia en los dos países (Cuadro 28) sugiere la hipótesis de que la causa de mal establecimiento es la escasez de humedad del suelo en la época de siembra, condición a la cual el sorgo es muy susceptible. Desafortunadamente, no fue posible tomar suficientes datos de suelo de los sitios en Nicaragua para verificar esta hipótesis con mayor rigidez.

En Guatemala y El Salvador, la variedad de sorgo criollo sapo rindió significativamente más que la variedad criollo leche. Sin embargo, por la naturaleza de los tratamientos, es imposible decir si este aumento se debió a la variedad del sorgo en sí, o al efecto de la variedad de maíz asociado (M3B vs H9).

El efecto del fertilizante, aplicado al maiz, fue minimo con respecto al sorgo, mostrando que hay poco efecto residual

Cuadro 44. Rendimientos de maíz, sorgo y vigna (kg ha $^{-1}$) en los experimentos de transferencia, El Salvador, 1983.

	Tratami	Tratamiento l	Tratamiento 2	ento 2	Tratamiento	ento 3	Tratamiento	nto 4
Sitio	Maiz H9 Con fe	Maíz Sorgo H9 leche Con fertilizante	Maiz H9 Con fer	Maiz Vigna H9 VR1 Con fertilizante	Maiz M3B Con fert	Maíz Sorgo M3B sapo Con fertilizante	Maiz H9 Sin fert	aiz Sorgo H9 leche Sin fertilizante
1	3 843	1 820	2 999	201	2 805	1 815	1 611*	2 033
2	4 047	1 489	4 832	1 100	3 841	1 460	2 510*	1 099
20	3 608	2 000	3 262	372	2 752*	2 260	3 390	1 795
21	2 148	809	3 531	485	3 277	1 275	2 846	864
22	4 052	1 977	3 427	773	3 036*	2 788*	2 131*	2 081
23	3 431	1 900	4 922	535	3 567	2 784*	2 044	2 293
24	3 900	978	3 517	450	4 000	1 443	2 193*	1 398
25	3 406	1 740	2 196	216	3 160	2 373	3 099	1 540
26	3 377	1 988	3 254	861	2 808	1 888	2 949	2 140
27	2 944	1 332	3 149	1 156	3 432	1 273	2 792	1 216
28	2 914	1 197	3 254	191	2 857	1 200	2 560	1 415
29	2 405	751	2 092	586	2 000	920	1 562	803
30	3 912	1 030	. 3 217	651	3 296	1 176	3 915	1 096
31	4 140	1 789	3 645	755	3 807	2 092	4 338	1 500
32	1 844	533	1 921	752	2 072	549	1 327*	661
33	2 976	938	2 620	841	2 212*	954	1 391*	1 281
34	758	1 308	576	528	747	1 678	699	1 098
35	1 331	1 513	1 423	508	743*	1 886	1 059	1 366
36	925	945	1 420	0	430	1 495	1 440	959
37	1 080	253	947	0	089	265	157	191
<u>x</u> (1)	2 872	1 313	2 878	641	2 574*	1 556*	2 222*	1 341

(1) Promedio general excluyendo sitios con cero rendimiento.

 * Diferencia al Tratamiento 1 significativa a nivel de p < 0.05.

Rendimientos de maíz, sorgo y vigna (kg ha $^{-1}$) en los experimentos de transferencia, Guatemala, 1983. Cuadro 45.

Sitio 1 6	Maíz H9		: ; } }		1			
t. 4. 0	6Н	Sorgo	Maíz	Vigna	Maíz	Sorgo	Maíz	Sorgo
L 4 0		leche	6Н	VR1	МЗВ	Sapo	6Н	leche
H 4 10	Con fer	Con fertilizante	Con fer	Con fertilizante	Con fer	Con fertilizante	Sin fer	Sin fertilizante
4 0	2 714	1 283	2 500	1 140	2 316	2 190*	1 679*	1 663
9	1 659	1 387	1 773	866	1 991	2 103	1 478	1 664
	5 417	1 359	4 787	1 100	4 180	1 624	3 748*	943
6	1 582	1 647	1 318	404	1 295	1 835	1 430	1 495
11	3 369	497	3 667	822	2 270*	625	2 664*	394
12	3 110	0	3 100	864	2 661	0	3 179	0
14	2 159	1.357	2 786	1 189	1 680	1 824	2 352	1 330
15	2 346	0	1 377	446	1 970	0	1 993	0
16	3 183	1 635	3 101	1 530	3 168	1 861	2 976	1 604
17	4 937	1 403	3 840	1 126	5 684	1 263	5 407	1 108
18	2 131	0	2 035	306	1 700	0	1 439	0
19	5 513	926	4 360	1771	5 156	804	4 046	913
20	ne	865	ne	619	ne	723	ne	870
21	3 712	631	2 618	1 343	2 029	1 036	1 744*	710
<u>x</u> (1)	3 210	1 228	2 907*	970	2 794*	2 794* 1 511*	2 632*	1 179

(1) Promedio general excluyendo sitios con cero rendimiento.

ne = datos no evaluados

 $^{^{\}star}$ Diferencia al Tratamiento 1 significativa a nivel de p <0,05.

Cuadro 46. Rendimientos de maíz, sorgo y vigna (kg ha⁻¹) en los experimentos de transferencia, Honduras, 1983.

	Tratamiento 1	iento 1	Tratamiento	iento 2	Tratamiento	iento 3	Tratamiento	iento 4
Sitio	Maiz H9 Con fert	z Sorgo leche fertilizante	Maíz H9 Con fer	Maíz Vigna H9 VR1 Con fertilizante	Maiz M3B Con fer	Maíz Sorgo M3B sapo Con fertilizante	Maíz H9 Sin fer	Maíz Sorgo H9 leche Sin fertilizante
7	3 469	289	3 292	744	2 659	1 149	2 542	234
13	3 059	1 351	2 733	0	2 499	1 762	2 204	1 174
14	1 226	1 461	1 037	534	066	1 381	1 826	1 214
15	2 802	ne	2 087	ne	1 698	пе	1 793	пе
16	1 825	2 338	1 098*	0 0	1 492	2 393	1 493	1 516
17	0	0	0	n e	0	0	0	0
18	0	0	0	ne	0	0	0	0
19	0	0	0	ne	0	0	0	0
21	749	0	1 041	ne	488	0	503	0
22	2 868	2 318	3 052	213	1 928	1 584*	2 504	1 650*
23	5 303	086	5 812	321	4 622	1 466	2 966*	842
24	0	0	0	ne	0	0	0	0
25	0	0	0	ne	0	0	0	0
27	0	0	0	e e	0	0	0	0
28	0	e e	0	ne	0	ne	0	ne
29	1 754	ne	2 883	о С	2 404	5 0	1 682	ne
30	1 608	978	1 322	ne	916	2 060*	1 035	1 150
32	937	540	1 230	ne e	1 448	622	962	493
(1)	2 337	1 374	2 326	453	1 928	1 654	1 761*	1 098

(1)Promedio general excluyendo sitios con cero rendimiento. ne= datos no evaluados * Diferencia al tratamiento l significativa a nivel de p>0,05.

¹¹⁷

Cuadro 47. Rendimientos de maíz, sorgo y vigna (kg ha) en los experimentos de transferencia, Nicaragua, 1983.

	Tratamiento	iento 1	Tratamiento	iento 2	Tratamiento	into 3	Tratamiento	iento 4
Sitio	Maiz H9 Con fer	Maíz Sorgo H9 leche on fertilizante	Maiz H9 Con fer	Maíz Vigna H9 VRI Con fertilizante	Maíz Sorgo M3B sapo Con fertilizante	Sorgo sapo lizante	Maíz H9 Sin fert	Maíz Sorgo H9 leche Sin fertilizante
11	2 511	0	3 384	870	2 462	0	1 723	0
13	2 456	ne	3 321*	808	2 402	n e	1 606*	ne
17	3 852	0	2 958	1 020	3 403	0	2 551	0
18	4 997	0	5 003	ne	4 558	0	3 433*	0
19	4 528	0	4 842	пе	4 290	0	2 959*	0
20	3 062	0	2 167	762	2 545	0	1 619*	0
21	3 874	0	3 839	853	3 411	0	2 220	0
22	3 466	0	2 877	1 151	3 125	0	2 669	0
23	3 869	0	2 221*	825	2 924	0	1 491*	0
24	1 633	0	2 161	ne	2 209	0	2 522*	0
25	3 837	e e	3 692	877	2 960	0	2 324*	ne
26	1 822	0	1 623	852	1 899	0	1 664	0
27	4 433	0	3 758*	1 278	4 139	0	2 150*	0
28	3 877	0	3 543	987	4 284	0	1 609*	0
29	3 567	ne	2 553*	1 135	2 964	ne	1 854*	ne
$\frac{1}{x}$ (1)	3 452	ı	3 196	068	3 171	1	2 146*	1

(1) Promedio general excluyendo sitios con cero rendimiento

Diferencia al tratamiento l significativa al nivel de p > 0,05

ne * datos no evaluados.

de esta práctica.

Producción combinada de maíz y sorgo

Los precios de venta en El Salvador para el maíz y el sorgo durante 1983 fueron aproximadamente de US\$ 0,14 kg $^{-1}$ y US\$ 0,11 kg $^{-1}$ respectivamente. Utilizando el precio relativo de los dos productos, se pueden combinar los rendimientos de maíz y sorgo para cada tratamiento; se obtiene una proporción total expresada en kg ha $^{-1}$ equivalentes de maíz (rendimiento de maíz + 0,786 x rendimiento de sorgo).

La producción de los tratamientos 1, 2 y 3 (expresados en esta forma para los sitios de Guatemala y El Salvador) se presentan en el Cuadro 48. La producción lograda con los tratamientos 1 y 3 fue casi idéntica, a lo cual mostró que el rendimiento menor del maíz M3B se compensó por el aumento en el rendimiento del sorgo asociado.

El efecto del fertilizante sobre la producción total de maiz y sorgo fue significativo (5 %): 4 063 y 3 441 kg ha $^{-1}$ (de maiz equivalente), con y sin fertilizante respectivamente.

Ingreso neto

El costo total del paquete recomendado H9 + criollo leche, de acuerdo con cifras del área donde se desarrolló en El Salvador (Tejutla), es U\$A 458 ha-1 (U\$A 228 de mano de obra, U\$A 174 para materiales, y U\$A 56 costo fijo). Este costo es equivalente a 3 270 kg de maiz, precio de venta. Suponiendo que el costo de la tecnología no varía entre los sitios, se puede observar en el Cuadro 48 que en 10 de los 30 sitios el ingreso neto fue negativo para esta alternativa.

Comparación con la práctica del agricultor

Aunque no constituyó uno de los objetivos principales de la experimentación, se pueden hacer algunas observaciones en cuanto a la producción de las tecnologías probadas, comparadas con la práctica del agricultor.

En El Salvador, donde la práctica del agricultor fue incluida dentro del diseño del experimento, los rendimientos de maíz, sorgo y la producción total del agricultor fueron poco diferentes a los tratamientos 1 y 3 (2 608, 1 553 y 3 769 kg ha-1 para la práctica del agricultor, comparado con 2 872, 1 313 y 3 885 kg ha-1 para H9 + leche, y 2 574, 1 556 y 3 816 kg ha-1 para M3B + sapo).

Esta situación refleja el alto nivel de tecnología actualmente utilizada por los agricultores en El Salvador: de los 20 agricultores, 14 cultivaron maiz híbrido (H5) y todos fertilizaron.

Cuadro 48. Producción de maiz + sorgo, expresada en $kg ha^{-1}$ maiz equivalente.

