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Abstract
Location-specific information is required to support decision making in crop vari-

ety management, especially under increasingly challenging climate conditions. Data

synthesis can aggregate data from individual trials to produce information that sup-

ports decision making in plant breeding programs, extension services, and of farmers.

Data from on-farm trials using the novel approach of triadic comparison of technolo-

gies (tricot) are increasingly available, from which more insights could be gained

using a data synthesis approach. The objective of our study was to present the appli-

cability of a rank-based data synthesis approach to several datasets from tricot trials

Abbreviations: AIC, Akaike information criteria; AOA, area of applicability; DAP, daily accumulated precipitation; DI, dissimilarity index; DP, daily
precipitation; DSRF, daily solar radiation flux; tricot, triadic comparison of technologies.
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to generate location-specific information supporting decision making in crop variety

management. Our study focuses on tricot data from 14 trials of common bean (Phase-
olus vulgaris L.) performed between 2015 and 2018 across four countries in Central

America (Costa Rica, El Salvador, Honduras, and Nicaragua). The combined data of

17 common bean genotypes were rank aggregated and analyzed with the Plackett–

Luce model. Model-based recursive partitioning was used to assess the influence

of spatially explicit environmental covariates on the performance of common bean

genotypes. Location-specific performance was predicted for the three main grow-

ing seasons in Central America. We demonstrate how the rank-based data synthesis

methodology allows integrating tricot trial data from heterogenous sources to provide

location-specific information to support decision making in crop variety manage-

ment. Maps of genotype performance can support decision making in crop variety

evaluation such as variety recommendations to farmers and variety release processes.

1 INTRODUCTION

Reliable location-specific information supports better deci-
sion making in crop variety management especially under
increasing climate variability. On-farm trial data are expen-
sive to obtain and limited by different factors such as
institutional reach into certain areas, availability of seeds,
staff, and other resources. It is possible to aggregate data
from individual trials to gain insights into variety perfor-
mance at broader temporal and spatial scales. This can help
to gain insights on using varieties across broader areas as cli-
mates shift and to avoid simplistic assumptions about variety
environmental adaptation based on rough adaptation zonation
approaches. Data synthesis is needed for this and can lead to
new insights into a genotype × environment interaction under
real farming conditions, as trial data can be combined with
environmental data, which is increasingly available. Novel
data synthesis approaches can extract information from crop
variety evaluations to support critical decision making in crop
variety management (Brown et al., 2020). In their review,
Brown et al. (2020) have proposed rank-based methods as
a way forward in data synthesis because it allows for flexi-
ble aggregation of heterogenous data collected using different
measurement scales. Rank-aggregation methods have been
proposed for the meta-analysis of data from crop genetic
resources evaluations by Simko and Pechenick (2010) and
Simko and Linacre (2010) with further developments by
Simko et al. (2012). This involves converting numerical data
to relative ranks and applying a statistical model suitable to
ranking data such as the Plackett–Luce model (Luce, 1959;
Plackett, 1975).

Rank aggregation as a data synthesis method involves no
data conversion if ranking data are analyzed, which are col-
lected in on-farm trials, such as the triadic comparison of

technologies (tricot) and comparable formats (Coe, 2002; van
Etten, Beza, et al., 2019). The tricot approach involves farm-
ers participating as citizen scientists evaluating sets of three
genotypes in their own farms (van Etten, Beza, et al., 2019).
Farmers growth the varieties in small trial plots and rank
the varieties accordingly to different traits such as yield, dis-
ease resistance, market value, and the overall performance
of the genotypes (van Etten, Beza, et al., 2019). The use
of rankings implies an inherent loss of information when
compared to measurements in a continuous scale using spe-
cialized instruments (Coe, 2002). However, collecting data
in ranking format allows the participation of a larger num-
ber of farmers and a reduction in the costs of the experiments
compared with other participatory methods (Coe, 2002; van
Etten et al., 2020). Since the data are in ranking format, it
should be analyzed with an appropriate statistical model such
as the Plackett–Luce model (Luce, 1959; Plackett, 1975).
The tricot approach is increasingly used for different crops
by several organizations in Africa and Latin America pro-
ducing considerable volumes of data. van Etten, de Sousa,
Aguilar, et al. (2019) applied the Plackett–Luce model to ana-
lyze the variety performance of red common bean (Phaseolus
vulgaris L.) varieties in Nicaragua. That analysis determined
the influence of environmental factors on variety performance
using model-based recursive partitioning in combination with
the Plackett–Luce model (Turner et al., 2020; Zeileis et al.,
2008). The current study explores combining data from sev-
eral trials executed by different organizations in multiple
locations following a data synthesis strategy as described in
Brown et al. (2020). Applying a data synthesis approach to
tricot data overcomes some of the limitations for data syn-
thesis identified by Brown et al. (2020) such as incompatible
data formats, scales, and experimental designs. Still, aggre-
gating tricot data drawn from trials established by different
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2248 BROWN ET AL.Crop Science

