Variación Genética en Ocho Procedencias de Erytrina poeppigiana en Costa Rica¹/

R Salazar* M.S. Vásquez*

ABSTRACT

Giant poro (Erythrina poeppigiana (Walpers) O.F. Cook), a tree species widely used in agroforestry systems, is native to the humid zones from Panama to Bolivia. The species was introduced in Costa Rica at the beginning of this century and its distribution has increased through natural and artificial dissemination to what now is a large part of the Costa Rican Central Plateau and the Atlantic coastal zone. The objective of this study was to evaluate the genetic variation of the species in the nursery and in one planting site in Costa Rica. The characteristics of seeds, plants in nursery and young plants in the field, during their first 120 days of growth, were analyzed. Although genetic variation among provenances was detected in the three stages of evaluation, the greatest variation was observed within provenances.

INTRODUCCION

l poró gigante, *Erythrina poeppigiana* Walpers) O.F. Cook), es una de las leguminosas arbóreas más intensamente utilizadas como sombra en cafetales, principalmente en los países de América Latina, tanto por su crecimiento rápido y facilidad de reproducción por estacas como por su buena respuesta a las podas frecuentes. En los años recientes, la especie ha recibido mucha atención no sólo por su importancia en sistemas agroforestales y por la posibilidad de usarla en sistemas silvopastoriles como fuente de proteína, sino también por su potencial como especie para mejorar suelos, dada su capacidad de incorporar materia orgánica y fijar nitrógeno atmosférico. Al respecto, Russo (17) determinó que la especie aporta hasta 13754 kg/ha/año de materia orgánica seca, cuando se planta como sombra en cafetales a 6 m x 6 m de espaciamiento y con dos podas por año. En esta cantidad de materia orgánica hay un aporte aproximado de 269 kg de nitrógeno (2%).

COMPENDIO

El poró gigante (Erythrina poeppigiana (Walpers) O.F. Cook), especie ampliamente utilizada en sistemas agroforestales, es originaria de las zonas húmedas comprendidas entre Panamá y Bolivia. Fue introducida en Costa Rica a principios de este siglo y se ha diseminado en forma natural y artificial en gran parte de la Meseta Central y la zona Atlántica del país. El objetivo de este trabajo fue evaluar la variabilidad producida por efectos genéticos que la especie presenta bajo condiciones de vivero y campo en un sitio en Costa Rica. Se analizaron características de las semillas, plántulas en vivero y características juveniles a nivel de campo, durante los primeros 120 días de crecimiento. Aunque en las tres etapas de evaluación se detectó variación genética entre las fuentes de semillas estudiadas, la mayor variación se presentó en las procedencias.

E poeppigiana pertenece a la familia Papilionacea. En forma natural crece desde el sur de Panamá hasta Bolivia, en climas tropicales y subtropicales húmedos y muy húmedos, casi desde el nivel del mar hasta los 1800 m de elevación. Ha sido introducida en algunas regiones de América Central, Africa y Malasia (2, 8, 14, 17).

El poró fue introducido a la Meseta Central de Costa Rica a principios de 1900 (8); posteriormente, se extendió por plantación como sombra en cafetales y por reproducción natural hacia gran parte de la zona Atlántica del país, donde hoy se le considera como especie naturalizada. Es frecuente encontrar el poró desde el nivel del mar hasta los 1350 m de elevación, en sitios con temperaturas que varían desde 28 hasta 18°C y con precipitaciones anuales de 4 000 a 1 500 mm (12, 13).

El poró crece en una gama amplia de suelos, como franco arenosos, franco arcillosos, arcillo limosos, residuales aluviales y coluviales, e incluso en sitios planos, sombreados, con problemas de drenaje y sujetos a inundaciones periódicas (13, 20).

En Costa Rica, en condiciones de suelo fértil es usual encontrar árboles hasta de 40 m de altura y I m de diámetro a 1.3 m de altura (dap). La copa tiene forma de cono redondeado y el tronco usualmente

Recibido para publicación el 15 de marzo de 1988.
 Extracto de la tesis para M.Sc de Milton S. Vásquez presentada en 1986 ante el Programa de Estudios de Posgrado CATIE/UCR.

^{*} Investigador del Proyecto Arboles de Uso Múltiple del CATIE y Profesor del estudiante, respectivamente.

es recto pero bifurcado a una altura variable. La corteza presenta espinas en número y disposición variable; éstas también se encuentran en las ramas y raquis de las hojas, lo que dificulta el manejo. La madera es muy blanda por lo que no es utilizada para aserrio ni como leña (15). Las hojas caen durante la estación seca; son trifoliadas, alternas y con un par de nectarios extraflorales en el peciolo, con apariencia de glándulas. Una descripción más detallada de las características botánicas de la especie se puede encontrar en Krukoff (10, 11)

Dada la importancia actual del poró y el poco conocimiento que existe acerca de las características de las semillas, de las plantas a nivel del vivero, del grado de variación genética de distintas características anatómicas, así como la interpretación de estas variaciones, se decidió realizar esta investigación, como un primer intento de cuantificar la variación genética en los primeros estadios de crecimiento de distintas fuentes de semilla.

Material experimental

Se utilizó principalmente material de Costa Rica, pues sólo fue posible obtener semillas de un sitio de la zona de origen; además, cualquier programa de mejoramiento genético para la especie en Costa Rica, tendrá que utilizar el material local disponible.

La especie tiene poco más de 80 años de haber sido introducida al país; ya se encuentra establecida naturalmente en sitios con características de clima y suelo muy variadas. Esto hace suponer la posibilidad de que hayan ocurrido cambios genéticos considerables como respuesta a las condiciones ecológicas diversas de las zonas que ha ido colonizando.