Sitio	TRATAMIENTO 1 (H9 + Leche con fert.)	TRATAMIENTO 2 (MB + Sapo con fert.)	TRATAMIENTO 3 (H9 + Leche sin fert.
GUATEMALA 1	3 722	4 073	2 986
4	2 749	3 643	2 785
6	6 484	5 456	4 489
9	2 876	2 737	4 489
11	3 662	2 638*	2 973
14	3 226	3 133	3 397
16	4 468	4 631	4 236
17	6 039	6 677	6 277
19	6 241	5 788	4 763
21	4 208	2 843	2 301*
EL SALVADOR 1	5 273	4 231	3 208*
2	5 217	4 988	3 374
20	5 179	4 528	4 800
21	2 783	4 279	3 524
22	5 605	5 226	3 767*
23	4 924	5 754	3 845
24	4 669	5 134	3 291
25	4 776	5 024	4 309
26	4 939	4 292*	4 631
27	3 990	4 432	3 747
28	3 855	3 798	3 672
29	2 996	2 723	2 193
30	•	4 220	4 776
31	5 546	5 451	5 516
32	2 263	2 504	1 846
33	3 714	2 962*	2 398
34		2 066	1 531
35	2 520	2 209	2 132
36		1 605	1 955
37	1 279	888	947
₹	4 063	3 947	3 441*

¹ Producción - Rendimiento maiz + (Rendimiento de sorgo X 0,786)

Diferencias al Tratamiento 1 significativa a nivel de P > 0,05

En Guatemala, datos tomados en forma de muestras de la parcela del agricultor (no replicados), mostraron una producción total promedio de 4 427 kg ha-1, comparado con 4 367 y 4 156 kg ha-1 de los tratamientos 1 y 3 respectivamente. Aunque no se registró el manejo dado por el agricultor a su parcela, algunos registros económicos llevados por ICTA en la región indican que la mayoría de los agricultores de la región que siembran maíz y sorgo actualmente están utilizando fertilizantes, aunque en su mayoría con variedades criollas de maíz.

En el caso de Guatemala, el coeficiente de variación de la producción total del agricultor es menor (0,23) que en el caso de los tratamientos 1 y 2 (0,31 y 0,33 respectivamente); pero no fue el mismo caso en El Salvador (0,36 y 0,35 respectivamente). De ese modo, existe evidencia de que las alternativas son menos adaptables a través de los sitios que de la práctica (variable) del agricultor, pero esta no es una conclusión definitiva.

Construcción de modelos

Para investigar la relación del rendimiento con el sitio se utilizaron técnicas de regresión múltiple. Específicamente, se utilizó el programa de SAS conocido como R Square para identificar los modelos que mejor pudieron explicar la variación en rendimiento (el programa R Square compara regresiones múltiples de todas las combinaciones posibles de variables independientes, con base en el valor de r^2 ; tiene la ventaja de que se pueden comparar diferentes modelos y escoger aquellos que dependan de factores más fácilmente cuantificables).

Resultó evidente las características del suelo, principalmente profundidad, densidad aparente y textura, fueron factores muy importantes del sitio. Como no fueron disponibles datos exactos para estos factores para Honduras y Nicaragua, se limitó el análisis a los experimentos de Guatemala y El Salvador.

Los resultados de los análisis de R Square se presentan en los Cuadros 49 a 51. El Cuadro 49 muestra los modelos para los rendimientos de maíz (H9 y M3B), respuesta a fertilización El Cuadro 50 muestra los modelos para sorgo (leche y variedad. y sapo) y vigna. El Cuadro 51 muestra los modelos y la producción total de tratamientos 1 y 3 (expresada como rendimiento equivalente de maíz). Se incluyeron en los análisis valores de precipitación y de balance hídrico por década y combinaciones de ellos y factores de suelo (el listado de variables más importantes por sitio está detallado en el Anexo V y el cálculo de balance hídrico en el Anexo VI). En los Cuadros 49 a 51 sólo se presentan los dos mejores modelos con 1 a 5 variables independientes. incluido el mejor modelo sin ninguna variable de balance hidrico.

Es evidente la proporción alta de la variabilidad que se puede explicar por los factores del sitio. Valores de r^2 de

los modelos alcanzaron 0,75 en el caso de la producción combinada de maíz y sorgo del tratamiento 1. Factores importantes en los modelos fueron la densidad aparente y la profundidad del suelo, el agua disponible en la época de floración para maíz y el agua disponible durante todo el ciclo vegetativo para el sorgo. El agua en la época de floración fue importante también en el caso de la vigna, pero la relación en este caso fue negativa; las condiciones de mayor humedad son relacionadas con rendimientos más bajos.

La inclusión de variables de balance hídrico mejoró los modelos de maíz basados en pocas variables, pero con 4 ó 5 variables en el mejoramiento sobre modelos basados en variables de precipitación fue menor. Esto implica que el balance hídrico en la época de floración es el factor clave para el éxito de este cultivo, pero la inclusión de variables que determinan el balance hídrico (profundidad, lluvia durante el mes antes de la floración) da resultados casi tan buenos como en modelos de 4 ó 5 variables. Esta conclusión tiene importancia para estrategias de extrapolación, ya que puede negar la necesidad de computar el balance hídrico para definir el área de extrapolación.

Validación de los modelos

Aunque el ajuste de un modelo de regresión tal como el descrito por su valor de r^2 es una indicación de la relación entre variables de un juego de datos, no es una medida exacta de la precisión con que pueda predecir el modelo. Una técnica que se ha desarrollado específicamene para evaluar la capacidad de predicción de un modelo estimado es el análisis descrito por Cady ℓt $a\ell$, 1982.

Básicamente, ese procedimiento consiste en la comparación de la capacidad de predicción de un modelo basado en datos de otros sitios experimentales para un sitio específico, con la capacidad de predicción de un modelo basado en los datos del mismo sitio. En un caso sencillo de un experimento con 1 tratamiento con x replicaciones en n sitios, esta comparación se puede hacer de la manera siguiente:

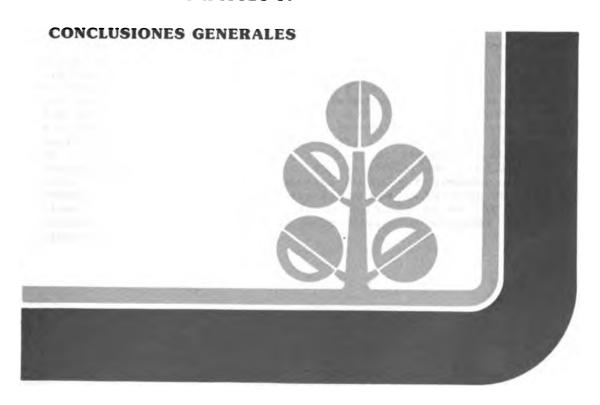
- Calcular el rendimiento predicho y para el sitio n, usando el modelo desarrollado en los otros sitios (n-1).
- Calcular la suma de cuadrados de transferencia, utilizando las diferencias entre rendimiento medido en cada replicación con el rendimiento predicho.

P. ej. SST =
$$(y_1 - y^1)^2 + (y_2 - y^1)^2 \dots (y_x - y^1)^2$$

3. Calcular la suma de cuadrados del sitio, utilizando las diferencias entre rendimiento medido y el rendimiento promedio del sitio:

P.ej. SST =
$$(y_1 - y)^2 + (y_2 - \bar{y})^2 \dots (y_x - \bar{y})^2$$

- 4. Repetir los cálculos para los demás (n 1) sitios.
- Calcular el valor estadístico P, que es el total de las sumas de cuadrados de transferencia divididos por el total de las sumas de cuadrados del sitio.


P.ej.
$$\frac{(SST_1 + SST_2 \dots SST_n)}{(SSS_1 + SSS_2 \dots SSS_n)}$$

(En el caso de un experimento con varios tratamientos o niveles, lo que da un modelo más completo para cada sitio, la suma de cuadrados del sitio utilizado equivale a la suma de cuadrados para el error).

La teoría de la distribución de P fue descrita por Wood y Cady (1981). El valor de P es una medida de la probabilidad de que la diferencia entre el valor predicho por el modelo de transferencia y el valor medido en el sitio, se debe a variabilidad aleatoria, o sea la probabilidad de que el valor predicho es igual al valor medido.

Utilizando esta técnica, se calcularon los valores de P para los modelos identificados en la sección anterior. Estos modelos, el valor de P calculado y la probabilidad de que el modelo tenga capacidad de predicción de igual precisión o la experimentación por sitio, se resumen en el Cuadro 52. Los valores de p de los diferentes modelos confirman que un aumento del coeficiente de regresión no siempre implica un mejoramiento de la capacidad de predicción del modelo. Los modelos de maíz, por ejemplo, que están formados de cuatro variables, tuvieron una capacidad de predicción mayor (P = 2,17) que en los modelos basados en cinco factores (P = 2,28), aunque estos últimos mostraron valores de r^2 mayores.

CAPITULO IV

Información edafoclimática en Centroamérica

Disponibilidad

La disponibilidad actual de información edáfica y climática en Centroamérica es limitada. No existe ninguna institución que tenga como responsabilidad mantener un banco de información. La calidad y la disponibilidad de la información a nivel regional refleja descoordinación entre instituciones que tienen objetivos en común y falta de conocimiento del uso potencial de la información.

Un caso específico que merece destacarse es la falta de un manejo adecuado de la información de precipitación. Un conocimiento de las probabilidades de ciertos eventos (seguias o excesos), o de las cantidades de precipitación en determinadas épocas, es imprescindible para la programación agrícola y para la determinación de representatividad de experimentos llevados bajo condiciones observadas, especialmente en el caso de cultivos anuales. Para hacer análisis probabilísticos de precipitación, se necesita disponer de datos de lluvia. Sin embargo, la recopilación de datos de lluvia en algunos de los países de la región sique siendo una actitud poco coordinada entre diferentes instituciones, poco actualizada y poco tecnificada. En años recientes se han hecho esfuerzos aislados para computarizar datos de precipitación diaria en varios de los países (Costa Rica, El Salvador y Nicaragua), aunque todavía no existe ningún banco de datos a nivel regional.

Con respecto a suelos, la información es poco compatible entre los países, debido a los diferentes criterios de las clasificaciones utilizadas. Para regiones de algunos países, como el sur y parte central de Honduras y para las planicies de la vertiente pacífica de Nicaragua, existen mapas de suelos ordenados según la clasificación de Taxonomía de Suelos (USDA, 1975) a nivel de familia. En las otras áreas de estos países, y en Costa Rica y El Salvador, existen mapas de suelos o asociaciones de suelos a nivel de sub-grupo, hechos por reconocimiento o por compilaciones de mapas previos. En Guatemala, la única información extensiva es el reconocimiento hecho por Simmons en 1959, basado en el sistema usado en esa época por la Oficina de Clasificación de Suelos del Ministerio de Agricultura de los Estados Unidos de América, difícil de relacionar con sistemas más recientes.

Manejo

Debido a la situación prevaleciente, el Proyecto empezó a organizar archivos de datos geográficos basados en codificación a nivel de municipio. Con el desarrollo del sistema CRIES (Comprehensive Resource Inventory and Evaluation System) para la región, iniciado por otros proyectos de la región (PIADIC) y la llegada de mejores equipos de computación al CATIE, el CRIES suplantó en gran medida los archivos ya organizados por municipio. Utilizando el CRIES, fue posible hacer superposiciones de mapas de cultivos (con base en datos de censos agropecuarios) y de factores edafoclimáticos, y caracterizar así los sistemas de cultivos en cuanto a las condiciones ambientales en que se siembran; sin embargo, existen otros sistemas de información geográfica que no fueron evaluados por el Proyecto.

Representatividad de sitios y áreas específicas de desarrollo tecnológico

Caracterización de sistemas de cultivo

La caracterización de cultivos permitió valorar la representatividad de un sitio experimental o un área específica donde se desarrolla tecnología para algún sistema de cultivo, comparada con la extensión total del sistema en la región. De esta manera es posible obtener una idea del área potencial de extrapolación.

El concepto de representatividad se puede ilustrar con un ejemplo. El proyecto de sistemas de cultivo para pequeños agricultores desarrolló una tecnología para el sistema maíz asociado con sorgo, en el municipio de Tejutla, Chalatenango (El Salvador), como área objetivo (CATIE, 1979). El área de este sistema de cultivo dentro del municipio, para la recomendación de la tecnología, era aproximadamente de 2 000 ha. La extensión de este sistema dentro de la región es aproximadamente de 223 000 ha, lo que implica que la tecnología para maíz y sorgo desarrollada en Tejutla puede tener como área de aplicabilidad potencial una extensión 100 veces mayor al área originalmente definida.

La caracterización del municipio de Tejutla describe las condiciones predominantes de esa área como de paisaje fisiográfico montañoso y con suelos litosoles, con régimen de lluvia de 1 700 a 1 850 mm anuales, distribuidos durante 6 a 7 meses, y con temperaturas promedio anuales de 24 a $26^{\circ}\mathrm{C}$. Una evaluación de las condiciones ambientales del sistema a nivel regional (Cuadro 13) muestra que el municipio de Tejutla es bastante representativo de una gran parte de la región donde se siembra maiz y sorgo asociado. Por lo tanto, existen buenas perspectivas para llevar la tecnología desarrollada en Tejutla a otras áreas donde también se siembra maiz con sorgo.

