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Abstract: Accurate determination of plant water status is mandatory to optimize irrigation scheduling
and thus maximize yield. Infrared thermography (IRT) can be used as a proxy for detecting
stomatal closure as a measure of plant water stress. In this study, an open-source software (Thermal
Image Processor (TIPCIP)) that includes image processing techniques such as thermal-visible image
segmentation and morphological operations was developed to estimate the crop water stress index
(CWSI) in potato crops. Results were compared to the CWSI derived from thermocouples where a high
correlation was found (rPearson = 0.84). To evaluate the effectiveness of the software, two experiments
were implemented. TIPCIP-based canopy temperature was used to estimate CWSI throughout
the growing season, in a humid environment. Two treatments with different irrigation timings
were established based on CWSI thresholds: 0.4 (T2) and 0.7 (T3), and compared against a control
(T1, irrigated when soil moisture achieved 70% of field capacity). As a result, T2 showed no significant
reduction in fresh tuber yield (34.5 ± 3.72 and 44.3 ± 2.66 t ha−1), allowing a total water saving of
341.6± 63.65 and 515.7± 37.73 m3 ha−1 in the first and second experiment, respectively. The findings
have encouraged the initiation of experiments to automate the use of the CWSI for precision irrigation
using either UAVs in large settings or by adapting TIPCIP to process data from smartphone-based
IRT sensors for applications in smallholder settings.

Keywords: infrared thermography; image processing; canopy temperature; crop water stress index

1. Introduction

The relationship between water contents in the plant and yield has been well established [1,2].
The use of standardized parameters based on physiological thresholds that lead to photosynthetic
impairment if surpassed have been successfully used [3–6]. Nevertheless, assessing the water status
of a few leaves seldom represents the water status of the field, and thus irrigation decisions would
benefit from noninvasive and nondestructive methods covering larger ranges [7,8]. The use of remote
sensing for assessing plant water status on different scales, providing near real-time assessments, might
become an adequate option. Notwithstanding, the approach has to be tested under field conditions
with crops sensitive to water deficiency. Potato (Solanum tuberosum L.)—considered to be the third most
prevalent edible crop in production after wheat and rice [9]—was used as an example. Its sensitivity to
water scarcity (highly associated with a shallow root system) [10] and its cultivation in drought-prone
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zones caused by climate change [11] are the drivers spurring research to find ways to maximize potato
yields while reducing water resources. The use of physiological thresholds has contributed to this goal;
thus, Ramírez et al. [6] recommend keeping leaves at maximum stomatal conductance (associated
with leaf pore openness and gas exchange) at saturated light >0.15 mol H2O m−2 s−1 to guarantee
appropriate tuber yield whilst saving water. However, the use of this kind of physiological traits for
water status inspection requires expensive, exhaustive, invasive, yet microscale (leaf) assessments.
Thus, infrared thermography is seen as a promising technology that can detect variations in the canopy
temperature (Tcanopy), and ultimately, estimate the crop water stress index (CWSI), an indicator highly
correlated with stomatal conductance [6,8,12](see Section 2.4 for further details).

On the basis of the black body radiation theory, an infrared thermography (IRT) camera can detect
the spectral radiance emitted by an object due to its temperature [13–15]. Such a radiance, which ranges
from 7 to 14 µm, is converted into electrical signals and then displayed as a 2D array or IRT image.
One of the shortcoming of current IRT image sensors is their typical resolution of 320 × 240 pixels,
which precludes appropriate identification of the spatial structure in the captured scene. Unlike its
CCD -based visible RGB counterpart, IRT sensors are based on a microbolometer, a sophisticated array
of small thermal sensors with a complicated manufacturing process [16]. To overcome this problem,
companies recently started to offer IRT camera systems that include a fixed visual (RGB) camera to
help identify regions of interest through additional image processing as well as to avoid convoluted
image registration methods [17,18].

Numerous agricultural studies have reported the use of infrared thermography along with
particular acquisition methodologies to analyze different plant parameters and conditions. For example,
Pitarma et al. [19] evaluated tree health through the use of IRT images. In this study, identification
of healthy and unhealthy tissues in the tree’s surface was performed through an analysis of infrared
thermographic data. Similarly, in [20], a review of pest detection applications based on infrared
thermography was reported. This comprehensive study includes the detection and identification of
the main pest in plant crops such as maize, rice, and soybean. With regard to water-stress estimation
in plants, Möller et al. [21] conducted an investigation on the water status of grapevines using
thermal and visible images acquired from a platform located 15 m above the canopy (nadir-pointing
view). This study aimed to analyze the correlation between the calculated CWSI and the measured
leaf stomatal conductance, resulting in a correlation of R2 = 0.91. Image processing steps in the
estimation of Tcanopy include image registration (i.e., alignment of multisensor images), which requires
the placement of aluminum crosses over the field, and the selection of canopy pixels in the thermal
image based on the transformation of the RGB image to hue-saturation-intensity color space followed
by a manual thresholding procedure. A similar study was conducted in [22] for cotton crops where leaf
water potentials showed a linear relationship with CWSI values (R2 = 0.816). Here, a nadir-pointing
view IRT camera was located 5 m above the crops. Since there was no additional sensor to detect
where the canopy was located in the scene, canopy pixels detection was based solely on estimated
temperature thresholds, thus avoiding the use of an additional sensor. In the context of potato crops,
Prashar et al. [23] implemented a high-throughput field phenotyping methodology to estimate CWSI
using IRT images. Image acquisition was performed from a fork-lift at a height of about 8 m, with an
angular inclination to cover up to 27–36 plots in the scene. Then, manual selection of the central
regions in the plots was performed to estimate the CWSI. Similarly to the previous study, the inclusion
of canopy pixels in the analysis was based on temperature thresholding.