También existe la posibilidad de que se hayan realizado varias introducciones originales de diversas fuentes. De cualquier forma, es importante detectar los patrones de variación genética existentes para determinar su posible utilización.

Se evaluaron siete procedencias de Costa Rica y una de Colombia. Las semillas de Costa Rica fueron recolectadas en los meses de marzo y abril de 1985 en siete sitios diferentes, definidos de acuerdo con la distribución de la especie en el país y la variación en altitud y zonas de vida. Para la de Colombia no se registró fecha de recolección. Como la semilla fue colectada durante el mismo año, se eliminó el posible efecto de variación debido al año de recolección pero no la variación ambiental debida a sitios. En cada sitio se cosecharon semillas de 15 árboles separados aproximadamente por 100 m sin considerar ninguna

característica en particular. La Fig. 1 y el Cuadro 1 muestran, respectivamente, la localización y las características de clima de los sitios de recolección.

En semillas, se cuantificó la variación fenotipica debida a efectos genéticos y ambientales. También se cuantificó la variación genética entre procedencias, a nivel de plántulas, en vivero y campo en un sitio, hasta 120 días después de plantadas.

Para el estudio a nivel de semillas se utilizó un diseño de bloques completos al azar con ocho procedencias, cinco repeticiones y parcelas de 25 semillas seleccionadas al azar. En cada semilla se evaluaron cuatro variables básicas y dos derivadas:

- 1. Longitud (L) en (mm)
- 2. Ancho (A) en (mm)
- 3. Espesor (E) en (mm)
- 4. Peso (P) en g
- 5. Ancho/largo (forma) A/L
- 6. Volumen (LxAxE) en (mm³)

En la etapa de vivero, las semillas fueron colocadas en agua a temperatura ambiente durante 24 horas, como tratamiento pregerminativo. La siembra directa se realizó en bolsas de polietileno de 22 cm de largo y 17.5 cm de ancho. Se utilizó una mezcla de tierra, arena y compost (1:1:1) para llenar las bolsas y se agregó 0.05 g/bolsa de 10N-30P-10K. Se aplicó riego por aspersión cuando fue necesario y maneb r-80 (4 g/l) (etileno-bisditiocarbamato de manganeso) para prevenir el mal del talluelo.

En esta etapa, se utilizó un diseño de bloques completos al azar con ocho procedencias, cinco repeticiones y parcelas de 25 plantas útiles (una línea de borde); las siguientes variables fueron evaluadas durante los tres meses de crecimiento en vivero:

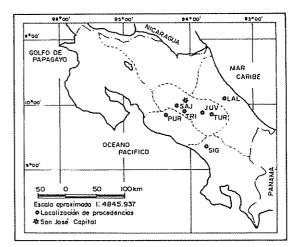


Fig. 1. Mapa de Costa Rica mostrando la localización de procedencias de *E. poeppigiana*.

Cuadro 1. Localización y características climáticas de las procedencias de Erythrina poeppigiana incluidas en el estudio en Costa Rica.

Sitio	Código	BLSF* No.	Latitud (N)	Longitud (D)	Elev. (msm)	•	Precipitación prom. anual (mm)		Zona de vida**	Germina- ción (%)
La Lola, Limón	LAL	2 164	10°06'	83° 23'	40	25.1	3 660	1	bmh-T	81
Turrialba, Cartago	TUR	2 165	09°53'	83°38'	602	21.7	2 661	1-2	bmh-P	74
San Isidro del General, San José	SIG	2 166	09° 22'	83°45'	750	24.2	3 092	3-4	bh-P	84
San Joaquín, Heredia	SAJ	2 167	10°00'	84°091	960	21.5	2 164	4-5	bh-P	57
Santiago de Puriscal, San José	PUR	2 169	09°51'	84° 19'	1 020	22.2	2 470	4-5	bmh-P	86
Tres Ríos, Cartago	TRI	2 1 7 0	09°55'	84°00'	1 350	171	2 713	4	bmh-MB	77
Juan Viñas, Cartago	JUV	2 171	09° 54'	83° 4 5 1	1 210	20.4	4 287	1-2	bmh-P	79
San José de Apartadó, Antioquía***	SJA	2 172	07° 20'	76°37'	25	28.4	، 2 413	2	bh-T	60

^{*} Banco Latinoamericano de Semillas Forestales, CATIE, Costa Rica

- Longitud del hipocotilo (L) en mm a los 30 días de la siembra;
- 2: número de hojas verdaderas a los 90 días;
- 3: altura total (h) en mm cada 15 días después de los primeros 30 días;
- 4: diámetro basal (d) en mm al nivel del suelo a los 90 días;
- 5: longitud de raíz principal en cm a los 90 días en cinco plantas por procedencia;
- 6: número de nódulos (> 1 mm de diámetro) a los 90 días en cinco plantas por procedencia;
- 7: peso seco aéreo en g en las mismas plántulas del punto 6, a 70°C;
- 8: peso seco radical en g en las mismas plántulas del punto 6;
- 9: peso seco total en g de la suma de los puntos 7 y 8.

Para la etapa de campo se utilizó el mismo material de la etapa de vivero. El experimento fue establecido en terrenos del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). El sitio se encuentra a 9°54' de latitud norte, 83°41' de longitud oeste y a 605 msnm; tiene una precipitación anual de 2661 mm, 22, 2°C de temperatura media anual y 88% de humedad relativa. La topografía es plana; el suelo es de origen aluvial y moderadamente permeable; la densidad aparente es alta (1.01 a 1.27 g/cc); el contenido de materia orgánica varía de 1 a 6.9%; pH ácido (4.5 a 5.5); textura franco areillosa y fertilidad de media a baja.