La caracterización de Tejutla también describe el manejo dado al sistema. Aproximadamente 60 % de los agricultores usaban

labranza minima, sembrando con chuzo; el resto de los agricultores siembran en terrenos arados con energía animal. La siembra
se realiza entre mayo y junio, con un intervalo entre la siembra
del maiz y el sorgo intercalado de 25 a 30 días. El uso de fertilizantes era bastante generalizado, y el 43 % usaban control
quimico de malezas.

Una comparación del manejo en Tejutla con el practicado en otras áreas como Honduras, indica que el manejo tradicional dado al sistema es distinto al caso de Tejutla. Esta diferencia puede haber resultado de las determinaciones edafoclimáticas o de las determinantes socioeconómicas. Las diferencias en fechas de siembra relativa, por ejemplo (en Honduras y Nicaragua la práctica más común es sembrar el maíz y el sorgo simultáneamente), puede deberse a la reducida precipitación en julio en Honduras y Nicaragua comparado con El Salvador (Cuadro 28). Por otro lado, es probable que las diferencias en uso de fertilizantes y herbicidas entre el municipio de Tejutla (El Salvador) y Honduras se deba a las distintas circunstancias socioeconómicas (crédito, disponibilidad, conocimiento) de los agricultores en las diferentes áreas.

Las diferencias de manejo de un sistema tradicional entre áreas tiene implicaciones para el proceso de extrapolación. Donde haya diferencias por razones edafoclimáticas probablemente será necesario variar los factores de manejo de cualquier paquete tecnológico que se pretenda transferir. Donde haya diferencias en manejo por razones socioeconómicas, la producción potencial del paquete en sí no será afectada tanto como las posibilidades para su adopción. Sería necesario, en el caso de introducir la tecnología de Tejutla (El Salvador) a Honduras por ejemplo, investigar más a fondo las razones para el reducido uso de insumos agrícolas en este último país.

Las características de los principales sistemas de cultivo tradicionales en Centroamérica proveen una base para el mejoramiento de estos sistemas en el futuro. Conociendo las diferentes condiciones en que operan los agricultores, se facilitará saber cómo son de representativos los sitios experimentales y, en consencuencia, localizar experimentos de tal manera que se maximice esa representatividad a nivel regional. Este tipo de investigación, a nivel regional, puede mejorar el enlace entre la investigación por rubro o disciplina (muchas veces realizada en centros experimentales) y la investigación en sistemas.

La tecnología

Los ajustes que pueden ser necesarios a la tecnología para transferirla entre sitios, también tienen implicaciones para las recomendaciones tecnológicas. Se acepta, con frecuencia cada vez mayor, que el producto de las investigaciones en sistemas en áreas específicas es un paquete integral que define todos los aspectos de manejo de un sistema de producción. Sin embargo,

mientras más refinada o definida sea alguna tecnología, más específico será su sitio de origen (los sitios experimentales).

Para aumentar el área de adaptación de una tecnología y facilitar su transferencia entre sitios, es necesario investigar, tanto como sea posible, las interacciones entre los diferentes componentes del paquete y documentar cuáles de esos aspectos pueden variarse sin perder la bondad tecnológica. En el caso mencionado anteriormente, se puede suponer que la ventaja de la alternativa desarrollada en Tejutla proviene principalmente de la combinación de variedades mejoradas, fertilización y protección (de insectos, malezas) adecuada, y que la fecha relativa de siembra de los cultivos (que fue iqual al manejo tradicional en Tejutla), no es tan crítica. Antes de transferir la tecnologia a áreas donde la práctica es sembrar simultáneamente, sin embargo, es preciso saber si la ventaja para el paquete entero facilitado por las variedades mejoradas, fertilización y protección, se mantiene bajo siembras simultáneas.

Para maximizar el área de influencia en la recomendación de una tecnología, entonces, el paquete debe conformarse de la manera más flexible posible, con definición de cuáles factores de manejo son críticos para su ventaja tecnológica y cuáles pueden variarse para ajustes locales.

Predicción de la producción de un paquete tecnológico

Factibilidad

En general se ha demostrado la factibilidad de predecir, con alta precisión, el rendimiento de un paquete tecnológico, con base en las variables ambientales medidas en los sitios experimentales. Sin embargo, los modelos de predicción fueron construidos basándose en los experimentos donde se logró cosechar, es decir, donde la tecnología no fracasó completamente. Debido a la falta de datos detallados de suelo en los experimentos de Nicaragua y Honduras, no fue posible analizar los resultados para estas áreas, para predecir las condiciones en que puede fallar completamente el maíz o el sorgo. Es probable que la combinación de suelos con poca retención de humedad en sus capas superficiales y falta de precipitación en los inicios del ciclo vegetativo, sea la causa principal del fracaso tanto del maíz como del sorgo; pero es necesario verificar esta hipótesis.

Utilizando datos de 30 sitios experimentales, se construyeron modelos de regresión múltiple con valores de r² hasta 0,9,
y con un valor del índice estadístico P de 1,9. Entre las variables independientes de los sitios hubo correlaciones significativas: altura de correlación con la precipitación en la época de
floración del maíz, por ejemplo; profundidad del suelo con lluvia mínima decádica durante el establecimiento del sorgo y porcentaje de área con precipitación durante la floración del maíz.

Tales interacciones entre variables independientes hacen dificil identificar las variables realmente influyentes en el crecimiento y rendimiento de los cultivos. Sin embargo, el objetivo principal de los análisis no es explicar las diferencias en rendimiento, sino sólo predecirlas. Para los propósitos de predicción, las variables utilizadas con los modelos explican las variaciones en rendimiento para toda la región, siempre y cuando las correlaciones entre variables independientes de la muestra sean representativas de la situación a nivel regional.

La capacidad de predicción no es el único criterio que determina la utilidad de algún modelo para definir áreas homogéneas para extrapolación de tecnología. Un modelo sencillo basado en pocas variables o en variables descritas a nivel regional es preferible, obviamente, a un modelo más complejo o basado en información no disponible. De ese modo, puede ser más práctico, por ejemplo, utilizar un modelo que incluye como variable la lluvia en determinada época que el balance hídrico, que requeriría calculación. El proceso de construir modelos alternativos, y la comparación de estos a través del análisis de transferencia, facilita la selección del modelo más apropiado para la disponibilidad e información regional.

Organización de una red experimental

En las experiencias de 1982, se hizo el intento de localizar experimentos al azar en toda esa extensión donde existe el sistema maíz asociado con sorgo, zona identificada en el Mapa 6. En la práctica, esto resultó imposible debido a la dificultad de controlar experimentos muy distanciados entre si con los recursos disponibles en el Proyecto. En 1983, se localizaron los experimentos de tal forma que se facilitara la operación de la red experimental, pero siempre con el objetivo de probar la tecnología a través de un rango de condiciones ambientales. Las inferencias a la región entera, con base en los experimentos de 1983, entonces, se hacen bajo el supuesto que los sitios experimentales en los cuales se desarrollan modelos de producción son una muestra representativa de las condiciones de la región entera.

Las dificultades encontradas por el Proyecto subrayan los problemas generales para organizar una red de ensayos uniforme, especialmente cuando éstos están localizados en diferentes países. Además, el hecho de localizar los experimentos en campos de agricultores motivó diferencias de manejo cuando aquellos no estaban dispuestos a cambiar su manejo tradicional en ciertos aspectos, o los ajustó para prevenir pérdidas (estos cambios fueron referidos básicamente a preparación de suelo y control de malezas).

Sin embargo, los problemas principales residieron sobre todo en establecer una red experimental. Una vez que ésta ya está establecida, la operación de la misma debería ser más sencilla. Para estudiar la estabilidad y respuesta de diferentes tecnologías a las diferentes condiciones del Istmo Centroamericano
en el futuro, sería factible crear una red de sitios experimentales con carácter permanente. Una red de este tipo, con suelos
debidamente caracterizados y registros de las variables de clima
más importantes, podría facilitar en gran medida las investigaciones de proyectos (introducción de germoplasma, fertilización,
etc.) en la región. Además, las características de suelo según
la clasificación de USDA, permitiría el intercambio de información a nivel mundial a través de bancos de datos como los propuestos por otros proyectos con objetivos similares.

El número y localización de los mini-centros experimentales está por determinarse, pero los estudios de cultivos y condiciones ambientales como los descritos en este Informe pueden aportar los elementos básicos para escoger los sitios representativos a nivel regional. La práctica común de realizar experimentos sin medir condiciones edáficas y de precipitación es un desperdicio de recursos para el desarrollo.

Variables de sitio

Resulta dificil saber de antemano cuáles son las variables del sitio (factores ambientales) que van a determinar la producción de la tecnología o que puedan usarse para predecirla. No obstante, es probable que los factores que influyen en la disponibilidad de agua, fertilidad y temperatura serán los más importantes. El efecto de otras variables del sitio, como por ejemplo radiación solar o temperatura, se puede correlacionar con otras como lluvia, altitud, etc., o derivarse de ellas.

En el caso estudiado de maíz + sorgo, la lluvia en determinadas épocas, la profundidad y la densidad aparente del suelo, fueron variables determinantes en la predicción del rendimiento. Los cálculos del balance hídrico mejoran las predicciones, aunque los modelos construidos sin balance hídrico no son mucho menos adecuados cuando incluyen factores correlacionados con la retención de humedad, como profundidad de suelo y textura.

Por otro lado, un modelo de predicción no será utilizable a nivel regional si no está basado en variables cuantificadas a ese nivel. Por ejemplo, no vale la pena construir un modelo basado en la velocidad del viento, si esta información no existe, ni puede derivarse, para el Istmo Centroamericano.

La mayoría de los factores importantes del suelo están cuantificados para clasificarlo según la Taxonomía de Suelos, a nivel de familia. Esta clasificación, junto con datos de la lluvia diaria, puede servir como base para cualquier caracterización de un sitio experimental, y su registro debería ser de rigor en toda experimentación con fines de desarrollo de tecnología. Tal vez esta recomendación parezca obvia, pero en relación con el personal capacitado en clasificación de suelos y facilidades de laboratorio en Centroamérica, ese requisito no está cumpliendo como debería ser.

Sintesis de la metodología para definir areas de extrapolación en Centroamérica

El caso de maiz + sorgo como ejemplo

La combinación de una metodología para predecir producción de una tecnología basada en factores edafoclimáticos y un sistema (como CRIES) para manejar información geográfica de estos factores, hace posible mapificar la región de acuerdo con la producción de la tecnología dada.

En el caso del paquete tecnológico de maíz + sorgo estudiado, la zonificación podría hacerse con base en profundidad y densidad aparente del suelo, combinados con la lluvia probable en la época de floración del maíz. Como se señaló anteriormente, esta información está disponible actualmente para sólo una parte de la región. La zonificación involucraría:

- Un análisis de datos de lluvia diaria para determinar la precipitación probable en la época de floración.
- La mapificación de las isoyetas a un cierto nivel de probabilidad (por ejemplo 75 % probable).
- La computarización de los mapas de isoyetas junto con mapas de clasificación de suelo utilizando CRIES u otro sistema similar.
- La superposición de isoyetas con profundidad de suelo y densidad aparente (derivados del mapa de suelos).
- El cálculo de producción predicha para cada unidad de mapificación derivada.

Este proceso es técnicamente factible aunque demandaría la recopilación y organización de los bancos de datos de lluvia y suelos apropiados.

Desarrollo de modelos

El proceso para zonificación con base en la producción de una tecnología dada se puede hacer para cualquier tecnología, siempre que existan modelos cuantitativos de predicción basados en factores ambientales para los cuales haya datos cuantificados en forma de mapas.

Los modelos cuantitativos pueden ser empíricos, desarrollados con base en experimentación de la región (como es el caso de maíz y sorgo descrito en este Informe) o pueden ser simulativos o desarrollados de datos secundarios de los procesos fisiológicos de los cultivos. Con modelos derivados de fuentes secundarias sin experimentación en la región, no hay verificación de la capacidad de predicción; además, el estado actual del conocimiento de los procesos fisiológicos del crecimiento de cultivos no es suficiente para construir modelos con la precisión requerida.