Consequently, several factors can influence the accurate estimation of Tcanopy and the subsequent
calculation of the CWSI. First, the use of an independent, nonfixed sensor imposes an image registration
problem where convoluted image processing algorithms could be required. The use of control
points in the scene could alleviate the computational load while increasing the overall acquisition
time. Second, the optical setup, involving the camera viewing angle (θ) and the distance to the
object (dobject), defines the canopy scene to be analyzed, and an appropriate combination of such
parameters is needed to reduce the number of nonleaf pixels. Third, since the pixel resolution of



Sensors 2020, 20, 472 3 of 17

thermal cameras is notably low, a single pixel can detect both soil and leaf thermal radiation such
that thresholding based solely on temperature can yield a high level of uncertainty in the estimation
of Tcanopy. Finally, the studies mentioned above do not provide a detailed explanation regarding the
various image processing procedures involved in the use of thermal images; this is possibly due to the
dependence on commercial software.

This research has the following specific objectives: (1) To provide a thorough description of
infrared thermography for the estimation of canopy temperature, and subsequently the CWSI, in the
context of potato production; (2) to generate an open-source software to perform such tasks that can
be freely used by the agricultural remote sensing community; (3) to demonstrate that thermographic
sensors along with the described acquisition methodology are appropriate for defining irrigation
thresholds, which can reduce water consumption.

2. Materials and Methods

2.1. Plant Material and Study Area

The potato cultivar used was UNICA (CIP code: 392797.22), an early variety adapted to warm
and dry environments and slightly tolerant to salinity [24]. Two field trials were performed at
the International Potato Center (CIP) and the National Agrarian University—La Molina (UNALM)
experimental stations in Lima, Peru (12.08◦ S, 76.95◦ W, 244 m.a.s.l.) during October 2017–January 2018
(first experiment—CIP, E1) and June–September, 2018 (second experiment—UNALM, E2). The study
site is characterized by a semi-warm and humid climate [25].

During the growing season, the minimum temperature (Tmin), maximum temperature (Tmax),
relative humidity (RH), solar radiation (Rs), and maximum vapor pressure deficit (VPDmax,
estimated using the equation used by Ramírez et al. [26]) were 16.4 ± 0.19 ◦C, 23.2 ± 0.23 ◦C,
86.5 ± 0.45%, 16.0 ± 0.43 MJ m−2 day−1, and 1.06 ± 0.03 kPa, respectively (in E1); and 14.2 ± 0.05 ◦C,
18.7 ± 0.19 ◦C, 89.7 ± 0.04%, 7.5 ± 0.46 MJ m−2 day−1, and 0.64 ± 0.03 kPa, respectively (in E2).
Specific values for environmental conditions per experimental period are provided in Tables 1 and 2.

Table 1. Environmental conditions during the experimental period 2017–2018 (E1). Average daily
values ± standard error. VPD—Vapor pressure deficit.

October November December January

Minimum Temperature (◦C) 14.6 ± 0.08 15.4 ± 0.19 17.5 ± 0.18 19.7 ± 0.10
Maximum Temperature (◦C) 21.5 ± 0.27 22.2 ± 0.26 24.1 ± 0.32 27.5 ± 0.21
Average Temperature (◦C) 16.8 ± 0.13 17.8 ± 0.18 20.0 ± 0.22 22.7 ± 0.13

Relative Humidity (%) 83.4 ± 0.49 80.6 ± 0.54 81.0 ± 0.73 74.4 ± 0.66
Solar Radiation (MJ m−2 day−1) 17.2 ± 0.63 15.9 ± 0.73 14.4 ± 0.95 18.5 ± 0.65

Average VPD (kPa) 0.35 ± 0.01 0.42 ± 0.01 0.48 ± 0.03 0.76 ± 0.03
Maximum VPD (kPa) 0.84 ± 0.03 0.92 ± 0.03 0.99 ± 0.05 1.51 ± 0.05

Table 2. Environmental conditions during the experimental period 2018 (E2). Average daily values ±
standard error. VPD—Vapor pressure deficit.

June July August September

Minimum Temperature (◦C) 14.8 ± 0.09 14.4 ± 0.06 13.9 ± 0.07 14.3 ± 0.08
Maximum Temperature (◦C) 17.8 ± 0.28 18.6 ± 0.37 18.9 ± 0.27 20.4 ± 0.28
Average Temperature (◦C) 15.8 ± 0.09 15.7 ± 0.10 15.5 ± 0.10 16.3 ± 0.11

Relative Humidity (%) 85.9 ± 0.56 84.9 ± 0.61 82.5 ± 0.64 80.2 ± 0.59
Solar Radiation (MJ m−2 day−1) 3.2 ± 0.38 5.2 ± 0.53 7.5 ± 0.66 10.7 ± 0.68