El terreno fue chapeado manualmente, con aplicación posterior de "roundup" (120 cc/bomba de 16 l) (glifosato) para controlar el pasto estrella africana (Cynodon nlemfluensis) Se utilizó un diseño de bloques completos al azar con ocho procedencias, cuatro repeticiones y parcelas útiles de 20 árboles (4 x 5), con borde de una línea de árboles. Los árboles fueron plantados a 2.5 m x 2.5 m y se realizaron limpias manuales a los 30, 60 y 90 días. Las siguientes variables fueron cuantificadas durante los primeros 120 días después de la plantación:

- 1 Altura total (cm) a 30, 60, 90 y 120 días);
- 2 diámetro basal (mm) a 30, 60, 90 y 120 días);
- 3 número de espinas en el eje terminal en una sección de 10 cm, a 5 cm de la terminal hacia abajo a 120 días, en ocho plántulas por parcela;
- 4 longitud del pecíolo (cm) en tres hojas de la parte central de la copa, a 120 días, en ocho plántulas por parcela;
- 5 longitud de la hojuela central (cm) de la misma muestra del punto 4;
- 6 ancho de la hojuela central (cm) de la misma muestra del punto 4;
- 7. relación ancho/largo de los puntos 5 y 6.

RESULTADOS Y DISCUSION

Las semillas comenzaron a germinar ocho días después de la siembra; más del 70 por ciento de la germinación ocurrió dentro de los 22 días después de la siembra. Las procedencias San Joaquín de Heredia y San José de Apartadó (Colombia) alcanzaron 57 y 60% de germinación, respectivamente, como los porcentajes más bajos (Cuadro 1). Es posible que las diferencias en porcentaje de germinación obedezcan a diferencias entre árboles; o bien, que, por fluctuaciones climáticas, la semilla cae sin haber

^{**} Sistema Holdridge

^{***} Colombia

alcanzado la madurez fisiológica como ocurre en varias especies (19)

Las ocho procedencias mostraron un promedio de 4386 semillas por kg; un largo promedio de 12.9 mm; un acho promedio de 5.8 mm y un espesor promedio de 61 mm. Las procedencias de Turrialba, Tres Ríos y Puriscal presentan las semillas con dimensiones mayores; las de Colombia, La Lola y San Isidro del General presentan las más pequeñas. El número de semillas/kg varió desde 3472 para Turrialba (que tiene las semillas más grandes), hasta 5814 para Colombia que muestra las más pequeñas. La Lola presentó las semillas más pequeñas de las procedencias de Costa Rica (4900/kg). El análisis de varianza y la prueba de Tukey (P ≤ 0.05) (Cuadro 2) confirman estas diferencias, donde las seis variables estudiadas mostraron diferencias altamente significativas (P ≤ 0.01) Campos (3) y Salazar (18) también encontraron diferencias al estudiar las dimensiones en semillas de Gliricidia sepium y Calliandra calothyrsus, especies de la región que se encuentran creciendo naturalmente en diversas condiciones de sitio. Los componentes de varianza para las seis variables fluctuaron entre 18 y 88%, aunque las semillas fueron colectadas el mismo año. Estos resultados deben ser interpretados con precaución pues las variables de las semillas pueden ser fuertemente afectadas por las características del medio ambiente; por ejemplo, es posible que las semillas tengan diferencias de hidratación ya que vienen de zonas ecológicamente distintas

Es sabido que el tamaño de las semillas varía según la zona ecológica y según la condición climática del año de producción (7, 19)

Es posible que las dimensiones de las semillas no estén relacionadas con la germinación. La germinación menor de la procedencia de Colombia puede estar relacionada con la edad de la semilla y su procesamiento antes de enviarla a Costa Rica, información que se desconoce. La Fig. 2 muestra que hay una clara tendencia en que a mayor temperatura del sitio de recolección, mayor es el número de semillas/kg (r = + 0.60***). La literatura menciona que hay una tendencia a aumentar el tamaño de las semillas en zonas altas o secas, como mecanismo de conservación de la especie; esto le permite a la semilla tener mayor contenido de agua y nutrimentos durante la germinación y desarrollo de la plántula (1, 7).

De las características estudiadas a nivel de vivero la longitud del hipocotilo mostró un promedio general de 49.7 mm; la diferencia entre la longitud mayor (Puriscal) y la menor (Colombia) fue de 21 mm. El crecimiento en altura, durante los 75 días de vivero, mostró un comportamiento uniforme en el tiempo. Las procedencias Turrialba, Puriscal, San Isidro del General, Tres Ríos y La Lola mostraron 203 mm de altura promedio (Turrialba, la más alta: 214 mm; San José de Apartadó, la más baja: 116 mm) La procedencia de crecimiento menor en Costa Rica fue

Cuadro 2 Análisis de varianza y prueba de Tukey para las seis variables analizadas en semillas de ocho procedencias de E poeppigiana. Turrialba. Costa Rica

