Arboles nativos de uso múltiple utilizados por pequeños productores de Guatemala

Rodrigo Arias

RESUMEN

Las especies nativas de árboles de uso múltiple (AUM) tienen gran potencial para brindar varios productos y beneficios a los campesinos. El presente artículo da a conocer los resultados de un estudio realizado sobre los AUM nativos utilizados por pequeños productores en cuatro regiones de Guatemala: Central, Oriente, Las Verapaces y Altiplano Occidental.

Se llegó a la conclusión de que los productores utilizan varias especies nativas de uso múltiple, de las cuales la cuarta parte son árboles fijadores de nitrógeno. Se proporciona información referente a especies identificadas, su distribución, productos y beneficios obtenidos y métodos de propagación. Se da información más detallada sobre especies utilizadas como fuente de forraje.

SUMMARY

Native multipurpose trees used by small producers in Guatemala. Native multipurpose tree species have great potential for offering various products and benefits to producers. The present article makes known the results of a study of multipurpose trees used by small producers in four regions of Guatemala: Central, Eastern, Las Verapaces and Western Altiplano.

It was concluded that the producers utilize various species of these trees, out of which a quarter are nitrogen fixing trees. Information about the species identified is provided, as well as data concerning their distribution, products and benefits obtained and propagation methods utilized. More specific information is given on the species that are utilized as fodder.

Palabras claves: árboles de uso múltiple; fijación de nitrógeno; agroforestería; productos forestales; Guatemala. Cuando se trabaja con sistemas agroforestales, la selección de las especies forestales es un aspecto fundamental a considerar. Debe pensarse en lo que se espera obtener del árbol: madera, leña, forraje, abono verde, fruta u otro producto; en cuánto tiempo es deseable obtenerlo; bajo qué sistema plantar; y qué cultivos y/o pastos combinar con los árboles.

Además, debe tomarse en cuenta la sostenibilidad del árbol dentro del sistema: las funciones "desapercibidas" que tiene dentro de la ecología del lugar, problemas de plagas y enfermedades, el hospedaje de patógenos que atacan a los cultivos u otros árboles, y la competencia con cultivos por nutrimentos, luz y agua.

Considerando los aspectos mencionados, las especies nativas presentan muchas ventajas, cuando se desea trabajar en sistemas agroforestales. Estas han sido sometidas, dentro de ese ambiente, a la selección natural por miles de años. Muchas de las mismas ya han sido utilizadas en sistemas agroforestales nativos desde hace mucho tiempo, por lo cual el productor ha aprendido qué especies de árboles se pueden

combinar mejor con los cultivos para obtener mayor beneficio mutuo. Además, por ser estas especies parte de los ecosistemas naturales, tienden a estar en equilibrio con los demás componentes del ecosistema. Consecuentemente, existe menos riesgo de que sean devastadas por alguna enfermedad o plaga.

Entre las especies nativas hay muchas que tienen potencial para brindar una amplia diversidad de productos y beneficios en las diferentes regiones de Guatemala. Especies como Leucaena leucocephala (leucaena), Gliricidia sepium (madre cacao) y Calliandra calothyrsus (calliandra), son un ejemplo de ellas. Sin embargo, y a pesar de que son nativas de Guatemala, no han sido suficientemente estudiadas y aprovechadas en diferentes proyectos. En otros continentes estas mismas especies nativas han sido elementos esenciales en la promoción de la agroforestería.

El objetivo del estudio que se presenta en este artículo fue obtener información básica sobre las especies nativas de árboles de uso múltiple (AUM), utilizadas por los pequeños productores de Guatemala en las regiones donde se realiza el Proyecto Agroforestal ejecutado por la Dirección General de Bosques (DIGEBOS), CARE Internacional/Guatemala y el Cuerpo de Paz. La investigación fue apoyada inicialmente por la Asociación de Arboles Fijadores

de Nitrógeno (NFTA) y, posteriormente, por el Sector de Agroforestería y Medio Ambiente de CARE.

Metodología

Con el propósito de recabar la información requerida sobre las especies nativas, se diseñó un cuestionario con preguntas claves sobre nombres comunes, ubicación de los árboles, productos y beneficios obtenidos de los mismos y época de producción de semillas. Asimismo, se incluyó la toma de datos generales sobre la región, departamento, municipio y aldea, con el propósito de obtener información sobre la distribución geográfica de las especies. El estudio se llevó a cabo de noviembre de 1991 a marzo de 1992.