Average VPD (kPa) 0.26 ± 0.01 0.28 ± 0.01 0.32 ± 0.01 0.39 ± 0.01
Maximum VPD (kPa) 0.47 ± 0.03 0.58 ± 0.05 0.68 ± 0.04 0.85 ± 0.04
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2.2. Experimental Design and Crop Management

The experimental units (EU) were plots of 3.6 × 12.5 m2 (with 120 plants) and 4.5 × 15.8 m2 (with
180 plants) in E1 and E2, respectively. Since the experiments were conducted in two facilities with
different total areas but identical weather conditions, the plot sizes are different. However, to overcome
any variability in the results, we adopted the same population density of 3.7 plants m−2 per plot in
both cases. A completely randomized design, with three irrigation timing treatments repeated in
five EUs, was established in both experiments. Two water restriction levels defined with thresholds
values of CWSI (T2: CWSI < 0.4 and T3: CWSI < 0.7) were compared against a control (T1: fully
irrigated). The reader is referred to Section 2.4 for a detailed description of the CWSI. The water
restriction started when the tuber initiation occurred (33 and 31 days after planting (DAP) in E1 and
E2, respectively). In both experiments, the drip irrigation system was comprised of a nonpressure
compensating emitter and distributed drip-tapes (Toro Aqua-Traxx PBX). There were two drip-tapes
per furrow separated by 0.2 m. In addition, the emitter flow rate (the distance between emitters was
0.20 m) was 1.27 L h−1 at 0.055 MPa, and the manufacturing coefficient of the variation of the emitters
was below 3%. Irrigation pulses (up to field capacity) were supplied to maintain the soil moisture
above 70% of field capacity (in T1), and each time the crop reached the established threshold value of
CWSI (0.4 and 0.7 in T2 and T3, respectively).

The fertilization application (N:P2O5:K2O) consisted of 180:100:160 and 160:80:180 kg ha−1

supplied as NH4NO3:(NH4)2HPO4:K2SO4 and NH4NO3:H3PO4:K(NO3)2 in E1 (at sowing and hilling)
and E2 (in four periods from emergency to tuber initiation), respectively. Additionally, doses of
CaO:MgO (60:30 kg ha−1) were supplied as Ca(NO3)2:Mg(NO3)2·6H2O in E2. Chromatic and
pheromone traps were used as the ethological control in both experiments. Recommended doses of
chemical products with different mechanisms of action were applied in E1: 0.50 L ha−1 of Movento
150 OD (Bayer AG, Leverkusen, Germany), 0.55 L ha−1 of Sorba 50 EC (Farmagro, Lima, Peru), 0.60 kg
ha−1 of Evisetc-S (Arysta Life Science,PA 19406, USA), and 0.15 kg ha−1 of Trigard 75 WP (Farmagro,
Lima, Peru). These were rotated weekly from 30 to 75 DAP. In E2, a single chemical application
composed of 0.40 L ha−1 of Confidor 350 SC (Bayer AG,Leverkusen, Germany) was performed at 66
DAP.

2.3. Image Acquisition and Analysis

The thermal camera used in the experiments was the FLIR E60 (FLIR Systems Inc., Täby, Sweden),
which is a specialized device for hand-held acquisition due to its robust and light-weight design.
It includes both IRT and RGB sensors. The IRT camera lens has an angular field-of-view (FOV) of
25◦ × 19◦ and focal length ( f ) of 18 mm. The IRT sensor has a spatial resolution of 320 × 240 pixels,
a thermal sensitivity of <0.05 ◦C in the 7.5–13 µm spectral range, a thermal response time of ∼8–12 ms,
and an accuracy of ±2 ◦C or ±2% when reading for an ambient temperature from 10 to 35 ◦C. The RGB
camera lens has an angular FOV of 53◦ × 41◦, and the RGB sensor has a spatial resolution of 2048 ×
1536 pixels.

Each pair of images was manually acquired with an object distance dobject of ≈ 3 m (defined as the
distance between the camera’s lens and the plant canopy), a horizontal inclination or viewing angle
θ ≈ 60◦, with respect to the zenith and in position opposite to the sun (see Figure 1A). Viewing angle θ

selection relied on the following: (1) The assumption that the potato canopy behaves as a reflective
uniform surface wherein higher emission can be acquired when θ is similar to the angle of incidence
of solar rays (θi); (2) the fact that the most suitable period for water status characterization is around
14:00 [8]; and (3) the need for having 75% of the potato canopy in the scene when combined with IRT’s
FOV and dobject . Finally, the acquisition was conducted between 13:00 and 15:00 (θi ∈ [60, 80]◦) with a
constant θ and during clear-sky days to meet the previous requirements and ensure reproducibility.
As a result, six plants (effective area≈ 1 m2) were captured in the IRT scene. The acquisition period was
previously determined in [8], in which leaf temperature and stomatal conductance were monitored
during the entire day (from 07:00 to 18:00) for the same variety of potato (UNICA), comparing
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well-irrigated and water-stressed potatoes. It was also demonstrated that this variety showed a strong
stomatal sensitivity closure after noon due to abrupt changes in the meteorological variables: VPD and
solar radiation.

Figure 1. Acquisition procedure of infrared thermography (IRT) and red-green-blue (RGB) images
using the FLIR E60 model thermal camera, according to the procedure of Rinza et al. [8] (A). The IRT
and RGB images acquired in A (B). AWRS—the artificial wet reference surface (C).