organizations requires effort. Several elements can be adopted
from the existing work on tricot, but an additional invest-
ment is required especially when characterizing uncertainty
of model predictions, complementing the Plackett–Luce tree
model. In this paper, we describe this new approach and apply
it to a dataset on common bean from Central America.

Here, our main objective is to present the applicability
of a rank-based data synthesis approach to several datasets
from tricot trials to generate location-specific information
supporting decision making in crop variety management. The
proposed approach is demonstrated with red common bean
genotypes, which were evaluated by four teams of five differ-
ent organizations in a series of tricot trials in four countries
in Central America (Costa Rica, El Salvador, Honduras, and
Nicaragua).

The specific objectives are to (a) integrate data from tri-
cot trials produced by different organizations at different
locations and seasons, (b) identify the environmental factors
affecting the performance of the evaluated genotypes, (c) pre-
dict the best performing genotypes for each main planting
season in the study region, and (d) assess the uncertainty and
applicability of model predictions.

2 MATERIALS AND METHODS

2.1 Tricot trial data

We obtained data from 14 on-farm trials across Central Amer-
ica (Figure 1). Each trial is a set of incomplete blocks located
on farms that test a set of genotypes in a single area and within
the same agricultural season. The trials were executed by
four teams of five different organizations working in the field
across four Central American countries. Key characteristics
of the datasets are provided in Table 1. All trials followed the
tricot citizen science approach described by van Etten, Beza,
et al. (2019). This consists of an incomplete block design with
blocks of size three, the use of ranking as a farmer-centric data
collection approach, and the intensive use of digital tools to
streamline the process. Each tricot plot is an incomplete block
set of three red common bean genotypes, which were grown
and evaluated by farmer citizen scientists. Genotypes include
both released varieties and experimental lines. Packages of
bean seeds were delivered to farmers without disclosing the
names of the genotypes; bags with the genotypes were labeled
as A, B, and C. Each farmer assessed the three genotypes and
provided feedback by ranking the genotypes. Farmers evalu-
ated plant foliage, plant height, reaction to pests and diseases,
drought tolerance, yield, market value, and taste and also gave
their overall judgment considering all the traits. In our work,
we analyzed the ranking data generated from the overall per-
formance of the genotypes. The data collection card used is
provided in Supplemental Figure S1. Each organization col-

Core Ideas
∙ We aggregate data from trials established by dif-

ferent organizations across different seasons and
locations.

∙ We generate location-specific insights on genotype
performance and environmental interaction.

∙ We characterize uncertainty of model predictions
using Shannon’s entropy and area of applicability
assessment.

lected the data and then uploaded it to the ClimMob digital
platform (van Etten et al., 2017).

The use of the ClimMob digital platform helped to stan-
dardize the data, making it compatible to be aggregated.
However, the datasets still required some data curation before
aggregating them to conduct the data synthesis. One impor-
tant data preparation step involved checking variety names
across datasets. In Central America, the same genotypes are
generally released under distinct variety names in different
countries (Rosas, Beaver, Beebe, et al., 2004). To allow data
aggregation, the genotype names were translated into exper-
imental line names (Table 2). The resulting dataset revealed
partial overlap in the varieties tested across the different trials,
but we removed genotypes that were tested only in one trial
to avoid highly unbalanced comparisons across trials. This
reduced the number of genotypes from 27 to 17. The data
were aggregated using a rank-aggregation approach (Turner
et al., 2020). Data were prepared with the R package gosset (de
Sousa et al., 2022) for their use in the R package PlackettLuce
(Turner et al., 2020).

In most of the cases, trial plots had geographic coordinates,
as these were part of the tricot data collecting process. In
cases when the geographic coordinates were not registered,
we assigned the median value of geographic coordinates of
remaining plots in the same community where the trial was
conducted. Each trial plot data point should include the plant-
ing and harvest dates. To identify outliers of planting dates, we
set a threshold of 40 d above or below the median of each trial
and replaced the outliers by the median planting date of the
corresponding trial. We also identified outliers for the length
of the growing period, with 60 d as the lower limit and 120 d
as the upper limit and discarded any data point outside these
limits.