No se utilizó un método de muestreo estadístico específico. Se pasó un cuestionario a 55 productores en 43 sitios de un total de 62, en los cuales el Proyecto Agroforestal desarrolla sus actividades; o sea, la intensidad de muestreo fue 69 por ciento, la cual se considera adecuada para este tipo de estudios. El área de influencia del Proyecto es 113 045 hectáreas.

Para facilitar la interpretación de la información obtenida, los departamentos cubiertos fueron agrupados en cuatro regiones, a saber:

Región I: Guatemala, Sacatepéquez y Chimaltenango (71% de los sitios muestreados); Región II: El Progreso, Zacapa, Jutiapa, Chiquimula, Jalapa y Santa Rosa (95% de los sitios muestreados);

Región III: Alta y Baja Verapaz (27% de los sitios muestreados); Región IV: Quetzaltenango, San Marcos, Totonicapán y Huehuetenango (67% de los sitios muestreados).

Las encuestas fueron realizadas por los promotores de DIGEBOS en coordinación con los técnicos de CARE.

El método seguido para recolectar la información consistió en aprovechar las visitas periódicas de los promotores a las comunidades, para que ellos completaran los datos requeridos con la participación de agricultores. Se prio-

La diversidad de árboles permite incrementar las opciones para los productores

rizaron las especies de uso múltiple no conocidas ampliamente, descartándose las especies forestales de uso tradicional en programas de reforestación, como las coníferas.

Con el fin de facilitar la identificación taxonómica de las especies, se recolectaron (no en todos los casos) muestras botánicas, las cuales fueron llevadas posteriormente a la Facultad de Agronomía de la Universidad de San Carlos, para su identificación exacta.

Especies identificadas

Se identificaron 85 especies forestales nativas de uso múltiple en los sitios muestreados; dentro de una región la cantidad varió de 14 a 40 (Cuadro 1). Como se aprecia, el número de especies de AUM utilizadas por los pequeños productores es alto.

De las 85 especies de AUM reportadas, el 27% son árboles fijadores de nitrógeno (AFN), los cuales, con la excepción del Aliso (Alnus arguta), pertenecen a la familia de las leguminosas. Lo anterior evidencia la gran riqueza que tiene Guatemala como centro de origen de muchas especies fijadoras de nitrógeno.

En cuanto a la presencia, se puede apreciar que hay una distribución bastante homogénea de las especies identificadas; ninguna representa un porcentaje mayor al quince por ciento a nivel de

Los árboles nativos de uso múltiple tienen gran potencial para brindar varios productos y beneficios. (Foto: R. Arias).

Región y seis a nivel de toda la zona estudiada. Las especies de AUM que más aparecieron reportadas fueron: *Quercus* sp (roble, encino), *Diphysa sp* (guachipilín), *Erythrina* sp (pito), *Gliricidia sepium* (madre cacao) y *Alnus arguta* (aliso). Resalta nuevamente que cuatro de éstas cinco especies son AFN.

Es importante contar con esta diversidad de AUM nativos, ya que aunque existen sistemas agroforestales tradicionales, la mayoría de proyectos promueven o impulsan el uso de unas pocas especies, enfatizando los métodos de reforestación tradicional. Es necesario analizar qué especies nativas podrían utilizarse en sistemas agroforestales que servirían a los agricultores para 1) mejorar la productividad agrícola, 2) obtener beneficios adicionales como: leña, forraje y abono verde, y 3) garantizar la conservación de los recursos naturales.

Productos y beneficios obtenidos

Los más importantes productos y beneficios obtenidos de los árboles, a nivel de todas las regiones estudiadas, son en orden de importancia: leña, postes, madera para construcción, cercos vivos y la obtención de forraje (Cuadro 2).

Desagregando la información a nivel regional, resalta que la Región Central es la única donde el producto más importante no es la leña sino postes (32,1%). Esto se debe a que esta región cuenta con áreas sembradas con hortalizas de exportación y otros terrenos donde el uso de postes para cercos y tutores son indispensables. No obstante, a pesar de que la región está influenciada por la presencia de grandes centros urbanos, donde se supone que existe el servicio de electricidad, destaca allí también la leña como el segundo producto más utilizado. Por otra parte, en Las Verapaces el forraje cobra relevancia, pues, junto con los postes, ocupa el segundo lugar en orden de importancia.