				L	irgo (mr	n)	An	cho (mn	1)	E	spesor (n	ım)	
No	Fuentes de variación	gt	Prueba	CM	Sig	CO	СМ	Sig	CO	CM	Sig	СО	Permitter of Properties and Publishers and Publishe
1	Bloque (B)	4	3	40	NS	1	0 7	NS	0	0.8	NS	0	
2	Proc (P)	7	3	1470	** 非 *	42	27.5	***	44	121	***	23	
3	B * P	28	4	1.5		0	0.4	NS	1	0.5	*	2	
4	Semillas	960				57	0 2		55	0 3		75	
	Canada			Proc	CV	x	Tukey Proc	CV	$\bar{\mathbf{x}}$	Tukey Proc.	CV	$\bar{\bar{\mathbf{x}}}$	Tukey
				TUR	9	14.3	t TRI	9	68	ı TUR	9	6.5	ı
				PUR	10	13.7	TUR	8	6.4	PUR	11	6.3	
				TRI	9	13.5	SAJ	11	6.3	TRI	9	6.3	
				JUV	10	13.2	I JUV	8	6.3	JUV	9	61	
				SAJ	9	127	PUR	9	61	SAJ	8	6 1	
				SIG	10	12.7	li sig	8	58	SIG	10	60	
				LAL	11	124	LAL.	8	5.5	LAL	9	5 7	
				SJA	7	10.7	' SJA	6	5.4	SJA	6	5 6	

^{* (}P < 0.05) *** (P< 0.001)

CO (%) = Componente de varianza CV (%) = Coeficiente de variación

NS no significativa

Tukey = P < 0.05, promedios unidos por la barra

⁽P > 0.05)

~			, m	
Con	nnna	cion	Cuac	iro 2.

Volumen	(L x A	x E) (mm	1 ³)	Relac	ión anch	o/largo					Peso (g)		
СМ	Sig	C0		CM	Sig	со	No	Fuentes de variación	gl	Prueba	CM	Sig	со	
36	NS	0		0.01	NS	0]	Rept (R)	4	3	0 14	NS	1	
1 057	* * *	42		0.09	भार अंद भार	18	2	Proc (P)	7	3	4 02	张水林	88	
16	NS	1		0.01	NS	0	3	Error	28		0.09		11	
10 950		57		0.01		82								
Proc	CV	χ	Tukey	Proc	CV	χ̄	Tukey		and the state of t		Proc	CV	x	Tukey
TUR	18	596 3	1,	TRI	15	0.46					TUR	4	7 2	f
TRI	22	568 1	Ш,	SJA	11	0.46					TRI	5	6.5	
PUR	27	538.3		SAJ	13	0.46					PUR	6	63	
JUV	21	5171	.	JUV	15	0.44	1				JUV	7	60	١.
SAJ	2.3	501.1	1	SIG	13	0.42	1				SIG	5	56	
SIG	23	449.2		PUR	11	0.41	1				SAJ	8	5 6	
LAL	21	392.4		TUR	15	0.40					LAL	5	5 1	
SJA	14	324 1		LAL	15	0.40					SJA	2	43	•

San Joaquín de Heredia. Un comportamiento similar se observó para el resto de las variables cuantificadas a nivel del vivero, donde la procedencia San José de Apartadó y San Joaquín de Heredia presentaron los promedios más bajos y se comportaron como poblaciones diferentes. El resto de las procedencias no mostró diferencias significativas a nivel de la prueba de Tukey (Cuadro 3).

Los componentes de la varianza fueron considerablemente altos, a excepción de la variable número de nódulos, donde sólo el nueve por ciento de la variación observada se debe a las procedencias (Cuadro 3)

Los pesos secos de la raíz, la parte aérea y el total de la planta, no mostraron más del 15% de variación genética. En términos generales, los coeficientes de variación dentro de procedencias fueron considerablemente altos, particularmente en el caso de los pesos secos. Esto indica que dentro de las poblaciones hay una variación alta en el crecimiento y morfología de los individuos.

La altura total a los 75 días mostró un lígero grado de asocio con el peso de las semillas (r = +0.52***), lo que indica que las semillas grandes producirán plantas grandes en vivero. Resultados similares han sido informados para G. sepium por Salazar (18).

Se observó una ligera tendencia de aumento en peso seco de la raíz y el peso seco total, al aumentar la precipitación de la zona de origen de las semillas (r = +0.40***; r = +0.32***, respectivamente). Es posible que las procedencias de sitios más lluvio-

sos hayan desarrollado un sistema radical mayor para poder así anclar el árbol que es de porte muy alto; y a su vez, esto implica una exploración del suelo más eficiente lo cual se traduce en crecimiento y producción de más biomasa.

El análisis del crecimiento mensual en altura total, durante los primeros cuatro meses en el campo, mostró que las ocho procedencias conservan la misma tendencia de crecimiento, aunque hay ligeras diferencias en altura. A los 120 días, la procedencia La Lola presentó la altura promedio mayor (84.4 cm); la diferencia con San José de Apartadó (la más baja) fue de 23 cm, diferencia que se considera de poca im-

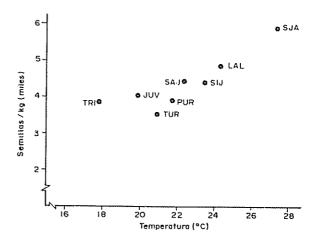


Fig 2. Variación en el número de semillas por kilogramo en procedencias de E. poeppigiana con respecto a la temperatura promedio del origen

portancia práctica. Un comportamiento similar se observó en el diámetro basal. El análisis de varianza y la prueba de Tukey (Cuadro 4) indican que no hubo diferencias estadísticamente significativas después de los primeros 60 días; igual cosa sucedió para las cuatro variables estudiadas en las hojas. Es interesante apuntar que La Lola, con un crecimiento en altura comparativamente bajo y mayor en dap y biomasa

a nivel de vivero, fue la procedencia con crecimiento mayor a nivel de campo. Es posible que, al pasar esta procedencia al campo, se estimule el desarrollo del sistema radical lo que provoca un crecimiento más acelerado. Las procedencias San José de Apartadó y San Joaquín de Heredia continuaron mostrando los crecimientos más bajos.