The total thermal radiation received at the detector includes both the radiation emitted by the
object (Tobject) and the radiation originating in the surroundings, which is reflected by the object
(Tre f lected) [27]. Therefore, the estimated temperature from the IRT cameras needs to be corrected to
obtain an accurate value for Tobject. The correction procedure, which is explained below, relies on
the a priori estimation of Tre f lected. For this, an IRT image from a low-emissivity cardboard panel
with a uniform surface was acquired before each acquisition campaign and the value of Tre f lected was
estimated by strictly following the provided instructions in the FLIR E60 user manual. Additionally,
the calculation of CWSI (explained in Section 2.4) requires the measurement of the temperature of
a wet leaf reference (Twet) [28]. As recommended in [6,21,29,30], a 1 mm double piece white cotton
cloth around a piece of polystyrene foam floating in a 0.32 × 0.22× 0.10 m3 plastic tray was used as an
artificial wet reference surface (AWRS) (Figure 1C). It was present in every IRT image acquired in this
study (see Figure 1B).

The proposed methodology to align the RGB and IRT images, extract the canopy area,
and calculate the average temperature of the potato canopy in the scene is depicted in Figure 2. For this,
let the RGB visible image be defined as IRGB ∈ ZWRGB×HRGB×3

+ and the IRT image as IIRT ∈ RWIRT×HIRT
+ ,

where WRGB×HRGB = 2048×1536 pixels and WIRT×HIRT = 320×240 pixels are their resolutions,
respectively.
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Figure 2. Automatic canopy average temperature algorithm flowchart. The IRT image is presented in a
false color pattern for better visualization. Images are not presented in real scale.

1. Geometric Transformation: The IRT and RGB images acquired with the FLIR E60 camera have
a horizontal and vertical displacement vector (bx, by) (units in pixels) due to the shift between
both image sensor’s optics. In addition, there is an additional scaling factor (Sx, Sy) (unitless) as a
result of the different lenses’ FOV and the corresponding sensors’ spatial resolution (pixel quantity
and size). Such parameters can be calculated a priori using a one-time calibration protocol based
on the methodology described in [13]. Fifty pair of IRT and RGB images acquired with θ ≈ 60◦

and dobject ≈ 3 m over the potato crop, and including the AWRS in the scene, were utilized for
calibration. A MATLAB script was developed to allow the user to manually select correlated
control points in both images through visual inspection, and consequently, provide averaged
displacement vector and scaling factors (Figure 3). The presence of the AWRS in both images
serves to locate additional control points due to its higher contrast (see Figure 3). The number
of image pairs (50) helps overcome the inherent human error in the selection, and thus, reduce
the measurement uncertainty. The resulting scaling factor (Sx, Sy) = (0.367, 0.375)± 5.40% is
firstly applied to the RGB image (IRGB). Bi-linear interpolation in IRGB is allowed since it only
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serves to determine the canopy location in the scene. Then, the displacement vector (bx, by) =

(219, 189)± 2.33% is applied to the IRT image (IIRT) with respect to IRGB. The coordinate origin
(0, 0) is assumed to be the top left corner of IRGB. Furthermore, no scaling was applied, i.e., the
interpolation process is carried out over IIRT to avoid altering the IRT sensor measurements.
Figure 2 (Step 1) shows the resulting scaled IRGB and translated IIRT as a single false-color image,
which also indicates the overlapping region to be analyzed.

2. Color-Based Threshold Calculation: The green–red vegetation index (GRVI) is used to determine
the presence of the potato canopy in the scene. As was thoroughly explained and assessed in [31],
GRVI can serve as a threshold to determine the leaves’ location in an RGB image. After the
geometric transformation procedure is performed, the overlapped region from the scaled RGB
image is extracted; it is referred as I∗RGB from now on. Then, the GRVI is calculated for each pixel
(h, w) using the following equation:

GRVI =
I∗RGB(h, w, 2)− I∗RGB(h, w, 1)
I∗RGB(h, w, 2) + I∗RGB(h, w, 1)

, (1)

where I∗RGB(h, w, 2) indicates the pixel located at the 2D coordinate (h, w) in the green layer
(red = 1, green = 2 and blue = 3). In [31], a value of GRVI = 0 can detect the early phase of
leaf green-up over several forest species, such as deciduous broadleaf and deciduous coniferous,
as well as grassland and a rice paddy field. In this study, additional experiments were conducted
with the potato canopy, and it was found that a threshold value of GRVI = 0.04 can determine
the presence of the potato canopy with a high level of accuracy when it is not affected by the crop
senescence. Finally, the logical mask M ∈ {0, 1}320×240 is generated and contains 1s when a given
pixel yields a GRVI ≥ 0.04 and 0 s otherwise.

3. Morphological Operations: As a result of the linear interpolation of the RGB image IRGB,
individual pixels do not conserve their spectral information, and the GRVI cannot detect them as
part of the canopy, ultimately creating small holes (a group of 0s) in the mask M. For this reason,
a set of mathematical morphological operations is used. First, dilation is applied to eliminate the
noiselike structures over the potato canopy. Second, erosion is used to fully cover those regions
that do not belong to the canopy, as shown in see Figure 2 (Step 3). Only those values with 1s
(white in the image) are used to calculated the averaged Tcanopy. Additionally, since the size of
the image is fixed (320 × 240 pixels), a kernel size of 4 × 4 pixels was used for both operations.
Finally, small regions with 1/10 of the total mask area are removed.