Los resultados indican que a pesar de que se registra un mayor número de casos para productos como leña y madera de construcción, ninguno de éstos es obtenido en más del 30% de los árboles estudiados. Esto indica que los árboles son utilizados para obtener varios beneficios directos e indirectos. Por otra parte, cabe destacar que los productos mencionados no son los únicos obtenidos sino los contemplados en el diseño del cuestionario. Otros beneficios identificados son: abono verde, alimento, medicina natural y hojas para empaque de alimentos.

Cuadro 1. Especies de árboles nativos de uso múltiple identificadas en cuatro regiones de Guatemala.

Nombre científico	Nombre común	Frecuencia	Porcentaje
Región Central (I)			
Acacia angustissima	Guaje	1	4,8
Arbutus xalapensis	Madrón	1	4,8
Bursera simaruba	Palo de jiote	1	4,8
Byrsonima crassifolia	Nance	1	4,8
Clethra mexicana	Zapotillo	1	4,8
Diphysa sp.	Guachipilín Palo de pito	3 1	14,3
Erythrina sp. Eysenhardtia			4,8
adenostylis	Taray	1	4,8
Gliricidia sepium	Madre cacao	1 1	4,8
Inga paterno	Paterna Cuje	1	4,8 4,8
Inga sp. Jacaranda acutifolia	Jacaranda	astran 1 mars	4,8
Lysiloma sp.	Sare	1	4,8
Perymenium grande	Taxiscobo	3	14,3
Prunus capuli*	Cerezo	1	4,8
Quercus sp.	Encino	2	9,5
Región Oriental (II)		n sh odss	a orell
Acacia sp.	Guaje	1	1,2
Albizzia guachapele	Lagarto	1	1,2
Alvaradoa			
amorphoides	Plumajillo	4	4,9
Astronium sp.	Palo obero	1	1,2
Buddleia skutchii	Salvia	1	1,2
Caesalpinia	Cussamava	3 90 POOR	1.2
oulcherrima Calvoophyllum	Guacamayo		1,2
Calycophyllum candidissimum	Salamo	1	1,2
Cassia laevigata	Moco de gallo	1	1,2
Ceiba aesculifolia	Ceibillo	1	1,2
Caesalpinia velutina	Aripín	2	2,4
Cordia alliodora	Laurel	3	3,7
Crescentia alata	Morro	1.00	1,2
Dalbergia funera	Ebano	1	1,2
Diphysa sp.	Guachipilín	8	9,8
Enterolobium			
cyclocarpum	Conacaste	1	1,2
Erythrina fusca	Pito extranjero	1	1,2
Erythrina sp.	Palo de pito	1	1,2
Fraxinus vellerea	Pie de paloma	1	1,2
Genipa americana	Irayol Madra assas	1	1,2
Gliricidia sepium Guazuma ulmifolia	Madre cacao	8 1	9,8
Juazuma ulmilolia Inga sp.	Caulote Cuje	3	1,2 3,7
Karwinskia calderoni	Huiliguiste	1	1,2
Leucaena sp.	Yaje	4	4,9
Lonchocarpus sp.	Chaperno	1	1,2
Lysiloma sp.	Sare	7	8,5
Muntingia calabura	Capulín	1	1,2
Perymenium grande	Tatascamite	1	1,2
Piscidia piscipula	Zope	1	1,2
Quercus sp.	Roble	5	6,1
Simarouba glauca	Aceituno	3	3,7
Styrax argenteus	Estoraque	1	1,2
Swietenia sp.	Zapotón	1	1,2
Tabebuia rosea	Matilisguate Chaoté	2	2,4
Tecoma stans	Chacté	8	9,8 1.2
	Leuibe Nisperillo	1	1,2 1,2

*Según Zanotti,R (1994, Comunicación personal) la especie Prunus capuli no es nativa de Guatemala, sin embargo se encuentra citada dentro de la "Flora de Guatemala".