Cuadro 3 Análisis de varianza y pruebas de Tukey para 12 variables en plántulas de ocho procedencias de E poeppigiana en la etapa de vivero. Turrialba. Costa Rica

		1	ongitud c	lel hipoco	tilo (mn	n)		Número	de hojas v	erdaderas		
No	Fuentes de variación	gI	Prueba	СМ	Sig	CO		СМ	Sig	со		
1	Bloque (B)	4	3	1 698	非非	3		37	***	4		
2	Proc. (P)	7	3	6 295	***	24		70	***	15		
3	B * P	28	4	323	nis nis nis	4		4	*	2		
4	Arboles	960		137		69		3		79		
				Proc	CV	x	Tukey	Proc	CV	x	Tukey	
				PUR	17	57 0	1	SIG	15	120		
				JUV	23	56.0		PUR	17	119		
				SIG	25	54.3		TRI	15	11.7		
				TUR	24	53 9		TUR	15	114		
				TR1	27	49 3		LAL	14	111		
				LAL	25	47.7	. []	JUV	16	110	. 1	
				SAJ	28	43 4		SAJ	18	10.7	i	
				SJA	28	36 4	. !	SJA	15	98		

Continuación Cuadro 3.

			***************************************		.,		Altura	total (mm)							
	30 días				45 días				60 días				75 días		
CM	Sig	со	.,	CM	Sig	со		CM	Sig	со		СМ	Sig	со	
2 749	**	3		3 944	**	3		8 292	*	3		37 390	*	5	
15 790	水準率	36		26 310	***	38		55 120	***	39		138 600 9 816	***	34	
539 193	ው መ ^ተ	4 57		904 295		4 55		2 186 578	-rrr	6 52		1512	.,	11 50	
125		-		/											
Proc.	CV	x	Tukey	Proc	CV	x	Tukey	Proc	CV	X	Tukey	Proc.	CV	x	Tukey
PUR	16	77 2		PUR	16	100 3	1.	PUR	16	140 4	1.	TUR	28	214 0	1.
iIG	21	75 3		SIG	27	96 9	,	TUR	23	135 7		PUR	19	208 0	
UV	21	71.2	ı	TUR	22	928		SIG	22	135 0		SIG	25	204 9	
TUR	24	710		TRI	21	92 6	1	TRI	20	134 8		TRI	22	199 4	
ľRI	23	68 6	1	JUV	20	88 5		LAL	22	124 9		LAL	23	1910	11
LAL	24	63.2		LAL	23	84 1	-	JUV	19	1217	l	JUV	21	173 5	
SAJ	26	55 5	•	SAJ	24	72 8	•	SAJ	23	104 4		SAJ	24	155.2	
SJA	25	43.7		SJA	23	564		SJA	23	78.3		SJA	24	1159	

Continuación Cuadro 3.

Diáme	tro basal	(mm)	Longit	ud raíz p (mm)	rincipal	Núm	ero de nô	dulos	Peso seco (g)			
CM	Sig	CO	CM	Sig	со	СМ	Sig	co	CM	Sig	CO	
509	NS	0	166	NS	3	1 929	NS	10	1 758	*	6	
5 711	***	24	192	nic .	6	8 834	मेर और भेर	9	2 248	**	15	
299	** *** #1	4	72	NS	0	1 436	NS	0	5 097	NS	7	
132		72	74		91	1 329		81	3 430		72	
Proc.	CV	χ	Tukey Proc	CV	x	Tukey Proc	CV	$\bar{\mathbf{x}}$	Tukey Proc	CV	x	Tukey
L.A.L	18	7 9	l LAL	22	40 0	ı LAL	66	80 1	LAL	46	48 2	f
PUR	14	79	TUR	26	39 0	SIG	61	73 7	SIG	48	44 9	
TRI	17	7.3	JUV	27	38.5	TRI	56	69 2	TUR	54	42 6	
TUR	15	7.1	1 SIG	24	37 3	TUR	47	61.9	TRI	53	39 8	
SIG	16	7.1	TRI	27	35 6	JUV	65	61.2	JUV	64	39 8	
IUV	16	68	SAJ	21	35 4	PUR	50	58.4	PUR	37	36.3	1.
SAJ	17	66	PUR	18	35 3	SAJ	70	48.4	SAJ	60	29 4	Ш
SJA	17	58	SJA	25	31.2	SJA	85	19.2	SJA	52	186	`

^{* (}P < 0.05) CO (%) = Componente de varianza

Continuación Cuadro 3.

Peso	o seco rai (g)	dical	Pes	o seco t (g)	otal	
СМ	Sig	СО	СМ	Sig	со	
78	NS	ı	2 517	*	5	
235	**	12	3 880	at akr	15	
67	NS	7	857	NS	7	
45		80	587		73	
Proc	CV	Χ̈	Tukey Proc.	cv	x	Tukey
LAL	43	19 4	l LAL	44	67 6	ŀ
JUV	52	166	SIG	44	61.2	İ
TUR	40	16.3	TUR	50	58 9	
SIG	47	16.3	JUV	59	56 4	
PUR	39	16.3	TRI	48	55 9	
TRI	46	161	PUR	37	52 6	1
SAJ	48	123	SAJ	49	41.7	- 11
SJA	50	94	1 SIY	50	28.0	1

^{** (}P < 0.01) CV (%) = Coeficiente de variación

^{*** (}P < 0.001) Tukey = P < 0.05, promedies unidos por barra

NS No significativa (P > 0 05)

Como en las etapas de semillas y vivero, las diferencias mayores -principalmente en crecimientofueron observadas dentro de las poblaciones. Esta condición ofrece una buena alternativa para seleccionar individuos con crecimientos mejores; pero, antes es necesario determinar la relación que existe entre las variables de crecimiento, y la producción en cortes sucesivos de biomasa la cual es uno de los parámetros de mayor importancia práctica en poró

Cuadro 4 Análisis de varianza y prueba de Tukey para 13 variables de crecimiento y morfología en plántulas de ocho procedencias de E. poeppigiana en la etapa de campo, en Turrialba, Costa Rica.