Los estudios de zonificación para diferentes cultivos hechos en Centroamérica han sido elaborados hasta la fecha con datos secundarios y modelos cualitativos. Los resultados de estas zonificaciones han sido normalmente mapas de aptitud para el cultivo expresado como alto potencial o bajo potencial, etc. Las zonificaciones basadas en modelos cualitativos aumentan la probabilidad de éxito con que se puede llevar una innovación técnica (como un cultivo nuevo) de una localización a otra; de ese modo, pueden considerarse como un mecanismo para transferencia de tecnología según la definición de Uehara (1981). Zonificaciones basadas en modelos cuantitativos satisfacen la definición más exigente de Wood y Cady (1981).

Existe, en consecuencia, un amplio y preciso espectro para modelar con propósitos de transferencia de tecnología. Por una parte, los modelos cualitativos, basados en datos secundarios, pueden ser apropiados donde la experimentación es poco factible (en el caso de cultivos perennes o forestales, por ejemplo). Por otro lado, cuando la experimentación es posible, como en el caso de los cultivos anuales, el desarrollo de modelos cuantitativos puede conducir a una zonificación mucho más precisa, basada en rendimientos predichos.

El grado de precisión del modelo afectará el tipo de la transferencia, que puede realizarse desde el investigador hasta el agricultor a través de un extensionista. En casos en que el modelo es más cualitativo, la tecnología puede requerir refinamiento y/o prueba extensiva en las áreas secundarias, antes de recomendarla a los agricultores del área. En estos casos, la información transferida ayuda a enfocar las investigaciones involucradas en el desarrollo de tecnología. Por otro lado, en casos donde el modelo es más preciso y cuantitativo, puede resultar más apropiado pasar la información directamente a extensionistas para recomendar a los agricultores.

Zonificación de la bondad técnológica

Cualquiera que sea el tipo de modelo utilizado para describir las condiciones en que funciona alguna tecnología el área de extrapolación o dominio de recomendación puede apreciarse más fácilmente en forma cartográfica. La producción de mapas que delimitan zonas aptas o la producción esperada de la tecnología podría constituir un medio muy efectivo para transferir información, tanto a investigadores como a extensionistas y agricultores.

La formulación y preparación de mapas puede facilitarse en gran medida a través de sistemas computarizados que manejen información cartográfica. Si el modelo de producción o aptitud de la tecnología está basado en factores edafoclimáticos que comprenden un banco de datos regionales, es posible superponer la información de manera que forme una zonificación específica.

El sistema CRIES se ha utilizado para este propósito en Centroamérica, aunque con modelos cualitativos. Un ejemplo muy sencillo es la zonificación de aptitud para teca, construido con mapas ecológicos (Holdridge) y mapas de número de meses secos. La Secretaria Ejecutiva de Planificación Sectorial Agropecuaria y de Recursos Naturales Renovables (SEPSA), también está utilizando el sistema CRIES en forma semejante, como herramienta para la zonificación de cultivos y la planificación agrícola La utilización de CRIES para hacer zonificaciode Costa Rica. nes con base en modelos cuantitativos representa una extensión del uso actual del sistema. La facilidad con que se puede manipular información geográfica con computadoras modernas plantea la posibilidad de producir mapas para tecnologías específicas en vez de buscar alguna clasificación universal para la transferencia de tecnología agropecuaria.

La combinación de información experimental y geográfica descrita en este Informe podría ofrecer una técnica de uso común para definir dominios de recomendación en la forma más amplia posible; es decir, a nivel regional en vez de nivel de área específica. De ese modo, la metodología podría asegurar la máxima utilización de la información lograda a través de la experimentación por el mayor número de agricultores posible.

Cuadro 49. Modelos de regresión para el maíz.

Número de variables en modelo	Rendimiento de maíz H9 ⁽¹⁾ (33 observaciones)		Rendimiento de maíz M3B (33 observaciones)	
	R ² (2)	Variables ⁽³⁾	R2 (2)	Variables
1	0,473	AR7	0,384	AR7
1	0,548	PROF	0,424	PROF
2	0,682	DAC20 AR7	0,552	PROF DAC20
2	0,686	PROF DAC20	0,572	DAC20 AR7
3	0,754	DAC20 PROF MG	0,620	DAC20 PROF MG
3	0,795	DAC20 AR7 K	0,653	DAC20 AR7 K
4	0,819	PROF DAC20 DF234 K	0,673	PROF DAC20 DF234 K
4	0,847	PROF DAC20 AR7 K	0,685	PROF DAC20 K AR7
5	0,835	PROF DAC20 DF234 K MG	0,691	PROF DAC20 DF234 K MG
5	0,862	PROF DAC20 AR7 K MG	0,704	PROF DAC20 AR7 K MG
	Respuesta a Fertilización Tratamiento 1 - Tratamiento 4 (26 observaciones)		Respuesta a Variedad Tratamiento 1 - Tratamiento 3 (26 ob serva cion es)	
	R ²	Variables	R ²	Variables
1	0,170	DF234	0,035	DAC20
1	0,170	PROF	0,037	РН
2	0,287	DF234 MO	0,081	PH ALT
2	0,359	PROF MO	0,099	DAC20 ALT
3	0,404	ARENA DF234 MO	0,127	DAC20 P ALT
3	0,457	DF234 PROF MO	0,152	DAC20 PH ALT
4	0,505	ARENA DR234 PROF MO	0,186	DAC20 P PH ALT
	0,515	CA PROF MO ALT	0,193	DAC20 MG PH ALT
4	0,313			
4 5	0,528	ARENA DF234 PROF MO K	0,225	DAC20 MG PH ALT PROF

⁽¹⁾ Rendimiento de H9 = promedio de los rendimientos de maíz en tratamientos 1 y 2.

Q Eliminando sitios con alta variabilidad dentro de replicaciones.

 $^{{\}mathfrak G}$) Para identificación de las variables independientes ver Anexo ${\tt V}$.

Cuadro 50. Modelos de regresión para sorgo y vigna.

Número de variables	Rendimiento de sorgo leche (30 observaciones)(1)		Rendimiento de sorgo sapo (30 observaciones)	
en modelo	R ²	Variables (2)	R ²	Variables(2)
1	0,207	AR122	0,201	AR122
1	0,215	ARENA	0,267	SDC122
2	0,387	ARENA CA	0,404	ARENA CA
2	0,391	PROF ARENA	0,425	SDC122 CA
3	0,466	PROF MDS234 ARENA	0,536	AR122 MG CA
3	0,477	PROF ARENA CA	0,623	SDC122 MG CA
4	0,553	ARENA MG CA PROP	0,681	SDC122 MG CA AR1522
4	0,589	PROF MDS234 ARENA CA	0,684	SDC122 ARENA MG CA
5	0,610	PROF ARENA DAC20 CA MDS234	0,711	MDS234 ARENA MG CAPR
5	0,619	PROF MDS234 ARENA CA MG	0,713	SDC122 ARENA MG CA PR

		Rendimiento de vigna (31 observaciones) ¹
	R ²	Variables (2)
1	0,204	DAC20
1	0,289	DV7
2	0,421	PEND DV7
2	0,447	DAC20 PEND
3	0,542	DAC20 PEND PH
3	0,601	DAC20 PEND DV7
4	0,624	DAC20 MG PEND DV7
4	0,669	DAC20 PEND PH DV7
5	0,685	DAC20 MG PEND PH DV7
5	0,710	DAC20 PROF PEND PH DV7

⁽¹⁾ Eliminando sitios con cero rendimiento.

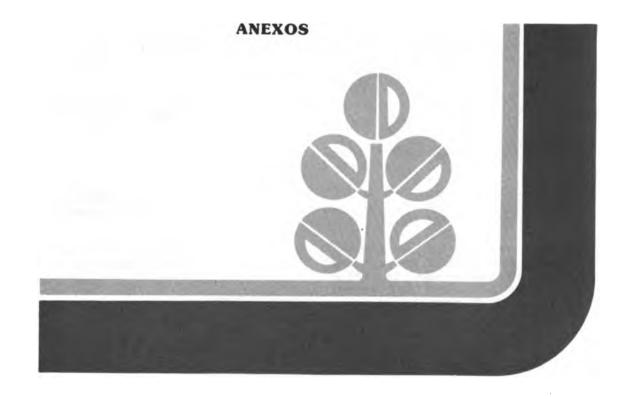
⁽²⁾ Para identificación de las variables independientes ver Anexo V.

Cuadro 51. Modelos de regresión para producción total de tratamientos 1 y 3.

Número de variables		Producción de tratamiento (1) (30 observaciones)		Producción de tratamiento (3 (30 observaciones)	
en modelos	R ²	Variables	R 2	Variables	
1	0,483	PROF	0,455	AR7	
1	0,490	AR7	0,490	PROF	
2	0,694	DAC20 PROF	0,629	DAC20 PROF	
2	0,774	DAC20 AR7	0,656	DAC20 AR7	
3	0,757	DAC20 PROF DF234	0,679	DAC20 PROF DF234	
3	0,843	DAC20 AR7 K	0,711	DAC20 PROF AR7	
4	0,827	DAC20 PROF DF234 MDS234	0,712	DAC20 PROF DF234 MDS234	
4	0,886	DAC20 AR7 MDS234 K	0,740	DAC20 PROF AR7 MDS234	
5	0,840	DAC20 PROF DF234 MDS234 MG	0,739	DAC20 PROF DF234 MDS234 C	
5	0,906	DAC20 PROF AR7 MDS234 K	0,760	DAC20 PROF AR7 MDS234 CA	
		Respuesta a fertilización tamiento 1 - Tratamiento 4 23 observaciones)		Respuesta a variedades stamiento 1 - Tratamiento(3) 23 observaciones)	
	R(2)	Variables (4)	R(2)	Variables(4)	
1	0,237	PROF	0,083	PH	
1	0,238	SDC122	0,189	ALT	
2	0,348	PROF SCD122	0,337	PH ALT	
2	0,367	PROF MO	0,370	DAC20 ALT	
3	0,463	ARENA DF234 MD	0,410	DAC20 ALT MDS234	
3	0,470	PROF MO ALT	0,410	DAC20 ALT MDS234	
4	0,534	ARENA DF234 MO SDC122	0,531	DAC20 P PH ALT	
4	0,535	PROX PH MO ALT	0,540	DAC20 CA PH ALT	
5	0,602	ARENA MG MO SDC1522 SDC122	0,577	DAC20 P PH MO ALT	
5	0,612	ARENA DF234 MO SDC1522 SDC122	0,594	DAC20 P DF234 MO MD5234	

⁴⁾ Producción = Rendimiento maíz + (0,786 x Rendimiento Sorgo).

⁽²⁾ Eliminando sitios con cero rendimiento de sorgo.


⁽³⁾ Eliminando sitios con alta variabilidad dentro de replicaciones.

⁽⁴⁾ Para identificación de las variables independientes ver Anexo V.

Cuadro 52. Capacidad de predicción de los diferentes modelos de rendimiento.

Variable Dependiente	Variables Independientes ¹	P
Rendimiento maiz, H9	PROF DAC20	3,118
	PROF DAC20 MG	2,914
	PROF DAC20 DF234	2,845
	DAC20 AR7 K	2,668
	PROF DAC20 DF234 K	2,426
	PROF DAC20 AR7 K	2,171
	PROF DAC20 AR7 K MG	2,232
	PROF DAC20 DF234 K MG	2,540
	PROP DAC20 AR7 DF234 K	2 ,288
espuesta del maiz H9	CA. PROF MO ALT	2,139
fertilizante	CA. DF234 PROF HO ALT	2,161
endimiento de sorgo	SDC122 HG CA	4,301
riollo leche	ARENA SDC122 MG CA	3,908
roducción (combinada)	DAC20 MDS234 K AR7	1,978
e H9 + leche	DAC20 MDS234 PROF DF234	1,960
iferencia en producción	DAC20 PH ALT	3,621
H9+leche) - (M3B+sapo)	DAC20 CA PH ALT	3.539
iferencia en producción	PROP PH NO ALT	3,571
9 + leche (con-sin fert.)	ARENA DF234 MO SDC122	3,752
	DF234 MO SDC122 ARENA1522	3,965
andimiento Vigna	DV7 PEND PH	2,978
	DV7 PROF PEND PH	2,720

 $[\]underline{1}/$ Para identificación de las variables independientes, ver Anexo V.