4. Correction with the FLIR Metadata and Average Temperature Calculation: The IRT image IIRT
provided by FLIR E60 has units of Kelvin and its generation considers the total IR radiation that
reached the detector during acquisition. Such radiation is composed of two components: the
thermal radiation originated from the object and the radiation originating in the surroundings
and reflected by the object. The fraction of the reflected radiation depends on the emissivity of
the object ε, specifically, when ε < 1, and should be removed from the measurement [7]. In order
to perform the correction, the FLIR E60 provides the estimated total temperature in raw 16-bit
format S and additional factory calibration parameters. Additionally, Tre f lected and ε = 0.96 [6,8]
are utilized to estimate Tobject as follows:

RAWre f lected =
R1

R2(exp(B/Tre f lected)− F)
−O, (2)

RAWobject =
S− (1− ε)RAWre f lected

ε
, (3)

Tobject =
B

ln (R1/(R2(RAWobject + O)) + F)
, (4)
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where R1, R2, F, O, and B are the so-called Planck calibration constants for FLIR cameras (and are
set upon manufacturing), which can be extracted by the publicly-available EXIFTOOL application
from the IRT image metadata. Furthermore, Tre f lected is the reflected temperature in Kelvin,
RAWre f lected is a 16-bit calculated value, S is the 16-bit raw value provided by the FLIR R60
camera, and Tobject is the object temperature in Kelvin. This procedure is performed for each
pixel in the IRT image. Such values are then multiplied with the logical mask M and averaged
to obtain the average canopy temperature Tcanopy. It is noteworthy that the noise likely induced
by manual acquisition is highly reduced through the averaging of multiple pixels in five (5) IRT
canopy images for a given treatment.

The selected emissivity value ε = 0.96 was thoroughly studied in [6,8,32], and in this
study, it was considered constant throughout the complete growing season. As pointed out by
Usamentiaga et al. [33], the emissivity of a real object is variable and dependent on wavelength;
however, it can be assumed constant when the wavelength interval is short. Since the IRT image
spectral width is 6 µm, the assumption of it being constant ε remains valid. Finally, the described
algorithm has been implemented as a software package named the “Thermal Image Processor” (TIPCIP)
using QT Creator v5.0 for Windows operating system and under an open-source and free-access policy.
The download links for the executable and source files are included in the Reference section.

Figure 3. Manually selected, spatially correlated control points in both RGB and IRT images to estimate
the geometric transformation parameters: scaling factors (Sx, Sy) and displacement vector (bx, by).

2.4. Response Variables

In E1, six thermocouples (TT-T-36-SLE, Omega Engineering Inc., Manchester, UK) with an
accuracy greater than 0.5 ◦C or 0.4% (above 0 ◦C) were attached to each plot into the abaxial surface
of the leaf center of target plants using surgical tape [34]. In both experiments, thermal images were
acquired (interdaily from 34 to 82 DAP) and processed according to the methodology described
in Section 2.3. Data from thermocouples and IRT images correspond to the same plots. Canopy
temperature data from IRT images were used to estimate the CWSI following the empirical method
used for potatoes in [12]:

CWSI =
Tcanopy − Twet

Tdry − Twet
, (5)

where Tcanopy is the measured canopy temperature, Twet is the AWRS measured temperature, and Tdry is
the artificial dry reference surface estimated temperature. Tdry was considered 13 ◦C [8] and 7 ◦C [6,12]
over the air temperature in E1 (hot season) and E2 (wet season), respectively.

Before the irrigation was applied in each treatment, soil samples were collected at 0–0.35 m depth
(where >80% of root-zone biomass is concentrated) in each plot to estimate volumetric water content
(θv, in %) according to Ramírez et al. [6]. The irrigation time and irrigated water quantity (IWQ,
in mm) was estimated in each treatment from θv, θv at field capacity (32.7% and 28.4% in E1 and E2,
respectively), root-zone width (0.40 m), root-zone depth (0–0.35 m), and drip-tape flow rate (8.5 and
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7.7 L m−1 h−1 at 0.05 MPa in E1 and E2, respectively) (see the equations in [6]). Before treatment onset,
five intense irrigation pulses were realized by furrow irrigation in E1 (in all treatments) at 1, 8, 12,
19, and 25 DAP to every plot with ≈ 36 mm per irrigation. In this case, the irrigated water volume
was estimated as the product of the flow of the main water channel of CIP’s experimental station (≈
0.75 m3 min−1) and the time required to flood each plot. In the case of E2, the drip-tape irrigation
system was utilized as this facility (UNALM) did not have a water channel for crop flooding. Thus,
the irrigation (in all treatments) before tuber initiation (31 DAP) occurred when soil moisture achieved
70% of field capacity. A uniform-distributed irrigation utilized 1131.6 m3 ha−1 of water.

Total IWQ (IWQT) is the sum of IWQ (each irrigation) during the growing season. Four center
plants (in which the CWSI evaluations were performed) were individually harvested and separated
into leaves, stems, and tubers at 102 and 92 DAP in E1 and E2, respectively. Fresh tuber yield
(FTY, in t ha−1) was calculated from the average value of tubers biomass per plant and plant density.