Continuación			
Nombre científico	Nombre común F	000000000000000000000000000000000000000	Porcentaje
	gión de las Verapace	es (III)	
Acacia deammi	Xicche	2	9,1
Acacia farnesiana Acacia hindsii	Subín	1 2	4,5
Alnus arguta	Ixcanal Ilamo	1	9,1 4,5
Cassia grandis	Carao	1	4,5
Cupania belizensis	Copal, Pom	1	4,5
Cupania			
guatemalensis	Carboncillo	1	4,5
Diphysa sp.	Guachipilín	2 3 2	9,1
Erythrina sp.	Palo de pito	3	13,6
Gliricidia sepium Inga sp.	Madre cacao Cuje	2	9,1 9,1
Leucaena sp.	Yaje	2	9,1
Leucaena	10,0	_	0,1
leucocephala	Leucaena	1	4,5
Lysiloma sp.	Sare	1	4,5
Tankierronomers F	Región de Occidente	(IV)	
Acacia angustissima	Chilicap	1	0,9
Acacia glomerosa	Espino	1	0,9
Alnus arguta	Aliso	10	8,5
Arbutus xalapensis	Madrón	8	6,8
Baccharis	Λεκουόρ	6	E 1
vaccinioides Buddleia americana	Arrayán Salvia	5	5,1 4,3
Casimiroa edulis	Matasano	3	2,6
Cassia sp.	Retamaro, Chilip	4	3,4
Chiranthodendron			
pentadactylon	Canac	5	4,3
Clethra mexicana	Zapotillo	1	0,9
Chlorophora	Mora	4	0.0
tinctoria Croton sp.	Ediondillo	1	0,9 0,9
Dahlia imperialis	Santa Catarina	1	0,9
Diospyros			
bumelioides	Jaboncillo	3	2,6
Diphysa sp.	Guachipilín	1	0,9
Erythrina sp.	Palo de pito	8	6,8
Eupatorium	Dala nagra	3	2.6
sexangulare Forchhammeria	Palo negro	3	2,6
trifoliata	Té María Luisa	1	0,9
Inga spuria	Chalun	3	2,6
Jacaranda acutifolia	Jacaranda	1	0,9
Leucaena sp.	Yaje	1	0,9
Ligustrum vulgare	Trueno enano	1	0,9
Litsea glaucescens	Laurel	3	2,6
Ocotea sp. Piscidia piscipula	Tepeaguacate Zope	1	0,9 0,9
Prunus capuli	Cerezo	7	6,0
Pseudolmedia	33,020		0,0
oxyphyllaria	Cerecillo	1	0,9
Quercus sp.	Encino, Roble	8	6,8
Salix sp.	Sauce	3	2,6
Sambucus mexicana	Sauco	9	7,7
Senecio salignus Taxodium mucronatun	Chilca 7 Sabino	3 1	2,6 0,9
razodiam muoronatun	Chulua	1	0,9
	Chutal	1	0,9
	Café cimarrón	3	2,6
	Jocotillo	1	0,9
	Salvillo	1	0,9
	Ragun	11	0,9
	Tilupe Campana	1	0,9 0,9
			Un

Cuadro 2. Productos y beneficios obtenidos de los AUM nativos en las regiones investigadas en Guatemala.

Producto/Beneficio Frecuencia Porcentaje

210	28,2
157	21,0
128	17,2
89	11,9
61	8,2
39	5,2
32	4,3
29	3.9
	157 128 89 61 39 32

Especies utilizadas como fuente de forraje

En el Cuadro 3 se muestran las especies de AUM que, de acuerdo con los pequeños productores, son consumidos por rumiantes. Se aprecia que los géneros *Erythrina* y *Gliricidia* fueron de mayor frecuencia, pero ninguna de las especies alcanzó más del 15% del total de árboles con potencial forrajero. Asimismo, el 59% de las especies que pueden utilizarse como forraje, se reportaron una sola vez. En cuanto a la distribución territorial, las regiones de Oriente y Occidente son las que presentan mayor número de especies forrajeras.

La investigación demostró, además, que la mayoría de los árboles que se identificaron por su utilidad como fuente de forraje, se aprovechan también para leña, postes, madera para construcción rural y sombra. *

Los pequeños productores utilizan una gran cantidad de árboles de uso múltiple. El productor Antonio Roca posee un rodal de aliso en su finca. (Foto: R. Arias).

Cuadro 3. Frecuencias de especies de AUM utilizados como forraje en las diferentes regiones investigadas en Guatemala.