ANEXOI

INFORMACION EDAFOCLIMATICA UTILIZADA

A. CODIFICADO POR MUNICIPIO

MAPA	FUENTE
Precipitación media anual (1:2.000.000) Temperatura media anual (1:2.000.000)	Atlas Climatológico e Hidrológico del Istmo Centroamericano del Instituto Panamericano de Geografía e Historia. Guatemala, 1976.
Precipitación mensual, Guatemala (Escala indef.)	Mapa Climatológico. Observa- torio Nacional. Instituto Agropecuario Nacional. Minis- terio de Agricultura. 1964.
Precipitación mensual, Honduras (1:1.000.000)	Isoyetas media en mm. Departamento de Hidrología y Climatología, Dirección de Recursos Hidricos. Ministerio de Recursos Naturales. Tegucigalpa. 1979 (Borrador).
Precipitación mensual, El Salvador (1:400.000)	Servicio Meteorológico de El Salvador. Ministerio de Agri- cultura y Ganadería. s/f.
Configuración de la superficie, Honduras (1:1.000.000)	Inventario Nacional de Recursos Físicos. AID/RILGIPR Nº5. Department of the Army Engineer Agency for Resources Inventories. Washington, D.C. 1966.
Configuración de la superficie, Nicaragua (1:1.000.000)	Dept. of the Army Engineer Agency for Resources Invento- ries. Washington, D.C. 1966.
Configuración de la superficie, El Salvador (1:500.000)	Inventario Nacional de Recursos Físicos AID/RILGIPR Nº.3 Dept. of the Army Engineer Agency for Resources Inventories. Washington, D.C. 1965.

MAPA

Soil map of the world (1:5.000.000)

FAO/UNESCO. Soil Map of World. Vol. III. Mexico and Central America. UNESCO, Paris. 1976.

Suelos de Guatemala (1:200.000)

Clasificación de Reconocimiento de los Suelos de la República de Guatemala. Instituto Agropecuario Nacional. Ministerio de Agricultura. 1959.

Suelos de Honduras (Escala indef.)

Informe al Gobierno de Honduras FAO. Roma. 1969.

CODIFICADO POR CELULA DE 1 KM² (CRIES) В.

MAPA

Precipitación media anual (1:2.000.000)

Número de meses secos (1:1.000.000)

Ecología, Nicaragua (1:500.000)

Ecología, El Salvador (1:700.000)

Ecologia, Honduras (7 Departamentos) (1:250.000)

Ecología, Honduras (11 Departamentos) (1:1.000.000)

Ecología, Guatemala (1:500.000)

FUENTE

FUENTE

Atlas Climatológico e Hidrológico del Istmo Centroamericano Instituto Panamericano de Geografía e Historia. Guatemala. 1976.

Proyecto Leña y Fuentes Alternas de Energia CATIE/ROCAP. Turrialba, Costa Rica. 1982.

Proyecto CRIES. Ministerio de Agricultura y Ganaderia. Managua. 1978. (Borrador).

CATIE/MAG. Dirección de Recursos Naturales. Ministerio de Agricultura y Ganadería. El Salvador. 1978.

Dirección Ejecutiva de Catastro Tequcigalpa. 1980.

Organización de Estados Americanos. 1962.

Instituto Nacional Forestal. Guatemala. 1976.

MAPA

Suelos, Honduras (1:1.000.000)

Suelos, El Salvador (1:300.000)

Suelos de Nicaraqua (1:500.000)

Suelos de Guatemala (1:200.000)

Configuración de la superficie, Honduras (1:1.000.000)

Configuración de la superficie, Nicaragua (1:1.000.000)

Configuración de la superficie, El Salvador (1:500.000)

FUENTE

Soil Conservation Service. Washington, U.S.A. (Borrador).

Facultad de Ciencias Agronómicas Universidad de El Salvador 1974.

Proyecto CRIES, Ministerio de Agricultura y Ganadería, Managua. (1978?) (borrador).

Clasificación de reconocimiento de los suelos de la República de Guatemala. Instituto Agropecuario Nacional. Ministerio de Agricultura. 1959.

Inventario Nacional de Recur-SOS Fisicos. AID/RIG GIPR N^{Ω} . 5. Dept. of the Army Engineer Agency for Resources Inventories. Washington, D.C. 1966.

Inventario Nacional de Recursos Fisicos. AID/RIC GIPR Nº. 6. Dept. of the Army Enginner Agency for Resources Inventories. Washington, D.C. 1966.

Inventario Nacional de Recursos Físicos AID/RIC GIPR N^{Ω} . 3. Dept. of the Army Engineer Agency for Resources Inventories, Washington, D.C. 1965.

c. MAPAS ADICIONALES USADOS PARA INFORMACION DE SITIOS, HONDURAS

MAPA

Merma de canicula

(1:100.000)

Temperatura media (1:1.000.000)

FUENTE

Departamento de Hidrología Climatología. Dirección Recursos Hidricos. Ministerio de Recursos Naturales. Tegucigalpa, 1979. (Borrador).

D. DATOS DE PRECIPITACION, ESTACIONES METEOROLOGICAS

- Hancock, J.K., Hill, R.W. y Hargreaves, G.H. Precipitation probabilities, climate and agricultural potential for El Salvador. Utah State University, Logan, Utah. 1978.
- Hargreaves, G.H. Irrigation requirements and precipitation deficits for Guatemala, Utah State University, Logan, Utah, 1975.
- . Monthly precipitation probabilities for moisture availability for Honduras. Utah State University. Logan, Utah, 1976.
- y HANCOCK, J.K. Monthly precipitation, probabilities, climate and agricultural potential for Nicaragua. Utah State University. Logan, Utah. 1978.

ANEXO IIA

FORMULARIO DE LA ENCUESTA

IDENTIFICACION E INFORMACION GENERAL

FORMA E-1

	Fecha de investigación		
1.0	Pais		
1.1	Departamento/provincia		
1.2	Municipio/cantón	<u></u>	
1.3	Localidad		
1.4	Finca		
1.5	Ubicación (gr., min) Latitud		
	Longitud		
1.6	Elevación (msnm)		
1.7	Relieve: Plano Inclinad	do Ondulado Oqueb	rado 🖊 🖊
1.8	Distancia a carretera más o	cercana (km)	
1.9	Tenencia: Propia Alqui	ilada // Medianero //	
	Otra		
1.10	Area finca	mz.	
1.11	Fecha empieza la lluvia: no	ormalmente	
	es	ste año	

	Fecha termina la lluvia	
1.12	Fecha empieza canícula: normalmente	
	este año	
	Cuánto tiempo dura canícula	
	(rango, días)	
	AREA DE SISTEMAS DE CULTIVO EN LA FINCA	
2.1	Maiz solo primeramz.	
2.2	Frijol solo primeramz.	
2.3	Maicillo solo primeramz.	
2.4	Maiz/frijol asociado primeramz.	
2.5	Maiz/maicillo asociado primera mz.	
2.6	Maiz/frijol/maicillo asociadosmz.	
2.7	Frijol postreramz.	
2.8	Maiz postreramz.	
2.9	Maicillo postrera mz.	
2.10	Otrosmz.	
3.1	Proporción de producto vendido:	
	Maiz	
	Frijol	
	Maicillo	

3.2	Proporción para consumo familiar:
	Maiz
	Frijol
	Maicillo
3.3	Presencia de: Cultivos perennes
	Vacas
	Cerdos
	Bueyes
	Aves
	INFORMACION DE SISTEMA/SITIO
	FORMA E-2
	Identificación: Fecha País
	Departamento Municipio
	Ubicación: Latitud Longitud
1.1	Sistema
1.2	Area de lote:hamz.
1.3	Rango de Pendiente: de% a%
1.4	Superficie: Libre de Piedras 🖊 Piedras Pequeñas 🖊
	Piedras Grandes
1.5	Erosión: Leve Severa Muy severa

1.6	Drenaje interno: Bueno Deficiente Pobre D
1.7	Drenaje externo: Libre 🗸 Impedido 🗸
	USO DE SITIO EN PREVIOS AÑOS
2.1	1 año previo
2.2	2 años previos
2.3	3 años previos
2.4	Años de uso del terreno
2.5	Rotación normal (años de uso - barbecho)
	MANEJO DEL SISTEMA
3.1	Fecha de siembra maiz
3.2	Fecha de siembra frijol
3.3	Fecha de siembra maicillo
3.4	Fecha de siembra otro cultivo
3.5	Si siembra postrera, después de qué cultivo:
3.6	Si siembra frijol de postrera, con o sin rastrojo de maiz
3.7	Cantidad de semilla: Maíz Frijol Maicillo
4.1	Tipo de semilla, o variedades usadas por cultivo

Maiz:	Nombre			
	Altura			
	Color grano			
Frijo	: Nombre			\angle
	Color			/
	Tipo crecimi	ento		/
Maici	lo: Nombre		<u> </u>	\angle
	Altura			\angle
	Color gra	no		
Arreg	o espacial:			
	Plantas p	or Distancia golpes (cm)	Distancia surcos (cm)	
Maiz				
Frijol				
Maicil	10			
Dibujo	del Arreglo	Espacial		, Г
				_ر
				_
Prepar	ación del sue	lo: Roza 🖊 Que	emado 🕖	L

Método de siembra:

6.2	Maiz: Chuzo Arado Voleo Otro	\int
6.3	Frijol: Chuzo Arado Voleo Otro O	\supset
6.4		\mathcal{I}
6.5	Otro cultivo: Chuzo Arado Voleo Otro Otro	$\overline{\mathcal{I}}$
7.1	Uso de fertilizante Si No No	\mathcal{I}
7.2	Tipo de fertilizante:	7
8.1	Control de malezas: Químico Mecánico No Control	$\overline{\mathcal{I}}$
8.2	Tipo de herbicida:	\supset
8.3	Tipo de deshierbe: A mano Machete	
	Arado 🗸 Azadón 🗸 🗸	\mathcal{I}
8.4	Fecha(s) de deshierbe:	J
9.1	Control de plagas: Suelos Follaje	
	Suelo + Follaje \square No control \square	_/
10.1	Fecha floración maiz	\mathcal{I}
10.2	Fecha de dobla maiz	7
10.3	Fecha de cosecha maiz	\subseteq
10.4	Fecha de floración frijol	
10.5	Fecha de cosecha frijol	
10.6	Fecha de floración maicillo	
10 7	Majoillo, Cortado / Canado /	' /

10.8	Fecha de cosecha maicillo		
10.9	Fecha de cosecha otro		
	Rendimiento		
11.1	Maiz mz	lote	
11.2	Frijolmz	lote	
11.3	Maicillomz	lote	
11.4	Otromz.		
	Población de plantas al mo	omento de la encuesta:	
12.1	Maizmz	z.	
12.2	Frijolm	nz	
12.3	Maicilloπ	nz	
12.4	Otro m	nz	
	Uso para Forraje		
13.1	Animales del: Agricultor	Dueño Dotros	
13.2	Maiz: Verde 🗸 F	Rastrojo 🗸 Rastrojo co	on grano 🗸 🖊
13.3	Maicillo: Verde 🖊 F	Rastrojo 🖊 Rastrojo con	grano 🗸 🖊
	Comentarios:		
	Problemas con insectos:		
	Maiz		
	Frijol		
	Maicillo		

Problemas con	enfermedades:	
	Maiz	
	Frijol	
	Maicillo	

Localización aproximada del lote:

Otras observaciones:

Lista de sitios encuestados en Honduras, 1981. Anexo IIB.