2.5. Statistical Analysis

The effects of irrigation treatments on CWSI for each assessment were tested with one-way
ANOVA. Fisher’s least significant difference (LSD) test was performed to determine differences among
irrigation treatments on FTY and IWQT . Pearson correlation coefficient (rPearson) was calculated to
determine the accuracy of leaf temperature estimations. The significance of all statistical tests were
assessed at p < 0.05 and p < 0.01 using R v3.6.1 software [35].

3. Results

3.1. Accuracy of the Canopy Temperature Estimations

The range of values of Tcanopy recorded by the thermocouples was between 23.0 and 39.6 ◦C.
The overall average values of Tcanopy estimated by the TIPCIP software showed a positive linear
relationship with the average Tcanopy values by thermocouples (rPearson = 0.84, p-value < 0.01) (Figure 4).
In addition, 87.0% and 82.6% of the Tcanopy values using TIPCIP, corresponding to the T1 and T2
treatments, underestimated Tcanopy as compared to the thermocouple values, in a range from −2.05
to −0.15 and −3.27 to −0.61 ◦C, respectively (Figure 4). Furthermore, 60.9% of T3 treatment values
overestimated Tcanopy as compared to the thermocouple values, in a range of +0.21 to +3.80 ◦C (Figure 4).
The accuracy of Tcanopy estimations was better in T1 (rPearson = 0.90, p-value < 0.01), followed by T2
(rPearson = 0.85, p-value < 0.01), and T3 (rPearson = 0.83, p-value < 0.01).
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Figure 4. Scatter plot (± standard error) of canopy temperatures (Tcanopy) acquired by thermocouples
(x-axis) and infrared thermal images, which were processed with the Thermal Images Processor
(TIPCIP) software (y-axis) under three irrigation treatments: T1 (control or fully irrigated), T2 (crop
water stress index (CWSI) < 0.4), and T3 (CWSI < 0.7). The 1:1 dashed line (x = y) is plotted as a reference.
These data were collected in the first experiment (E1). rPearson: Pearson correlation coefficient.

3.2. CWSI and Irrigation Treatments through the Growing Period

During E1, 14, 9, and 1 irrigation treatments of between 4 and 14 mm, 5 and 16 mm, and 25 mm
(Figure 5A) were established for T1, T2, and T3, respectively. The maximum average value of IWQT and
FTY in this trial were 3238.7 ± 95.80 m3 ha−1 and 38.9 ± 5.94 t ha−1 corresponding to T1 (Figure 6A,B)
with no significant (p-value > 0.05) reduction in FTY with T2 of 34.5 ± 3.72 t ha−1, which showed
a −10.5% decrease in IWQT . T3 significantly (p-value < 0.05) reduced by −37.2% and −61.4% the
IWQT and FTY, respectively, in comparison to T1 (Figure 6A,B). During E2, 17, 10, and 4 irrigation
treatements of between 1.7 and 9.2 mm, 3.7 and 18.7 mm, and 3.7 and 16.5 mm (Figure 5B) were
established for T1, T2, and T3, respectively. The maximum average value of IWQT and FTY in this
trial was 1738.5 ± 44.35 m3 ha−1 and 49.5 ± 3.37 t ha−1 achieved by T1. T2 showed a no significant
(p-value > 0.05) reduction in FTY in comparison to T1 of 44.3 ± 2.66 t ha−1, but showed a significant
−29.7% (p-value < 0.05) reduction in IWQT (Figure 6C,D). T3 significantly (p-value < 0.05) reduced by
−55.0% and −39.2% in terms of the IWQT and FTY, respectively, in comparison to T1 (Figure 6C,D).
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Figure 5. Average value (± standard error) of crop water stress index (CWSI, line chart) measured
before irrigation treatments, and irrigated water quantity (IWQ, bar chart) for the first (A) and second
(B) experiment for the three irrigation treatments: T1 (control or full irrigation), T2 (CWSI < 0.4), and T3
(CWSI < 0.7). The terms **, *, and n.s. indicate p < 0.01, p < 0.05, and p > 0.05 (not significant),
respectively, in the ANOVA. DAP—Days after planting.

The CWSI values ranged between 0.25 and 0.64, 0.31 and 0.60, and 0.39 and 0.82 (in the hot
season—E1; Figure 5A), and 0.14 and 0.59, 0.12 and 0.73, and 0.12 and 1.0 (in the wet season—E2;
Figure 5B) in T1, T2, and T3 respectively. The average value of CWSI before the irrigation treatments
in T1, T2, and T3 were 0.34 ± 0.02, 0.45 ± 0.02, and 0.72 ± 0.0 (in E1); and 0.34 ± 0.04, 0.56 ± 0.05,
and 0.65 ± 0.03 (in E2), respectively. In E1, the CWSI values were close to the established threshold (0.4
and 0.7 for the T2 and T3 treatments, respectively). In E2, the CWSI values exceeded the threshold after
60 DAP in the T2 treatments (five of nine measurements; Figure 5B) and T3 (two of nine measurements;
Figure 5B).
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Figure 6. Average value (±standard error) of fresh tuber yield (FTY) and total irrigated water quantity
(IWQT) in the first (A,B) and second (C,D) experiment. The different letters in each subfigure indicate
significant differences (p < 0.05) between treatments (T1: Control or full irrigation, T2: CWSI < 0.4,
and T3: CWSI < 0.7) detected by LSD test. CWSI—Crop water stress index.