2.2 Environmental data

The main abiotic limiting factors for common bean pro-
duction are drought, heat stress, and low soil fertility
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BROWN ET AL. 2249Crop Science

F I G U R E 1 Location of tricot trials (identified by Trial ID) in Costa Rica (CRI), El Salvador (SLV), Honduras (HND), and Nicaragua (NIC).
Symbol shapes indicate the organization that established and managed the trials

T A B L E 1 Trial identifiers, managing organization, country, average planting date, and sample size of plots by trial

Trial ID Organizationa Country Planting dateb nc

CRI_05_2018 INTA–UCR Costa Rica 21 May 2018 14

CRI_10_2017 INTA–UCR Costa Rica 19 Oct. 2017 46

CRI_12_2017 INTA–UCR Costa Rica 8 Dec. 2017 41

CRI_12_2018 INTA–UCR Costa Rica 15 Dec. 2018 23

HND_05_2017 FIPAH–PRR Honduras 22 May 2017 87

HND_06_2017 FIPAH–PRR Honduras 5 June 2017 17

HND_10_2016 FIPAH–PRR Honduras 16 Oct. 2016 37

HND_10_2017 FIPAH Honduras 20 Sep. 2017 714

HND_SLV_09_2015 CATIE Honduras–El Salvador 24 Sep. 2015 31

NIC_06_2016 CATIE Nicaragua 22 June 2016 59

NIC_09_2015 CATIE Nicaragua 23 Sep. 2015 178

NIC_09_2016 CATIE Nicaragua 17 Sep. 2016 33

NIC_12_2015 CATIE Nicaragua 16 Dec. 2015 484

NIC_12_2016 CATIE Nicaragua 27 Dec. 2016 107

aINTA, Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria, Costa Rica; UCR, Universidad de Costa Rica; CATIE, Centro Agronómico Tropical
de Investigación y Enseñanza; FIPAH, Fundación para la Investigación Participativa con Agricultores de Honduras; PRR, Programa de Reconstrucción Rural–Honduras.
bMedian.
cNumber of plots in each trial.
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2250 BROWN ET AL.Crop Science

T A B L E 2 Experimental line names and variety names used in each country after variety release along with references used to make the
translation for red common bean genotypes evaluated in tricot trials in Central America

Experimental name Variety name (Country) Reference
429 DFSZ 15094-39-4 INTA Ferroso (NIC) Llano et al. (2013)

703-SM 15216-11-4-VB Chepe (HND) J. C. Rosas, personal communication, 11 Feb. 2022

ALS 0532-6 Tolupan Rojo (HND) Feed the Future Legume Innovation Lab and USDA (2018)

BCR 122-74 Experimental line J. C. Rosas, personal communication, 11 May 2020

BFS 47 Experimental line J. C. Rosas, personal communication, 11 May 2020

BRT 103-182 Experimental line J. C. Rosas, personal communication, 11 May 2020

EAP 9508-93 Cedron (HND) PRR-FIPAH (2019)

EAP 9510-77 Amadeus 77 (HND); INTA Rojo
(NIC); Cabécar (CRI); CENTA
Sand Andrés (SLV); IDIAP R3
(PAN)

Rosas, Beaver, Beebe, et al. (2004)

IBC 301-204 INTA Centro Sur (NIC); Paraisito
Mejorado 1 (HND)

Feed the Future Legume Innovation Lab and USDA (2018); Rosas
and Escoto (2011)

IBC 302-29 Paraisito Mejorado 2 Don Rey
(HND)

Feed the Future Legume Innovation Lab and USDA (2018)

IBC 308-24 Amilcar 58 (HND) Feed the Future Legume Innovation Lab and USDA (2018)

MHC 2-13-49 Experimental line J. C. Rosas, personal communication, 11 May 2020

MIB 397-72 Honduras Nutritivo (HND) Rosas et al. (2016)

MPN 103-137 INTA Precoz (NIC) J. C. Rosas, personal communication, 11 May 2020

SJC 730-79 Rojo Chorti (HND); CENTA EAC
(SLV)

Feed the Future Legume Innovation Lab and USDA (2018); J. C.
Rosas, personal communication, 11 May 2020

SRC 2-18-1 DEORHO (HND); CENTA Nahuat
(SLV); INTA Matagalpa (NIC)

Feed the Future Legume Innovation Lab and USDA (2018); J. C.
Rosas, personal communication, 11 May 2020

SX 14825-7-1 INTA Fuerte Sequia (NIC);
Campechano JR (HND)

Ferrufino (2014); Feed the Future Legume Innovation Lab and
USDA (2018)

Note. CRI, Costa Rica; HND, Honduras; NIC, Nicaragua; PAN, Panama; SLV, El Salvador.