Sitio	Localidad	Municipio	Departamento	Latitud	Longitud
1	El Cerrón	Yamaranguila	Intibucâ	14e14'	88#12'
2	El Arenal	La Esperanza	Intibuca	14017'	88 808
3	Las Lajas	Yamaranguila	Intibucâ	14812'	88.18
4	Cacauchagua	Camasca	Intibuca	13259'	88 24
2	El Rodeo	Concepción	Intibuca	14.02	88817
9	Las Crucitas	Belén	Lempira	14229'	88.29
7	Chusquin	La Iguala	Lempira	14236'	88 26 '
8	Jiriguaca*	Gracias	Lempira	14239'	884331
6	Las Pavas	Concepción	Copán	14255'	88.57
10	Las Flores*	Cololaca	Lempira	14º20'	88.50
11	El Playón	San Marcos	Ocotepeque	14º22'	88.57
12	San Pablo del Roble	La Entrada	Copán	15402'	88 2 4 2 '
13	Comederos*	La Entrada	Copán	15204'	88 41'
14	Pashapa	La Labor	Ocotepeque	14830'	89402
15	El Pinalito	Santa Rosa	Copán	14845'	8841'
16	Delicias-Pilas, El Rodeo	Santa Rosa	Copán	14945'	88 45
17	San Isidro	Naranjito	Sta. Bårbara	14257'	884391
18	El Higuerito*	Quimistán	Sta. Bárbara	15 2 2 0 '	88 25'
19	Ojo de Aguita	Concep. del Sur	Sta. Bárbara	14.51'	88407
20	El Rincón	Siguatepeque	Comayagua	14435'	87.836
21	Agua Dulce	Siguatepeque	Comayagua	14439'	87 4 8 1

Lista de sitios encuestados Continuación Anexo IIB.

Sitio	Localidad	Municipio	Departamento	Latitud	Longitud
22	Jalapa	Yorito	Yoro	150021	87916'
23	San José y San Antonio de Majada*	Cofradía	Cortés	15017'	88010
24	San Antonio	Sta. Cruz de Yojoa	Cortés	14058'	87052'
25	Cerrón	San Fco. de Yojoa	Cortés	15000'	87057
26	S.Antonio del Chaguitillo	El Rosario	Comayagua	14036'	87942'
27	El Sauce	Comayagua	Comayagua	14032'	87940"
28	El Rancho del Obispo*	Yuscarán	El Paraíso	14000	86955
29	S.Fco. de Soroguara*	Tegucigalpa	Fco. Morazán	14017'	87927
30	Protección	Villa de S.Antonio	Comayagua	14016'	87927
31	Sabana Abajo	Guinope	El Paraíso	13052'	165098
32	Arrayanes	Guinope	El Paraíso	13047	86954'
33*	Portillo del Higo Mapachín, Torrecillas	Nacaome	Valle	13037'	87927
34	La Cuenta	San Lorenzo	Valle	13030'	879221
35	La Palma, El Capulín	Pespire	Choluteca	13055	879221
36	Las Animas, El Ocotillo El Jícaro (Moropocay)	Nacaome	Valle	13037	87927
37	El Amate	Lauterique	La Paz	13050'	87942'
38	Sta. Ana - La Arada	Goascarán	Valle	13035'	87940'
39	Las Cruces, Vegas, Cerro Grande	San Fco. de Coray	Valle	13940'	87932'
4 0	Tablones Abajo*	Santa Ana de Yusguare	Choluteca	13017'	87905
41	San Judas	El Corpus	Choluteca	13017'	87000
42	Los Llanitos	Concepción de	Choluteca	13017'	16057
		María			

43	Las Pintadas	Concepción de María	Choluteca	13015'	86057
44	San Antonio de Padua	Pespire	Choluteca	13032'	87912'
45	Mal Paso de la Trinidad	Orucuina	Choluteca	13025'	10018
46	Sta. Cruz de Yarile, La Castaña*	San Lorenzo	Valle	13027'	87922'
47	Las Tapias	San Marcos de Colón	Choluteca	13030'	86947
48	Gualiqueme, Puerto de Belén	San Marcos de Colón	Choluteca	13025'	195098
49	Cacamuyá	San Marcos de Colón	Choluteca	13017'	86945'
50	Duyure	Duy ur e	Choluteca	13037'	86952
51	La Rosa de Ciriano*	Yoro	Yoro	150051	87012
52	La Mina, Dulce Nombre	Sabanagrande	Fco. Morazán	13047'	87915'
53	Jocomico*	La Venta	Fco. Morazán	13045'	87019'
54	Ocotal Viejo	Sabanagrande	Fco. Morazán	13046'	87916'
55	El Encinal	Sabanagrande	Fco. Morazán	13049'	87917
26	Guinopito	Texiguat	El Paraíso	13038'	87903
57	El Junguillo	Potrerillos	El Paraíso	14006'	86944'
58	San Jerónimo	San Matias	El Paraíso	13038'	86938
59	La Comunidad, Jalaca	Talanga	Fco. Morazán	14024'	87011'
09	0	El Rosario	01ancho	14055'	, 6E 5 98
61	Talqua*	Salamá	Olancho	14050'	86038
62	La Ermita	Talanga	Fco. Morazán	14027'	87904'
63	El Tamarindo	Cedros	Fco. Morazán	14031'	87009
64	Trujillo	S. Juan de Flores	Fco. Morazán	14017'	87001
65	Candelaria*	San Lucas	El Paraíso	13043'	86055
99	Pihuelas	La Villa de San Antonio	Comayagua	14922'	87934'

Lista de sitios encuestados... Continuación Anexo IIB.

Sitio	Localidad	Municipio	Departamento	Latitud	Longitud
67	San Isidro	El Rosario	Comayagua	14032'	87950
89	La Laguna	Comayagua	Comayagua	14925'	87945'
69	El Borbollón-Las Marías	Marcala	La Paz	14005'	88901'
70	Santa Elena	Santa Elena	La Paz	14005'	. 20088
7.1	El Cedro	Opatoro	La Paz	14009'	87954'
72	El Pedernal	San José	La Paz	14008'	195018
73	La Margarita	Lejamaní	Comayagua	14012'	87937'
74	Junguillo	Nacaome	Valle	13035'	87930'
75	San Pedro Calera	Alianza	Valle	13031'	87942'
97	La Rinconada	Pespire	Choluteca	13034'	87918'
77	El Tránsito	Nacaome	Valle	13032'	879361
78	El Palmar	Reitoca	Fco. Morazán	13049'	87927
79	Chical, El Espino*	San Lorenzo	Valle	13926'	87933
80	Coraicito	San José	Choluteca	13945'	87925
81	Fray Lázaro	Choluteca	Choluteca	13922'	87017
82	Santa Lucía	Aramecina	Valle	13045'	87941'
83	San Isidro	San Isidro	Choluteca	14038'	87917'
84	Terrenos	Aramecina	Valle	13042'	87040'
85	Buen paso de Trinidad	Orocuina	Choluteca	13925'	87007
98	Marcovia*	Marcovia	Choluteca	13017	87020
87	Azacualpa	El Triunfo	Choluteca	130051	87905
88	Ojochal*	Marcovia	Choluteca	13010	87922
89	La Puesta*	San Marcos Colón	Choluteca	13025'	86957

06	Divisadero	Sta. Ana de Yusguare	Choluteca	13020'	87010'
91	Apacilagua	Apacilagua	Choluteca	13028'	87904
92	Zamorano*	San Antonio Oriente	Fco. Morazân	14002'	.00528
93	Sosual*	San Andrés	Lempira	14010'	108088
94	Las Puertas	Erandique	Lempira	14014'	88927
95	Guatateca	Mazaguara	Intibucá	14025'	88922
96	Los Osorios	Cane	La Paz	14016'	168 078
97	Palo Pintado	Comayagua	Comayagua	14031'	87941

* Sitios eliminados.

ANEXO IIIA. Localización de los sitios experimentales. 1982. El Salvador.

Experimento	Agricultor	Localidad	Municipio	Departamento
1	Domingo Hidalgo	Platanares	Guaymango	Ahuachapán
2	Angel Morales	El Morro	Guaymango	Ahuachapán
ю	Jesús Rodríguez	Obrajito	Nva. Concepción	Chalatenango
4	Cruz Pineda	Obrajito	Nva. Concepción	Chalatenango
2	Antonio Marcado	El Carmen	Ilobasco	Cabañas
9	Tobías Torres	Azacualpa	Ilobasco	Cabañas
7	Luis Gonzâlez	Jalacatal	San Miguel	San Miguel
80	Hacienda Obrajuelo	Obrajuelo	San Miguel	San Miguel
6	Gregorio Barahona	San José	Tejutla	Chalatenango
10	José Barahona	San José	Tejutla	Chalatenango
11	Ovidio Peralta	Guachipilin	Jocoro	Morazán
12	Lupario Paz	San Eduardo	Pasaquina	La Unión
13	Antonio Quinteros	Escarbadero	Estanzuelas	Usulután
14	Gerardo Solano	Las Cruces	Estanzuelas	Usulután
15	Vecente Lemus	El Ronco	Metapán	Santa Ana
16	Lorenzo Martínez	Pendiente Abajo	Zacatecduca	La Paz
17	Hda. Hoja de Sal	El Sauce	Zacatecduca	La Paz
18	Hipólito Inocente	Las Hojas	Sonsonate	Sonsonate
19	Hda. Santa Clara	Sta. Emilia	Sonsonate	Sonsonate

ANEXO IIIB. Rendimientos (kg ha $^{-1}$) de los experimentos en 1982, El Salvador

						Taramitenico	Terro					
Experimento	Maíz H9	Sorgo	Maíz H9	Vigna VR1	Maíz H11	Sorgo	Maíz Hll	Vigna VR1	Maíz del agr	Sorgo agricultor	Maîz M3B	Sorgo Agric.
1	3 887	869	2 883	529	2 574	632	3 161	1 273	2 365	539	*	*
7	3 466	563	3 889	650	3 947	478	3 416	727	2 748	411	*	•
e	4 986	912	4 232	382	4 510	699	3 227	378	3 373	1 081	*	*
4	4 047	1 427	4 583	547	3 845	1 430	4 123	634	3 691	1 136	*	*
2	5 010	417	4 443	1 066	2 156	954	3 472	1 055	3 620	849	*	*
9	4 960	1 630	3 752	846	3 798	934	4 432	713	3 545	1 224	*	*
7	*	*	*	•	4 768	1 678	4 599	1	3 775	871	4 659	1 344
80	*	*	*	*	4 819	2 409	4 366	709	4 071	1 366	5 302	2 626
6	3 427	373	3 998	238	3 737	633	3 742	289	2 451	920	*	*
10	2 059	833	ı	263	1 748	982	2 181	209	2 166	894	*	*
11	•	*	*	*	1 968	213	2 068	1	1 655	371	ı	299
12	*	•	*	•	318	414	365	511	306	1	ı	436
13	3 466	1 169	3 629	ı	2 368	297	3 287	•	2 104	1 533	*	*
14	5 224	1 075	4 285	ı	2 759	1 233	4 279	ı	2 698	1 923	*	*
15	1 609	621	1 532	1 000	2 702	1 382	2 864	1 016	1 260	806	*	*
16	5 727	1 316	690 9	300	4 829	944	5 792	318	4 120	1 150	*	•
17	3 746	616	4 532	ı	2 520	1 130	3 365	ı	2 089	788	*	*
18	3 595	916	3 952	497	3 652	489	3 177	1 162	3 819	1 980	*	*
19	4 827	006	4 953	1 507	3 541	1 988	3 324	1 384	3 889	1 624	*	*

tratamiento no sembrado en este sitio.

- parcela perdida.

ANEXO IIIC. Localización y rendimiento (kg ha) de los experimentos de 1982. Jutiapa, Guatemala.

-						Tra	t a	i e n t	0	
Experimento	Experimento Agricultor	Municipio	Majz	Sorgo	Maiz V H9		Maíz M3B	Vigna VR1	Mai	z Sorgo agricultor
1	Carmen González	Las Poza s	2 808	1	2 915	198	3 244	242	3 026	1 050
2	Hilario Vicente	Progreso	2 830	1	2 661	1	3 011	1	2 408	830
ю	Salvador Muñoz	San Antonio	3 779	ı	2 768	ı	1 973	ı	2 724	1 000
4	Isabel Mejía	San Antonio	2 993	ı	3 182	319	3 138	290	2 679	513
Ŋ	Antonio Godoy	El Tablón	2 000	1	1 526	451	1 680	442	1 626	750
9	Hipólito Esquivel	Quezada	2 235	1	2 638	1	2 820	ı	2 500	700
7	Justo Florián	Las Pozas	3 126	ı	3 453	531	3 161	513	2 990	1 105
œ	Israel Zepeda	San Antonio	3 167	ı	2 181	321	2 825	315	1 565	750
6	Milton Mellado	San Antonio	2 167	ı	2 405	1	2 093	1	2 043	630

- = Parcela perdida.

ANEXO IIID. Localización y rendimiento (kg ha $^{-1}$) de los experimentos de 1982, Honduras.