4. Discussion

4.1. Acquisition Configuration and Comparison with Instrumental Measurements

With the advent of relative inexpensive thermographic imager systems such as those that include
both IRT and RGB sensors, the analysis of larger crop areas can be attained with a single pair of images.
The additional RGB sensor provides the capability to determine specific structures in the scene through
appropriate image processing techniques. Notwithstanding, several factors have to be considered
when working with these images, such as the field-of-view of the optical system, the distance to the
object, and the viewing angle, as they could insert uncertainty in the temperature estimation.

The selection of an adequate viewing angle requires the analysis of the three-dimensional structure
of the canopy. For a highly heterogeneous canopy, the best viewing angle is parallel to the solar beam
line-of-sight (LOS) since the image will mostly include well-illuminated leaves and reduce the number
of shaded, cooler leaves that ultimately would affect the estimation of Tcanopy [7]. On the contrary,
a potato canopy, during 30 to 80 DAP, can be assumed to be an almost planar surface where leaves
have quasi-uniform heights from the floor. The selected viewing angle of 30◦ inclination from the
horizon not only allows one to acquire this uniform structure in a single image with a reduced number
of shaded leaves, but also prevents the presence of shadows in the scene, which can appear if the image
is taken parallel to the solar LOS. In addition, since the fixed camera’s FOV is narrow, substantial
variations in the reflected emission from different parts of the generated image are not expected.
However, the assumption of a planar canopy is not valid for the days before 30 DAP as a result of
the growth stage, nor for days after 80 DAP as a result of the senescence period. It is noteworthy
that Luquet et al. [36] investigated the impact of the viewing angle on the estimated temperature of
different canopies, presenting variations of up to 1.5 ◦C for viewing angles higher than 45◦ with respect
to the ground plane normal and opposite to the sun. According to [37], such reported temperature
variations could be governed by the changing proportion of background (soil in the scene) viewed at
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different angles. As this is still an open discussion, further analysis should be done for plant canopies
whose 3D structure significantly deviates from planar.

The spatial resolution (i.e., the size of a resulting pixel in the image typically in units of centimeters
or meters) varies with the camera–object distance dobject. Short distances yield a more extensive area
of coverage for a pixel, which could include both canopy and soil, thereby hindering the correct
temperature estimation. This issue is aggravated when a nadir view is utilized to acquire the images
from a sparse crop plot [37]. Subpixel methods, which can estimate the fraction of the pixel only
occupied by the leaf, have been thoroughly studied in [38]; however, the high complexity of the
algorithm and the computational cost of its implementation limit its utility for campaigns that can span
several months. In this study, the use of a viewing angle with inclination from the horizon along with
a dobject ≈ 3 m and the given IRT FOV resulted in >≈ 75% of pixels with canopy. Although the image
acquisition procedure was conducted manually, instead of using a fixed platform, a high correlation
between thermographic estimated temperatures and in-situ measurements from thermocouples was
attained. Such a result can be leveraged by newly introduced thermographic systems, such as the FLIR
ONE (FLIR Systems Inc.,Täby, Sweden) in which a thermal camera can be attached to a smartphone.
In this context, this research also hopes to make the technology available to smallholder farmers, who
can acquire these inexpensive devices, acquire data manually, and use the developed software to,
ultimately, conduct simple irrigation management.

Additionally, a comparative study between thermography and in-situ measurements was
conducted in this research. It is noteworthy that physical techniques for measuring leaf temperatures
are different. Thus, thermocouples utilize thermal conduction through physical contact with the abaxial
surface. Transmission of heat from the plant towards the sensor is carried out through the movement of
excited electrons from the plant to the sensor, which are ultimately converted into voltage and mapped
to a temperature value. On the other hand, infrared thermal cameras measure thermal emissions from
the adaxial surface, which is exposed to the convection effect (air circulation) and direct incident light.
Through the Planck’s law equation, IR radiation is then converted into temperature values. Although a
large temperature gradient between adaxial and abaxial surface due to its millimeter thickness is not
expected, the use of different methods imposes additional uncertainty, which is finally revealed in the
correlation calculation.