						Alt	ura total (em)							
***********				-	30 días				60 días				90 días		
No.	Fuente de variación	gl	Prueba	CM	Sig	CO		CM	Sig	со		СМ	Sig.	со	
1 2	Bloque (B) Proc. (P)	3 7	3	1040 1657	NS **	5 20		1873 2593	NS	3 11		3912 4205	NS NS	3	
3 4	B * P Arboles	21 605	4	381 44	***	21 54		924 117	* 11: *	22 64		2182 256	****	25 66	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Proc	CV	x	Tukey	Proc	c۷	x	Tukey	Proc.	CV	x	Tukey
				SIG TRI LAL TUR PUR JUV SAJ SJA	21 22 24 25 22 23 27	37:8 36 5 35 5 35 4 34 6 -33 0 28 0 24 6		SIG LAL TRI TUR PUR JUV SAJ SJA	28 26 25 28 28 24 27 28	52 5 50 4 49 8 46 9 46 7 44 6 39 9 35 5	S T T T T T T T T T T T T T T T T T T T	AL IG TRI UR UV AJ JA	28 33 30 33 33 27 30 30	68 5 68 2 64 0 60 4 57 7 56 7 51 1 49 1	

 $⁽P \le 0.05)$ $(P \le 0.001)$

Continuación Cuadro 4.

		A		***************************************		· · · · · · · · · · · · · · · · · · ·		Diár	netro	basal (mm)								
	120	días		-	30 dias	3		6	0 dias	i			90 dia	s		1	20 dí	as	
CM	Sig	со		CM	Sig	со		CM	Sig	co		CM	Sig	CO		CM	Sig	СО	
6869	NS	2		4378	NS	2		12510	NS	3		21210	NS	ŀ		97640	NS	5	
6645	NS ***	5 27		9722	非非水	13		20060	***	11		27580	NS ***	4		45640	NS	2	
4157 447		66		1841 574	4-4-2-	9 76		5572 1276	de aleste	12 74		15470	<u>ት</u> ጉ ጉ	19 76		37370 4884	***	23 70	
Proc	CV	x	Tukey	Proc	C۷	\bar{x}	Tukey	Proc	CV	x	Tukey	Proc	CV	x	Tukey	Proc	CV	x	Tukey
LAL	30	84.4	1	LAL	18	144	1	LAL	20	19.7	11	LAL	22	24.7		LAL	24	31.4	ı
SIG	37	84 0	ł	JUV	23	129	-	SIG	22	17.5		SIG	27	22.4		SIG	28	29 0	
TRI	33	77.5	}	SIG	19	128		JUV	2.3	174		TRI	22	22.3	i	TRI	27	28 9	
PUR	34	73.2		TRI	20	127		TRI	19	174		JUV	24	21.9		JUV	29	28 0	
JUV	29	68 4		PUR	21	12.7		PUR	16	168		PUR	30	21.5		₽UR	34	27.2	
TUR	38	68 0		TUR	21	12.1		TUR	25	162	- []	TUR	31	21.0		TUR	32	26.4	
SAJ	34	619	ŀ	SAJ	19	11.3		SAJ	24	15.0		SAJ	24	191		SAJ	30	24 6	
SJA	33	61.0	l	SJA	20	10 7	1	SJA	22	147	- 1	SJA	27	18.2		SJA	29	24.2	1

No significativa (P > 0 05)

CO (%) = Componente de varianza CV (%) = Coeficiente de variación Tukey = $P \le 0.05$, promedios unidos por la barra

~			, e	
1 00	tını	terries to	Cuadro	۱. Δ

No. do el eje	e espin princ		de la hoja (cm)						go de iela (c				icho d hojue			Relac largo c	ión an le la h		
CM	Sig.	CO		CM	Sig	CO		CM	Sig	CO		CM	Sig	co		CM	Sig	со	
301	NS	0		146	NS	0		9537	NS	0		13880	NS	0		0.04	NS		····
802	NS	10		19	NS	0		9739	NS	0		12690	NS	Ō		0.05	NS	4	
362	***	25		259	***	34		25080	***	37		26390	***	38		0.02	***	11	
89		65		19		66		1692		63		1673		62		0.00		84	
Proc	CV	x	Tukey	Proc	cv	$\ddot{\mathbf{x}}$	Tukey	Proc.	CV	x	Tukey	Proc	cv	x	Tukey	Ргос	€V	x	Tukey
SAJ	37	35 1	1	TRI	31	160	1	LAL	24	191.7	1	LAL	25	1819	1	SJA	10	0 95	
TUR	3.3	33.1		SJA	33	15.9		TRI	24	1877		SJA	29	172 9		SIG	9	0.95	
JUV	10	28.7		JUV	27	156		SJA	25	180.0	ı	TRI	25	172 2		LAL	7	0.95	
TR1	79	28.0		TUR	39	15.4	İ	TUR	30	176.8		SIG	27	165 0		TRI	8	0.92	
PUR	39	26.8		LAL	30	15.3		SIG	26	173.2	[TUR	32	1614		SAJ	8	091	
LAL	53	25.1	ļ	SIG	28	15.3		PUR	34	169 3		PUR	37	157 1	- [PUR	10	0.91	
SJA	40	24.6		PUR	41	15.1		JUV	26	169.0	-	JUV	27	1516	- 1	TUR	8	0.91	
SIG	42	194	water	SJA	37	14.5	ļ	SJA	33	161.5	1	SAJ	36	148 8	1	JUV	8	0.90	

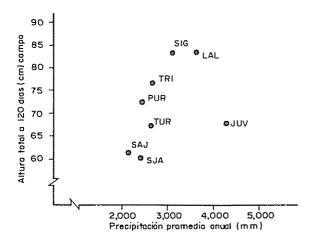


Fig 3 Relación de la altura total a 120 días con la precipitación media anual del sitio de recolección de procedencias de E. poeppigiana en Costa Rica.