						Trat	Tratamiento		
Experimento	Experimento Agricultor	Municipio	Departamento	Maíz H9	Sorgo Leche	Maíz M3B	Vigna VR1	Maíz Sorgo del agricultor	Sorgo
1	Tomás Ponce	Jícaro Galán	Valle	1	ı	ı	ı	,	1
2	Santos Guillén	Palo Pintado	Comayagua	1	ı	ı	1	,	ı
ю	Pedro Mejía	La Paz	La Paz	1	ı	ı	ı	ı	ı
4	Grupo Sta. Irene	Namasigüe	Choluteca	1	ı	ı	1	1	ı
S	Grupo Sta. Irene B	Namasigüe							
9	Grupo La Paz	San Antonio	Comayagua	1 216	ı	380	369	1 786	D
٢	Jesús Castro	Palo Pintado	Comayagua	2 276	ı	979	414	1 505	ne
ω	Gaspar Vázquez	Lejamaní	Comayagua	2 046	ı	1 633	ı	2 361	D B
6	Miguel Suazo	San Antonio	Comayagua	1 767	1	1 609	375	1 900	ne
10	Agustín Meléndez	La Paz	La Paz	2 226	ı	1 162	350	1 811	ne
11	Grupo La Paz 2	San Antonio	Comayagua	2 722	1	2 216	478	1 570	ne
12	Grupo Pozo del Padre	Lejamaní	Comayagua	2 669	ı	1 466	ı	2 066	ne

ne : parcela no evaluada.

= parcela perdida

ANEXO IIIE. Localización y rendimiento (kg ha $^{-1}$) de los experimentos de 1982, Nicaragua.

							Trata	Tratamiento		
Experimento Agricult	Agricultor	Localidad	Municipio	Departamento	Maiz	Sorgo	Mair	Vigna	748.f.z	Sorgo
					6н	Leche	мзв	VR1	del agricultor	icultor
			,,,,,,					;		1
-	Gabino Huete	San Roque	ESTOIL	ESTOLI	795 1	•			100	
2	Rito Huete	San Roque	Esteli	Estelí	1 323	•	677	9	737	90
m	Eusebio García	Valle de la Concepción	Palacagüina	Esteli	1 450	•	1 988	•	•	•
-		Valle de la Concepción	Palacagüina	Esteli	2 490	•	1 848	90	826	ne D
•	Gerardo Hernândez	Los Encuentros	Limay	Estelí	•	•	•	90	1	ne
9		Los Encuentros	Limay	Esteli	•	•	ı	•		ne
7	- 5	Las Cañas	San Isidro	Matagalpa	848	•	875	•	542	e C
80		Las Cañas	San Isidro	Matagalpa	1 107	•	•	•	1 620	эe
6	O	Cacahuli	Somoto	Madriz	880	1	792	90	269	ne e
10		Cacahuli	Somoto	Madriz	1 008	•	999	90	334	ne
11	Isabel Quirôs	Nacascolo	El Sauce	León	2 059	•	•	9	•	č
12	Julian Quirôs	Nacascolo	El Sauce	León	•	•	1	•	•	ae
13	Francisco Martinez	Los Tololos	El Sauce	León	2 160	•	•	•	•	9
7.	Germán Martinez	Los Tololos	El Sauce	León	1 566	•	1	•	•	9
15	Félix P. Reyes	Tecuaname	La Paz Centro	León	1	•		e	1	9
16	José F. Reyes	Tecuaname	La Paz Centro	León	•	•	•	•	1	2
17	Claudino Mendoza	Mateare	Limay	Esteli	•	•	•	6	•	•
18	Cristino López	Mateare	Limay	Esteli	1	1			•	90
19	Napoleón Ramirez	Ojo de Agua	Darío	Matagalpa	969	1	354			9
20	Fidencio Rivera	Ojo de Agua	Darío	Matagalpa	999	•	889	9	188	ě
21	Avelino López	Puerta Vieja	Derío	Natagalpa	ı	•		•	•	6
22	Victorino Montova	Puerta Vieja	Dario	Matagalpa	1 279		206	•	1	•

ne - parcela no evaluada - - parcela perdida.

ANEXO IV. Clasificación de suelos para sitios experimentales. 1983.

País	Sitio	Suelo (nivel familia, 7a. aprox.)
Guatemala	1	Very fine, montmorillonitic, isohyperthermic Udic Pellustert.
	4	Fine, mixed, isohyperthermic Typic Haplustoll
	6	Loamy, skeletal, mixed, isohyperthermic Typic Ustifluvent
	11	isohyperthermic Typic Haplustoll
	12	isohyperthermic Typic Vitrandept
	14	Clayey-skeletal, mixed isohyperthermic Mollic Ustifluvent
	15	Fine, mixed isohyperthermic Lithic Rhondustalf
	16	isohyperthermic Vertic Haplustalf
	17	isohyperthermic Typic Pellustert
	18	isohyperthermic Typic Ustipsamment
	19	isohyperthermic Vertic Ustropept
	20	isohyperthermic Typic Cromustert
	21	isohyperthermic Typic Ustropept
El Salvador	1	Fine-loamy, mixed, isohyperthermic Vertic Haplustalf
	2	Very fine, halloystic, isohyperthermic Oxic Haplustalf
	20	Fine, mixed, isohyperthermic Typic Haplustalf
	21	Fine, mixed, isohyperthermic Typic Haplustalf
	22	Fine-loamy, halloystic, isohyperthermic Typic Haplustoll
	23	Fine-loamy, mixed, isohyperthermic Vertic Ustropept
	24	Fine-loamy, mixed, isohyperthermic Vertic Ustropept
	25	Fine-loamy, mixed, isohyperthermic Udic Haplustalf
	26	Fine-loamy, mixed, isohyperthermic Typic Ustifluvent
	27	Fine-loamy, halloystic isobyperthermic Typic Haplustoll
	28	Fine-loamy, halloystic isohyperthermic Typic Haplustoll
	29	Pine-loamy, mixed, isohyperthermic Vertic Haplustalf
	30	Fine-loamy, halloystic isohyperthermic Udic Haplustalf
	31	Fine-clayey, montmorillonitic isohyperthermic Typic Ustifluve
	32	Loamy-mixed, isohyperthermic Typic Vitrandept
	33	Very fine, mixed, isohyperthermic Vertic Eutropept
	34	Fine-loamy, mixed, isohyperthermic Vertic Haplustalf
	35	Loamy, mixed, isohyperthermic, Typic Ustropept
	36	Very fine, montmorillonitic, isohyperthermic Typic Pellustert
	37	Loamy, mixed, isohyperthermic Typic Ustropept

ANEXOV

Identificación de variables independientes utilizadas en modelar rendimiento.

PROF	_	Profundidad	de l	enelo
PROF	==	Prorungidad	ueı	Suero

DAC20 = Densidad aparente a 20 cm

ARENA = Porcentaje de arena del suelo

DF234 = Precipitación durante el mes antes de la floracion

AR7 = Balance hídrico del suelo 50-60 días después de

la siembra del maíz

MG = Nivel de magnesio

K = Nivel de potasio

CA = Nivel de calcio

SDC122 = Precipitación durante el período junio-diciembre

SDC1522 = Precipitación durante el período 20 octubre-di-

ciembre

AR122 = Balance hidrico por década, sumada durante el

período 10 días antes - 220 días después de la

siembra del maiz

AR1522 = Balance hídrico por década, sumada durante el

período 140 días antes - 220 después de la siem-

bra del maiz

MDS234 = Precipitación mínima decádica para las décadas

0-10, 20-20, 20-30 días después de la siembra

del sorgo

MO = Nivel de materia orgánica del suelo

ALT = Altura del sitio

PH = pH del suelo (0 - 20 cm)

DV7 = Precipitación 50-60 días después de la siembra

de vigna

PEND = Pendiente del sitio

ANEXO VI

METODOLOGIA SEGUIDA PARA EL CALCULO DE BALANCE HIDRICO

- 1. Se utilizan datos reales sobre precipitación diaria e información climatológica para hacer el cálculo de necesidades de agua de los cultivos y humedad disponible en los suelos. Los datos utilizados fueron los siguientes:
 - Se determinaron curvas de retención de humedad para 1/3, 5, 10 y 15 atmósferas. Los datos de retención de humedad se hicieron a las profundidades de 0-20 cm y de 20-50 cm. Teniendo en cuenta los datos de retención de humedad se procedió a determinar la humedad disponible.
 - % H disp. = % Hum (0,33 atm) % Hum (15 atm)
 - El porcentaje de humedad se convirtió a lámina de agua. Para tal efecto se tomaron datos de densidad aparente a las profundidades de suelo entre 0-20 y 20-50. En los casos en que había descripción completa del perfil, se observó la densidad aparente calculada por el método de laboratorio.

Con los datos de densidad aparente se tuvo la lámina de agua para la profundidad efectiva del suelo.

Lámina de agua La = P * % H Disp.

$$P = D \text{ Aparente g/cm}^3$$

La profundidad efectiva del suelo se determinó de acuerdo con las descripciones de perfiles en los sitios de experimentación.

La
$$(cm/cm) = P (g/cm^3)_{\star} (% H Disp)/P \text{ agua}$$

= $(\frac{g}{cm^3} \times (% H Disp))/(g/cm^2_{\star} \text{ cm})$

- La humedad posible por profundidad efectiva se obtuvo multiplicando la densidad aparente a la profundidad requerida por el porcentaje de agua disponible. Se obtuvieron dos tipos de datos: Agua disponible o capacidad de retención del suelo a la profundidad de 0-20 cm y agua disponible a la profundidad efectiva.
- Los datos de humedad disponible se refieren básicamente a la capacidad de campo de cada uno de los sitios experimentales con la profundidad efectiva.
- Cálculo de evapotranspiración
 - 1. Se utilizó el método de García-López referido por Guillén (1984).

ETP = 1,21 * 10
$$^{\text{Exp}}$$
 * (1-0,01HR) + (0,21 t - 2,30)

EXP =
$$\frac{7,45 * t}{234,7 + t}$$

- t = temperatura media (ºC) del período considerado.

 Para el caso específico se tomó la temperatura

 mensual (se recurrió a la estación meteorológi
 ca más cercana), haciendo la correspondiente

 corrección por altitud, que depende de la

 distancia de la estación al sitio experimental.
- HR = Humedad relativa tomada entre las 8:00 horas
 y las 14 horas.
- $HR = (HR \ a \ 8:00 \ horas + HR \ a \ 14:00 \ horas)/2$
- Cálculo del uso consuntivo (uso de agua) por el cultivo Se hicieron observaciones sobre datos de uso de agua por maíz y sorgo suministrados por FAO. Básicamente estos datos coinciden con la ecuación dada por Guillén (1984).

Kc = uso de agua Kc = $0.0281 + 0.0339X - 0.0026778 \times^2$ (Maiz)

 $\begin{array}{c} \textbf{X} \text{ dias después de la siembra} \\ \textbf{Kc} = 0.02142 + 0.0371 \ \textbf{X} - 0.0001076 \ \textbf{X}^2 \quad \text{(Sorgo)} \\ \textbf{X} \text{ dias después de la siembra} \end{array}$

 Con la precipitación diaria se hizo el ajuste de precipitación por pérdidas en escorrentía superficial y subterránea.

Pc = (Pr * 0,1) (1 + S/100)

El valor 0,1 es el valor que corrige por pérdidas debido a la presencia de capas muy permeables o de capas impermeables que impiden el paso de agua. Generalmente es un factor asociado a la conductividad hidraúlica del suelo. El valor S equivale a la pendiente del sitio expresada en términos absolutos.

- La pérdida total de agua se calcula teniendo en cuenta la función

Pt = Et + Pc

Et = ETP * Kc

Pt = Pérdida total

Pc = Pérdida por escorrentía

ETP = Evapotranspiración potencial

Kc.= Uso consuntivo por el cultivo

El cálculo del agua caída será:

R = Pt - Pc

R = Balance de aqua

El balance hidrico se calculó en la siguiente forma: Se tomaron los periodos de 10 días tomando como base la época de siembra del maiz. Los periodos decádicos (décadas) se ajustaron para obtener el valor R por décadas.