(Beebe, 2012). In Central America, heat stress particularly
limits production in the lowlands (Beebe, 2012; Beebe et al.,
2011). We accessed publicly available data repositories to
obtain rainfall, temperature, and soil data. An initial set
of climatic data were obtained from the Agrometeorologi-
cal indicators from 1979 to present derived from reanalysis
dataset, also known as AgERA5 (Boogaard & van der Grijn,
2020; Copernicus Climate Change Service, 2020). Climatic
variables and indices were computed following Kehel et al.
(2016), Aguilar et al. (2005) and Challinor et al. (2016) using
the R package climatrends (de Sousa et al., 2020). Table 3
describes variables and indices from Aguilar et al. (2005) and
Kehel et al. (2016), which were used without major modifi-
cations. The climatic indices listed in Table 4 are based on
Challinor et al. (2016), with thresholds adapted to common
bean. Both temperature-based and rainfall-based climatic
variables and indices were computed for the whole span of the
growing season (i.e., from planting to harvest) of each trial
plot. Additionally, temperature-based variables and indices
were computed for the three phenological stages: vegetative,
flowering, and grain development. Summarized variables and
indices by trial location for the three phenological stages

are provided in Supplemental Table S1 to describe the cli-
mate variability among locations. The phenological stage
definitions were according to de Medeiros et al. (2016) and
Fernández de Córdova et al. (1986).

For soil variables (Table 5) we used data from Soil-
Grids250m v2.0 from four depth layers, 0‒5, 5‒15, 15‒30,
and 30‒60 cm (Poggio et al., 2021). We selected the soil
horizons following Ho et al. (2005). Soil water content was
extracted from the Global High-Resolution Soil-Water Bal-
ance (Trabucco & Zomer, 2019) and averaged across the
growing season of each trial plot.

2.3 Plackett–Luce Model

The statistical model applied to analyze the rankings of geno-
types is an extension of the Plackett–Luce model (Luce, 1959;
Plackett, 1975) implemented in the R package PlackettLuce
(Turner et al., 2020). The Plackett–Luce model is a classic
approach to analyze ranking data based on Luce’s axiom of
choice (Luce, 1959; Turner et al., 2020). The version imple-
mented in the PlackettLuce package is a generalization of
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T A B L E 3 Climatic indices that have a possible influence on bean variety performance. Adapted from Aguilar et al. (2005) and Kehel et al.
(2016)

Covariate Description Unit
minDT Minimum daytime temperature ˚C

maxDT Maximum daytime temperature ˚C

minNT Minimum nighttime temperature ˚C

maxNT Maximum nighttime temperature ˚C

DTR Diurnal temperature range: mean difference between daily maximum temperature and daily
minimum temperature

˚C

SU Summer days: number of days with maximum temperature >30 ˚C ˚C

TR Tropical nights: number of nights with maximum temperature >25 ˚C ˚C

WSDI Maximum warm spell duration, consecutive days with temperature >90th percentile Days

CSDI Maximum cold spell duration, consecutive nights with temperature <10th percentile Days

T10p 10th percentile of night temperature ˚C

T90p 90th percentile of day temperature ˚C

MLDS Maximum length of consecutive days with precipitation <1 mm Days

MLWS Maximum length of consecutive days with precipitation ≥1 mm Days

R10mm Number of heavy precipitation days 10≥ rain <20 mm Days

R20mm Number of very heavy precipitation days rain ≥ 20 mm Days

Rx1day Maximum 1-d precipitation mm

Rx5day Maximum 5-d precipitation mm

R95p Total precipitation when rain >95th percentile mm

R99p Total precipitation when rain >99th percentile mm

Rtotal Total precipitation (mm) in wet days, rain ≥ 1 mm

SDII Simple daily intensity index, total precipitation divided by the number of wet days mm d−1

SRF Daily solar radiation flux J

T A B L E 4 Climatic sensitivity indices, thresholds, and references used to adjust the thresholds to common bean requirements. Adapted from
Challinor et al. (2016)

Index Description Threshold Referencea

˚C

hts_mean High-temperature stress using daily mean temperature,
expressed as the percentage number of days a certain
threshold is exceeded.