A los 90 días, la procedencia San Isidro del General presentó un promedio de 19 espinas en la sección de 10 cm de largo, en la parte alta del fuste, como promedio más bajo. San Joaquín de Heredia mostró 35 espinas, como el más alto. El coeficiente de variación fluctuó entre 29 y 53%, lo cual indica que existe una variación relativamente alta en la frecuencia de espinas dentro y entre las poblaciones. La Lola, con el coeficiente de variación más alto, presentó tres árboles sin espinas, aspecto muy importante que facilita la poda y el manejo del

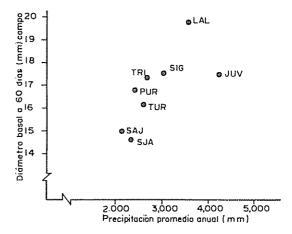


Fig 4 Relación del diámetro basal a 60 días, y la precipitación media anual del sitio de recolección de procedencias de E poeppigiana en Costa Rica.

material como forraje. Esta procedencia mostró las hojas más grandes y San José de Apartadó las más pequeñas. Es posible que esta característica esté asociada con el crecimiento inicial mostrado por las procedencias, aunque también es necesario considerar el efecto del índice de área foliar.

No se detectó ninguna relación entre las características evaluadas en las semillas y el crecimiento a nivel de campo, a excepción de la altura total a 30 días, que sí mostró un ligero grado de asocio positivo con

el peso de la semilla $(r = +0.44^*)$. Esto indica que, posiblemente, las características morfológicas de las semillas en las procedencias estudiadas no son buenos indicadores de la variación genética de los árboles en su estado juvenil. Resultados similares para G sepium han sido informados por Salazar (18).

Se detectó un ligero grado de asocio entre la precipitación de los sitios de origen de las semillas y la altura total a 120 días (r = + 0.22***) y diámetro basal a 60 días (r = + 0.31***). Estas correlaciones, aunque son bajas, dan una ligera indicación de que las procedencias de los sitios más lluviosos tiene la tendencia a presentar un crecimiento juvenil más acelerado (Figs. 3 y 4). Es posible que las procedencias de los sitios con más meses lluviosos y menos luminosidad, hayan desarrollado un proceso fotosintético más eficiente. Como se indicó anteriormente, esta tendencia de crecimiento mayor parece ser independiente del tamaño de las semillas ya que los sitios de precipitación mayor presentan las semillas más pequeñas.

Las correlaciones entre la altura total y el diámetro basal a 75 días en vivero y 120 días en el campo, también fueron relativamente bajas (r = +0.24*** y + 0.35***). Se observó que las procedencias con desarrollo mayor, a nivel de vivero, tienen la tendencia a conservar un crecimiento ligeramente similar en el campo hasta los 120 días.

CONCLUSIONES Y RECOMENDACIONES

Este primer análisis de la variación en un sitio, debida a efectos genéticos de *E poeppigiana* en Costa Rica, indica que la especie posiblemente ha sufrido cambios genéticos durante los 80 años de haber sido introducida en el país, para adaptarse a las distintas condiciones ecológicas que ahora ocupa. Aunque estos cambios, desde el punto de vista morfológico, no son tan profundos, al menos, para las variables estudiadas a nivel de semillas y de estado juvenil, si dan una indicación clara de que algunas poblaciones presentan patrones de crecimiento ligeramente distintos. Sin embargo, es posible que las diferencias observadas se deban a diversas introducciones originales.

Es interesante hacer notar que, para la mayoría de las características estudiadas en semillas y plántulas a nivel de vivero y a nivel de campo, la procedencia de San José de Apartadó de Colombia (única fuente de semilla de la zona de origen de la especie incluida en el estudio) y San Joaquín de Heredia, mostraron los valores más bajos. Esto sugiere que la

introducción original a Costa Rica no fue por via de Apartadó, Colombia. Posiblemente, la procedencia de San Joaquín de Heredia haya sido derivada de material diferente con calidad genética pobre.

Aunque las diferencias detectadas entre el material de Costa Rica fueron pequeñas si es importante apuntar que, con respecto al crecimiento juvenil, La Lola, San Isidro del General y Tres Ríos mostraron los crecimientos mayores, mientras que la procedencia San Joaquín de Heredia se caracterizó por presentar los crecimientos más bajos. También se observó una relación positiva entre crecimiento en altura total y diámetro basal a los 120 días y la precipitación de la región de origen.

Las procedencias de los sitios con precipitación más alta presentan crecimientos juveniles superiores, posiblemente como resultado de la selección natural para sobrevivir en sitios con exceso de humedad y crecimiento rápido de la maleza. Es importante considerar esta característica al seleccionar material para ser utilizado como sombra de café y para producción de forraje.

Hay diferencia en el tamaño de las hojas entre procedencias; este es un aspecto importante en la producción de forraje y que podría ser considerado en un programa de selección.