Se calculó la cantidad de agua presente en el suelo (sitio experimental) 10 días antes de la época de siembra. El cálculo se hizo teniendo en cuenta la capacidad del suelo para retener agua a la profundidad requerida (La) La capacidad del suelo para retener agua se convirtió a períodos decádicos y se tuvo entonces su capacidad para retener agua o sea el agua disponible durante 10 días.

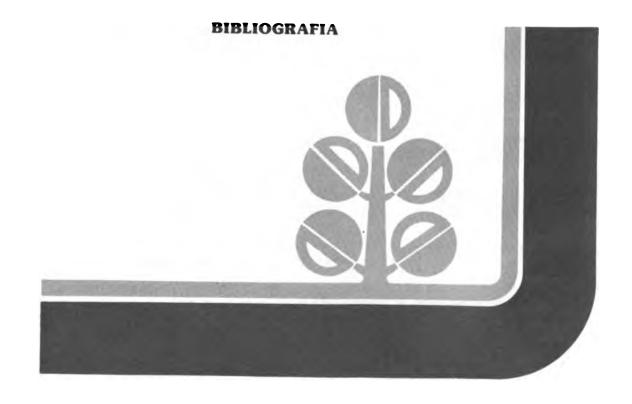
Se calculó la cantidad de agua en el suelo:

ARi = AR(i-1) + Ri

- i = corresponde a la lluvia caída en la década correspondiente a la siembra.
- Ri = es la lluvia corregida de la década correspondiente
- AR (i-1) = es la humedad residual de la década anterior
 ARi = es la humedad residual de la década correspondiente

Con el fin de prever valores de exceso de humedad y simular el movimiento de agua en el suelo se supuso lo siguiente:

si ARi > La


Entonces ARi = La

si ARi < La

Entonces ARi = ARi

El anterior ajuste no es totalmente correcto y elimina los efectos que pueden causarse por exceso de humedad. Es conveniente ajustar el verdadero valor; para ello es preciso conocer más en detalle constantes físicas como el espacio poroso total y la conductividad hidraúlica.

Con el fin de prever esta situación se utilizaron otros métodos para predecir secamiento o inundación en un suelo. Para este caso se ensayaron los procedimientos sugeridos por W. Forsythe (comunicación personal); se encontró que este proceso depende de las características físicas del suelo y no prevé situaciones para períodos de seguía prolongados.

BIBLIOGRAFIA

- BEINROTH, F. H. Final Report of the Puerto Rico Benchmark Soils Project 1975-1982: research on the transfer of agrotechnology. Mayagüez, University of Puerto Rico, 1982. 155 p.
- BURGOS, J. J. World trends in agroclimatic surveys. <u>In</u> Agroclimatological Methods. París, UNESCO, 1968. pp. <u>2</u>11-224. (Natural Resources Research, no. 7).
- CADY, F. B., CHAN, C. P. Y., GARVER, C.L., SILVA, J. A. y WOOD, C. L. Quantitative evaluation of agrotechnology transfer: a methodology using maize response to phosphorus on hydric dystrandepts in the Benchmark Soils Project. Hawaii Institute of Tropical Agriculture and Human Resources. University of Hawaii. Research Series 015. 1982. 31 p.
- CENTRO AGRONOMICO TROPICAL DE INVESTIGACION Y ENSENANZA. PROGRAMA DE CULTIVOS ANUALES. Descripción de una alternativa para el sistema de producción maíz asociado con sorgo practicado por agricultores del Municipio de Tejutla, Chalatenango, El Salvador. Turrialba, Costa Rica, Proyecto Cooperativo CENTA-CATIE, 1979. 55 p.
- DEPARTAMENTO PRODUCCION VEGETAL. Caracterización ambiental y de los principales sistemas de cultivo en fincas pequeñas de Estelí, Nicaragua, 1983. Turrialba, Costa Rica, Proyecto SIPRO-CATIE-FIDA, 1984. 142 p. (Serie Técnica. Informe Técnico no. 34).
- CENTRO INTERNACIONAL DE AGRICULTURA TROPICAL (CIAT). Annual Report 1978. Cali, Colombia, 1979. p. irr.
- CHANG, J. H. A climatological consideration of the transference of agricultural technology. Agricultural Meteorology 25: 1-13. 1981. p. irr.
- COSTA RICA. DIRECCION GENERAL DE ESTADISTICA Y CENSOS. Censos nacionales de 1973; agropecuario, Regiones Agrícolas 7. San José, 1974. 432 p.
- CUTIE, T. J. Diffusion of hybrid corn technology: the case of El Salvador. México, CIMMYT, 1975. 24 p.
- DeLEON PRERA, C., WYLD, J. T. y HILDEBRAND, P. E. Alcance geográfico de los sistemas de cultivo en el área piloto del ICTA - Región VI. Guatemala, Instituto de Ciencias y Tecnología Agrícolas (ICTA), 1975. 19 p.

- DENT, D. y YOUNG, A. Soil survey and land evaluation. London, George & Unwin, 1981. 278 p.
- DeWALT, B. R. y DeWALT, K. M. Farming systems research in Southern Honduras. Lexington, University of Kentucky, Department of Anthropology, 1982. 83 p.
- DIAZ DONAIRE, R. E. Caracterización y relaciones ambiente-manejo en sistemas de frijol y sorgo asociados con maíz en Honduras. Tesis Mag. Sc. Turrialba, Costa Rica, UCR-CATIE, 1982. 118 p.
- EL SALVADOR. DIRECCION GENERAL DE ESTADISTICA Y CENSOS. Tercer Censo Nacional Agropecuario. San Salvador, 1974. v. 1, 834 p.
- Anuario de Estadísticas Agropecuarias 1981-1982.
 San Salvador, 1982. 67 p.
- FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO).
 Report on the agro-ecological zones project; methodology and results for South and Central America. Rome, Italy, 1981a. v. 3, 251 p.
- Production yearbook 1981b. Rome, Italy, 1982.
- GARRO, A. Desarrollo de un sistema de información geográfica del Istmo Centroamericano. San José, Costa Rica, IICA, 1982. 79 p.
- GUATEMALA. DIRECCION GENERAL DE ESTADISTICA. Censo Agropecuario 1964. Guatemala, 1969. p. irr.
- _____. Encuestas agrícolas de granos básicos. Guatemala, 1978. 174 p.
- . Censos agropecuarios 1979. Guatemala, 1983. p. irr.
- GUILLEN ASTACIO, N. E. Respuestas en rendimiento del sistema maíz-sorgo a variaciones de la lluvia en Centroamérica. Tesis Mag. Sc. Turrialba, Costa Rica, UCR-CATIE, 1984. 169 p.
- HANCOCK, J. K., HILL, R. W. y HARGREAVES, G. H. Precipitation probalities, climate and agricultural potential for El Salvador. Logan, Utah State University, 1978. p. irr.
- HARGREAVES, G. H. Irrigation requirements and precipitation deficits for Guatemala. Logan, Utah State University, 1975. p. irr.

- HARGREAVES, G. H. Monthly precipitation probabilities for moisture availability for Honduras. Logan, Utah State University, 1976. p. irr.
- y HANCOCK, J. K. Monthly precipitation probalities, climate and agricultural potential for Nicaragua. Logan, Utah State University, 1978. p. irr.
- HAWKINS, R. C. Intercropping maize with sorghum in Central America: a case study. Agricultural Systems 15(2):79-99. 1984.
- HAYAMI, Y. y RUTTAN, V. Agricultural development: an international perspective. Baltimore, Maryland, John Hopkins University Press, 1971. 367 p.
- HOLDRIDGE, L. Ecología basada en zonas de vida. 2a. reimpresión en español. Traducido del inglés por Humberto Jiménez-Saa. San José, Costa Rica, IICA, 1982. 216 p.
- HONDURAS. DIRECCION GENERAL DE ESTADISTICA Y CENSOS. Censo nacional agropecuario 1974. Tegucigalpa, 1978. p. irr.
- _____. Encuesta de diagnóstico de cosechas de granos básicos. Tegucigalpa, 1981. p. irr.
- INTERNATIONAL RICE RESEARCH INSTITUTE (IRRI). Annual Report for 1977. Los Baños, Laguna, Philippines, 1978. 548 p.
- Annual Report for 1978. Los Baños, Laguna, Philippines, 1979. 478 p.
- KRISHNAN, A. Agroclimatic classification methods and their application to India. <u>In Climatic classification: a consultants' meeting. 1980.</u> [Proceedings]. Patancheru, India, 1980. pp. 59-88.
- NICARAGUA. DIRECCION GENERAL DE ESTADISTICA Y CENSOS. Censos nacionales de 1964. Managua, 1967. p. irr.
- NICARAGUA. INSTITUTO NACIONAL DE ESTADISTICA Y CENSOS. Investigación de la actividad agropecuaria, rama granos básicos. Managua, 1982. 54 p.
- _____. Investigación de la actividad agropecuaria, rama granos básicos. Managua, 1983. 50 p.
- NIX, H. Agroclimatic analogues in transfer of technology in ICRISAT. In International Symposium on Development and Transfer of Technology for the SAT Farmer, 1980. Proceedings. Patancheru, India, ICRISAT, [1980]. pp. 83-88.

- NUTTENSON, M. Y. Ecological crop geography of the Ukraine and agroclimatic analogues in North America. Washington, Institute for Crop Ecology, 1947. 24 p.
- PANAMA. DIRECCION DE ESTADISTICA Y CENSOS. Censos nacionales de FAO. Panamá, 1974. p. irr.
- PERRIN, R. K., WINKELMANN, D. L., MOSCARDI, E. R. y ANDERSON, J. R. From agronomic data to farmer recommendations: an economics training manual. Mexico, CIMMYT, 1976. 51 p.
- REDDY, S. J. Agroclimatic classification of the semi-arid tropics. I. A method for the computation of classificatory variables. Agricultural Meteorology 30:185-200. 1983.
- RUSSELL, J. S. Classification of climate and the potential usefulness of pattern-analysis techniques in agroclimatology research. <u>In</u> International Workshop of the Agroclimatological Research Needs of the Semi-Arid Tropics, 1980.

 Proceedings. Patancheru, India, ICRISAT, [1980]. pp. 75-87.
- RUTHENBERG, H. Farming systems in the tropics. 3 ed. Oxford University Press, 1980. 424 p.
- SCHEWERDTFEGER, W. Climates of Central and South America. Amsterdam, Elsevier Scientific, 1976. 532 p.
- SHANER, W. W., PHILIPP, P. E. y SCHMEHL, W. R. Farming systems research and development: guidelines for developing countries. Colorado, Westview Press, 1982. 414 p.
- SMITH, M. y CORRALES, S. Comportamiento de 12 variedades de maíz asociado o en relevo con sorgo. Turrialba, Costa Rica, CATIE, 1984. 16 p. (mimeograf.)
 - Documento presentado en: XXX Reunión Anual del PCCMCA, Managua, Nicaragua, 1984.
- SWINDALE, L. D. Problems and concepts of agrotechnology transfer within the tropics. <u>In</u> International Symposium on Development and Transfer of Technology for the SAT Farmer, 1980. Proceedings. Patancheru, India, ICRISAT, [1980]. pp. 73-82.
- UEHARA, G. Agrotechnology transfer. McGraw-Hill Yearbook of Science and Technology New York. McGraw-Hill. 1981. pp. 80-82.

- U.S. DEPARTMENT OF AGRICULTURE (USDA). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Washington, D.C., U.S. Government Printing Office. Agriculture Handbook 436. 1975. 754 p.
- U.S. Department of Agriculture Economics, Statistics and Cooperative Service, [1981]. p. irr.
- VIRMANI, S. M. Climatic approach to transfer of farming systems technology in the semi-arid tropics. <u>In</u> International Symposium on Development and Transfer of Technology for Rainfed Agriculture and the SAT Farmers, 1980. Proceedings. Patancheru, India, [1980]. pp. 93-102.
- ., SIVAKUMAR, M. V. K. y REDDY, S. J. Climatic classification of semi-arid tropics in relation to farming systems research. <u>In</u> Climatic classification: a consultants' meeting, 1980. [Proceedings]. Patancheru, India, 1980. pp. 27-44.
- WOOD, C. L. y CADY, F. B. Intersite transfer of estimated response surfaces. Biometrics 37:1-10. 1981.
- ZANDSTRA, H. G., PRICE, E. C., LITSINGER, J. A. y MORRIS, R. A. A methodology for on-farm cropping systems research. Los Baños, Philippines, IRRI, 1981. 149 p.