Nombre científico	Nombre común	Frecuencia	% Válido
Erythrina sp	Palo de pito	9	14,8
Gliricidia sepium	Madre cacao	7	11,5
Sambucus mexicana	Sauco, Soico	5	8,2
Diphysa sp	Guachipilín	4	6,6
Buddleia americana	Salvia	4	6,6
Leucaena sp	Yaje	4	6,6
Cassia sp	Retamaro, Chilip	3	4,9
Acacia angustissima	Guaje, Chilicap	2	3,3
Lysiloma sp	Sare	2 2 2	3,3
Acacia hindsii	Ixcanal	2	3,3
Chiranthodendron sp	Canac	2	3,3
Erythrina fusca	Pito extranjero	1	1,6
Acacia sp	Guaje	1	1,6
Buddleia skutchii	Salvia	1	1,6
Perymenium grande	Taxiscobo	1	1,6
Acacia deammi	Xicche	1	1,6
Leucaena leucocephala	Leucaena	1	1,6
Cupania belizensis	Copal, pom	1	1,6
Acacia farnesiana	Subín	1	1,6
Cordia alliodora	Laurel	1	1,6
Muntingia calabura	Capulín	1	1,6
Crescentia alata	Morro	1	1,6
Baccharis vaccinioides	Arrayán	1	1,6
	Tilupe	1	1,6
Eupatorium sexangulare	Palo negro	al mil of the	1,6
Chlorophora tinctoria	Mora	1	1,6
Guazuma ulmifolia	Caulote	1	1,6
Engelhardtia adenostylis	Palo colorado	1	1,6
			113

Cuadro 4. Ubicación de especies de AUM utilizados como forraje, Guatemala.

Especie	Bosque	Cultivos	Cercos	Potreros
Erythrina sp	X	X	X	X
Gliricidia sepium	X	X	X	X
Sambucus mexicana		X	X	X
Diphysa sp	X		X	X
Buddleia americana	X	X	X	
Leucaena sp		X X X	X	X
Cassia sp		X	X	
Acacia angustissima	X		X	
Lysiloma sp	X	X	X	X
Acacia hindsii	X	X		X
Chiranthodendron sp	X X X	X		
Erythrina fusca		X	X	
Acacia sp				X
Buddleia skutchii				x
Perymenium grande	X	X	X	x
Acacia deammi		X		X
Leucaena leucocephala		X	X	
Cupania belizensis	X	X		X
Acacia farnesiana		X		
Cordia alliodora	X	X	X	X
Crescentia alata				X X X
Baccharis vaccinioides	X	X	X	X
"Tilupe"	X			
Eupatorium sexangulare	X	X	X	
Chlorophora tinctoria	X	X	Lucia de la compansión de	
Guazuma ulmifolia			X	X
Engelhardtia sp	X			

También se analizó la ubicación de las especies de AUM nativas usadas como forraje, pues ésto permite conocer la configuración o sistema agroforestal tradicional en el que se utilizan las especies. Esto, a su vez, permite proyectar el potencial de cada una de ellas en sistemas "mejorados", así como entender su relación con el bosque o formas de tenencia de la tierra.

Los resultados indican que estas especies han crecido por regeneración natural o a través de plantaciones, en orden de importancia, en el bosque, en las zonas de cultivo, en los cercos así como en los potreros (Cuadro 4). En el caso de los cercos vivos, está probado que éstos son muy importantes por su función en la delimitación y protección de áreas y por su aprovechamiento para la obtención de diversos beneficios como el forraje, leña y postes.

La ubicación de los AUM en las zonas de cultivo es bastante significativo; ésto evidencia que los agricultores aprovechan dichas áreas para producir tanto cultivos como árboles. Resalta, a la vez, la importancia que tiene la agroforestería en las regiones o sitios en que trabaja el Proyecto.

Métodos de propagación

De acuerdo con la información proporcionada por los campesinos de las distintas zonas, el método más utilizado para propagar las especies es el de semilla botánica y la regeneración natural en el caso de muchas especies (Cuadro 5). El método de propagación por semilla fue el más registrado para las especies de las regiones I, III y IV, mientras que en la Región II la regeneración natural es el medio que sirve de propagación a la mayor parte de las especies. El método de propagación por estacas es menos empleado en la Región II que en las otras regiones.

La información anterior sugiere que en aquellas regiones donde se registran mayores porcentajes de propagación por medio de semilla y métodos vegetativos, prevalecen sistemas agroforestales más intensivos a través de la participación directa de los productores. Por el contrario, en regiones como la II, donde predomina la propagación de árboles por medio de la regeneración natural, se esperarían sistemas agroforestales menos intensivos como en el caso de árboles dispersos.