4.2. Thermography Usefulness for Irrigation Scheduling in Potato Crops in Humid Environments

Humid environments, characterized by low VPD, impose technical (emission detection, image
processing of thermal and visible images; [37]) and physiological (stomatal openness sensitivity
detected in the potato; [8]) challenges for plant water status using thermography. The dry temperature
in the CWSI calculation represents the temperature that no transpired leaves achieve [28], and from an
empirical perspective (sensu [12]), it is calculated adding a X-value to the air temperature (Equation (5)).
X-value can be experimentally determined as the maximum temperature achieved by leaves previously
covered with petroleum jelly to avoid transpiration [28]. For the potato, seven [6,12] and 13 ◦C [8] have
been used as X-values in different areas. The potato has an acute stomatal closure sensitiveness in
humid areas during the day, depending on various thresholds of VPD and radiation, which promotes
an important increase in leaf/canopy temperature in relation to the atmospheric temperature [8].
In this study, different X-values were used in the same area depending on the season, which was
characterized by different average values of VPD and radiation. Thus, the hot and wet season showed
values (99% of the data) of solar radiation of 14.2–17.9 and 3.7–6.2 MJ m−2 day−1, with average VPD
values (during the evaluations) of 0.90 ± 0.01 and 0.39 ± 0.01 kPa; 13 and 7 ◦C being the X-values used
for each season, respectively. Because of the close relationship between the “standard” and maximum
stomatal conductance at light-saturated and tuber yield, CWSI has been proposed as a good indicator
of water status in potato crops [6,8,12,39]. In agreement with other works [6,8], this study confirms
the use of CWSI <0.4 as a threshold for irrigation in potato crops, which allowed us to save water
(341.6 ± 63.7 and 515.7 ± 37.7 m3 ha−1 in E1 and E2, respectively) without a significant (p-value > 0.05)
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reduction in tuber yield. Our study area belongs to the South American arid diagonal [40], a hyper-arid
zone distributed along the Peruvian coast, characterized by a higher atmospheric humidity during the
winter season (May–August) promoted by fogs that come from the Pacific Ocean [41–43]. This wet
season is the most appropriate for potato production in this zone [44], and the most challenging for the
use of thermography methodology (see discussion in Section 4.1). Our second trial was carried out
during this season, obtaining the potential tuber yield reported for the UNICA potato variety in the
literature (50 t ha−1; [24]) with a significant (p-value < 0.05) water saving (515.7 m3 ha−1) in relation
to the control using 0.4 CWSI threshold value (T2, Figure 6D). In comparison to the hot season trial,
the wet season was monitored three times per week (Mondays, Wednesdays, and Fridays), and in
some cases, our target thresholds were mainly surpassed after 60 DAP (Figure 5B) i.e., after maximum
canopy cover and during the senescence stage. Ramírez et al. [6] caution to avoid potato plants close
or above a CWSI of 0.6 (known as the “severity threshold”) because of the potential of affecting tuber
yields through oxidative damage. However, it seems that this severity threshold could be achieved
after maximum canopy cover or during senescence in the wet season without affecting the tuber yield.
The Peruvian central coast will be likely affected by an increase in temperatures in the future because of
global warming [45]. The hot season trial simulated the potato production under these future scenarios,
which will demand more water and potential yields in this crop will be difficult to achieve.

4.3. Advantages and Disadvantages of the Developed Software (TIPCIP)

Several agricultural analyses based on IRT imagery and image processing did not provide
a user-level software; this is because the authors were mainly concerned about validating the
physiological meaning of IRT-based treatments [21,23,37]. As a result, similar software packages
were implemented but not distributed to the scientific community. In this context, this research not
only reveals the various steps involved in canopy identification and temperature calculation using
IRT images, but also offers the open-source TIPCIP software to perform those tasks. Hence, TIPCIP
allows the user to automatically identify the canopy section in the scene and provides the average
temperature, processing up to 50 image pairs (RGB-IRT) in a single run, and reporting formatted
(CSV, XLS, among others) results. Furthermore, as a result of the available access to the source code,
a scientific developer could include additional image processing steps to adapt the software to other
crops or to the use of NDVI images instead of RGB images, thus increasing the accuracy of the canopy
detection. Notwithstanding, TIPCIP is currently limited to working with FLIR-format images for
the extraction of raw data as well as calibration parameters. However, a developer could include
additional libraries or functions facilitating it to read other formats and increase the current structure
of the software.

In addition, commercial thermal image processing tools for general purposes can be found on the
internet. For example, the FLIR Tool Plus (U.S. $250) enables the user to visualize, edit, and analyze
IRT images acquired with FLIR cameras. However, such analyses are conducted only with
thermal images, and consequently, image classification/segmentation is solely performed based
on temperature thresholds. A zero-cost programming tool, which is still in development, can be found
at https://github.com/micasense/imageprocessing for Micasense cameras. The Altum Micasense
multispectral camera includes an IRT sensor and allows the users to generate their code based on
the Python programming language. The user requires specific programming skills to interpret the
examples but then can construct software and include segmentation as well as generate several
vegetation indexes.

In sum, TIPCIP provides an option for image processing related to CWSI generation based on
FLIR-format images. Its source code allows for modification but requires programming skills in the
C++ programming language.

https://github.com/micasense/imageprocessing
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5. Conclusions

The accurate estimation of a plant water stress index via thermal imaging amounts to the need
for a simple and efficient image processing algorithm. In this study, the Thermal Image Processor
(TIPCIP) software was implemented, and through image segmentation and morphological operations,
determined the canopy region and its average temperature. A comparison with in-situ measurements
using thermocouples showed that our estimated values of Tcanopy yield were in good agreement
(rPearson = 0.84). On the basis of these results, an irrigation schedule was implemented using a
CWSI-based threshold, specifically CWSI < 0.4 and CWSI < 0.7 for T2 and T3, respectively, in two
experiments carried out during the hot and wet season. A water saving without yield penalization was
found for T2 (341.6 ± 63.7 and 515.7 ± 37.7 m3 ha−1) in E1 and E2, respectively. Finally, the authors
have made the developed TIPCIP software available under the Creative Commons (CC 4.0) policy
and encourage the agricultural remote sensing community to assess it and provide feedback (the
executable files can be downloaded from [46] and source code files from [47]).
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