Para la mayoría de las variables estudiadas se observó una gran variación dentro de cada población, lo cual es muy importante desde el punto de vista de selección de individuos con características deseables, siempre que la heredabilidad de estos caracteres sea alta.

La presencia de espinas en la especie, que es una característica indeseable, presenta una variación muy alta dentro de las poblaciones y a lo largo del árbol.

Es necesario hacer una evaluación más detallada de esta variable entre y dentro de procedencias cuando el árbol tenga dimensiones mayores; también, es necesario determinar su relación con variables de producción.

Dado que el poró es una especie que usualmente se somete a podas fuertes, es importante evaluar la respuesta de las procedencias a esta práctica, la variación en producción de biomsa y la calidad nutricional de la misma, así como los aspectos de mejoramiento del suelo y posibilidades de utilización en la alimentación de ganado.

LITERATURA CITADA

- BAKER, H. 1972. Seed weight and relation to environmental conditions in California. Ecology 53(6): 997-1010.
- BORCHERT, R. 1980 Phenology and ecophysiology of tropical trees: Erythrina poeppigiana O.F. Cook. Ecology 61(5):1065-1074
- CAMPOS, A., J.J. 1985. Variación genética e interacción genotipo-ambiente en procedencias de Calliandra spp. en Costa Rica. Tesis Mag Sc Turrialba, Costa Rica, UCR-CATIE. 88 p.
- COSTA RICA, SERVICIO METEOROLOGICO NACIO-NAL. 1962. Boletín meteorológico año 1960. San José, Costa Rica. 42 p.
- COSTA RICA INSTITUTO METEOROLOGICO NA-CIONAL 1975. Anuario meteorológico año 1972, San José, Costa Rica.
- COSTA RICA. INSTITUTO METEOROLOGICO NA-CIONAL 1981. Anuario meteorológico año 1980. San José, Costa Rica. 243 p
- HARPER, J.; LOWELL, P.; MOORE, K. 1970. The shapes and sizes of seeds. Annual Review Ecology and Systematics. p. 327-356
- 8. HOLDRIDGE, L. R.; POVEDA, L. 1975. Arboles de Costa Rica v. 1. San José, Costa Rica, p. 154-162.
- JIMENEZ, O F. 1985. Resumen acumulado de datos agroclimáticos. Turrialba, Costa Rica, CATIE 1 p
- 10. KRUFOFF, B A. 1939. The American species of Erythrina Brittonia 3(2):205-337
- 11. KRUKOFF, B.A. 1976 Notes on the species of *Erythrina* Physiology 33(5):342-356
- LAMPRECHT, H.; HUECK, K. 1959. Estudios morfológicos y ecológicos sobre la germinación y el desa-

- rrollo de la primera juventud de unas especies forestales en Venezuela Instituto Forestal Latinoamericano de Investigación y Capacitación, Mérida, Venezuela Boletín No. 3, 37 p.
- NITROGEN FIXING TREE ASSOCIATION. 1986
 Erythrina provides beauty and more. Waimanalo, Hawaii 2 p. (NIFTA HIGHLIGHTS).
- 14 RAVEN, P.H. 1974 1974 Erythrina (Fabaceae: Achievements and opportunities Lloydia 37:321-331.
- RUSSO, A, R.O. 1983a Descripción de Erythrina poeppigiana (Walpers) O.F. Cook. Turrialba, Costa Rica, CATIE. 7 p.
- 16. RUSSO, A., R.O. 1983b. Efecto de la poda de Erythrina poeppigiana (Walpers) O.F. Cook (Poró), sobre la nodulación, producción de biomasa y contenido de nitrógeno en el suelo en un sistema agroforestal "Café-poró" Tesis Mag. Sc. Turrialba, Costa Rica, CATIE 108 p.
- RUSSO, A., R.O. 1984. Erythrina. Un género versátil en sistemas agroforestales, revisión bibliográfica. Turrialba, Costa Rica, CATIE. 14 p.
- 18 SALAZAR, R 1985. Genetic variation in seeds and seedlings of ten provenances of Gliricidia sepium (Jacq.) Steud. In Symposium on "Establishment and productivity of tree plantings in semi-arid regions". Kingsville, USA, Texas, University 17 p.
- TURMBULL, J W. 1975. Assessment of seed crops and the timing of seed collections. In FAO/DANIDA Training course on forest seed collection and handling v. 2. p. 79-94.
- WILLIAMS, L. 1942. Exploraciones botánicas en la Guayana Venezolana I. El medio y bajo Caura. Caracas, Venezuela, Ministerio de Agricultura y Cría. p. 252-253.

Notas y Comentarios

Recientes avances en el estudio de la estructura de la célula

Para la mayoría de los biólogos moleculares, en las últimas décadas, el interés primordial ha sido en el DNA. Esta ingeniosa sustancia química contiene no sólo las instrucciones para ensamblar y operar la máquina corporal sino todos los planos para construir el equipo necesario. Su código puede ser leído, escrito y editado. Constituye, obviamente, la cosa por estudiar. Por eso, la gran mayoría de los investigadores en

biología molecular se han dirigido a ubicar genes especiales en el DNA, a incorporar nuevos genes al DNA, multiplicar estos genes en el laboratorio y hacer otras cosas por el estilo.

Como resultado de esa percepción, la mayor parte de las personas interesadas en la ciencia piensa en la célula como conteniendo DNA debidamente ordenado, como un archivador y que el resto es una papilla sin interés El mismo nombre para el resto de la célula, citoplasma, evoca una imagen de flema amorfa. Esta actitud no podría ser más equivocada. Dentro del citoplasma existe una compleja estructura, llamada el citoesqueleto, que actua tanto como andamio así como ferrocarril interno. Conforme se han mejo-