Conclusiones

La información obtenida en el presente estudio permitió conocer que los pequeños productores utilizan un gran número de árboles nativos de uso múltiple y que dentro de este grupo de especies identificadas, la cuarta parte son árboles fijadores de nitrógeno, lo cual evidencia la gran riqueza que tiene Guatemala por ser centro de origen de estos árboles.

Se determinó que en los sitios estudiados hay una distribución bastante homogénea de diferentes especies de AUM en cuanto a las frecuencias reportadas, pero las especies sobre las que más se informaron fueron: Quercus sp (roble, encino), Diphysa sp (guachipilín), Erythrina sp (pito), Gliricidia sepium (madre cacao) y Alnus arguta (aliso).

Con respecto a la forma de propagación de los AUM, se encontró que la más frecuente es por medio de semilla, seguida por la regeneración natural. La utilización de métodos vegetativos como estacas y vástagos es menos importante.

El presente estudio pone de manifiesto que los pequeños agricultores dependen de las especies forestales para la obtención de varios productos y beneficios. Estos son en orden de importancia: leña, postes, madera (principalmente rolliza), cercos vivos y forraje. Esta tendencia cambia en la Región Central, donde los postes son el producto más utilizado.

El forraje adquiere más importancia en Las Verapaces que en las demás regiones. Los géneros Erythrina y Gliricidia son los que más se utilizan como fuente forrajera en la mayoría de las regiones estudiadas.

En cuanto a la ubicación de los AUM dentro de la finca, éstos se encuentran distribuidos, en orden

Cuadro 5. Métodos de propagación de AUM utilizadas como forraje, según los campesinos de las regiones investigadas en Guatemala.

Especie	Semilla	*Estaca	Vastago
Erythrina sp	X	X	X
Gliricidia sepium	X	X	
Sambucus mexicana	X	X	X
Diphysa sp	X	X	X
Buddleia americana	X	X	
Leucaena sp	X		
Cassia sp	X		
Acacia angustissima	X		
Lysiloma sp	X		
Acacia hindsii	X		
Chiranthodendron sp	X		
Erythrina fusca	X	X	
Acacia sp	X		
Buddleia skutchii	X		
Perymenium grande	X		
Acacia deammi	X		
Leucaena leucocephala	X		
Cupania belizensis	X	Х	
Acacia farnesiana	X		
Cordia alliodora	X		
Crescentia alata	X		
Baccharis vaccinioides	X	X	
Muntingia calabura	X		
"Tilupe"	X		
Eupatorium sexangulare	X		
Chlorophora tinctoria	X		
Guazuma ulmifolia	X		
Engelhardtia sp	X		

^{*} Con frecuencia a través de regeneración natural

de importancia, en el bosque, en cultivos, en cercos y en potreros. Esto implica claramente que la agroforestería utilizando especies nativas es una práctica común en las regiones investigadas.

A pesar de la variedad de especies nativas empleadas, actualmente sólo un número pequeño de éstas son promovidas por el Proyecto Agroforestal, lo cual sugiere la conveniencia de investigar y aprovechar mejor esta diversidad de árboles. Las especies nativas pueden ofrecer diferentes y variadas opciones para los productores en los sistemas agroforestales.*

Rodrigo Arias Director Técnico Unidad de Producción Animal Instituto de Ciencia y Tecnología Agrícola (ICTA) Guatemala Fax: (502) 2 - 72 0161

Nota de la editora:

El trabajo fue presentado en el II Seminario Centroamericano y del Caribe sobre Agroforestería con Rumiantes Menores realizado en San José, Costa Rica, del 15 al 17 de noviembre de 1993.

El autor desea agradecer a la Asociación de Arboles Fijadores de Nitrógeno (NFTA) y CARE por el apoyo brindado, asimismo, la colaboración de los promotores de DIGEBOS y técnicos de CARE y al Lic. Ernesto Carrillo e Ing. Agr. Mario Veliz, de la Facultad de Agronomía de la Universidad de San Carlos de Guatemala, por la identificación taxonómica de las especies estudiadas, y al señor Romeo de La Cruz del Centro de Cómputo de CARE, por su colaboración en el análisis estadístico de la información.

Gliricidia sepium (madre cacao) es, según la investigación, una de las especies nativas más utilizadas en Guatemala (Foto: R. Arias).