Min = 19, Max = 25 Agtunong et al. (1992)

hts_max High-temperature stress using daily maximum temperature. Min = 26, Max = 32 Gross and Kigel (1994)

hse Heat-stress event, expressed as the percentage of the
number of days in which a certain threshold is exceeded
for at least two consecutive days.

>35 Gross and Kigel (1994)

aFor threshold adjustment.

the Plackett–Luce model to allow handling of ties and partial
rankings (Turner et al., 2020). For a given set S of J geno-
types, 𝑆 = {𝑖1, , 𝑖2,… ., 𝑖𝑗}, the probability that an element
ij is selected from S is denoted by the following:

𝑃
(
𝑖𝑗|𝑆

)
=

α𝑖𝑗∑
𝑖∈𝑆 α𝑖

where αi ≥ 0 represents the worth of the genotype i. A geno-
type with higher worth value is more likely to be preferred
over other items with lower worth. The worth parameter
values are estimated by maximum likelihood (Turner et al.,
2020). Considering genotypes A, B, and C, A ≻ C ≻ B
denotes that A is ranked higher than C, and C is ranked higher
than B. To have finite maximum likelihood estimates, the
network of wins and losses produced by the rankings needs
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2252 BROWN ET AL.Crop Science

T A B L E 5 Description of soil variables retrieved from SoilGrids250m v2.0 (Poggio et al., 2021)

Variable Description Units
cec Cation exchange capacity of the soil cmol© kg−1

cfvo Volumetric fraction of coarse fragments (>2 mm) cm3 100 cm−3 (vol%)

clay Proportion of clay particles (< 0.002 mm) in the fine earth fraction g 100 g−1 (%)

nitrogen Total nitrogen (N) g kg−1

phh2o Soil pH in water pH

sand Proportion of sand particles (>0.05 mm) in the fine earth fraction g 100 g−1 (%)

silt Proportion of silt particles (≥0.002 mm and ≤0.05 mm) in the fine earth fraction g 100 g−1 (%)

soc Soil organic carbon content in the fine earth fraction g kg−1

ocd Organic carbon density kg m−3

F I G U R E 2 Connectivity network of genotypes evaluated in the tricot trials. The arrows indicate wins (outgoing) and losses (incoming) among
genotype pairs. The graph drawing algorithm places directly compared genotypes close to each other (Fruchterman & Reingold, 1991)

to be strongly connected (Turner et al., 2020). A strongly
connected network is when a path of wins and losses exists—
either directly or indirectly—between every pair of items
(Turner et al., 2020). Figure 2 shows the strongly connected
network of genotypes evaluated in the tricot trials. The loca-
tion of the nodes in Figure 2 is automatically determined
by the Fruchterman–Reingold algorithm (Fruchterman &
Reingold, 1991). The Fruchterman–Reingold is a force-
directed placement algorithm, which tries to optimize the
location of the nodes for visualization purposes following two
principles: (a) connected nodes should be drawn next to each
other and (b) nodes should not be drawn too close to each
other (Fruchterman & Reingold, 1991). Therefore, genotypes
that were compared directly in the tricot trials will likely be
nearer than those which were not. Figure 2 was made with
the R package GGally, which uses the Fruchterman–Reingold

algorithm implemented in the R package sna (Butts, 2020;
Schloerke et al., 2021).

2.4 Model-based recursive partitioning
with Plackett–Luce trees

The original Placket–Luce model does not account for exter-
nal factors that may influence the probability of an item to
be preferred (Turner et al., 2020). To consider environmen-
tal factors in the model, we used an extension in which the
Plackett–Luce model is combined with model-based recur-
sive partitioning (Zeileis et al., 2008). It is implemented as
Plackett–Luce trees in the R package PlackettLuce (Turner
et al., 2020). The method involves the following four steps
from Turner et al. (2020) and Zeileis et al. (2008):
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T A B L E 6 Planting seasons for common bean in Central America from different studies

Geographic area Planting season name Planting time frame Study
Central America Primera April (García-Solera & Ramírez, 2012)

Postrera August‒September

Apante or Winter December‒March

Nicaragua Primera May (Gourdji et al., 2015)

Postrera September

Apante November

Honduras Primavera or Primera 15 May–20 June (Escoto, 2013)

Postrera or Segunda End of August‒October

Postrera tardía or Apante November‒January

Costa Ricaa Huetar Norte End of November to beginning of January (Hernández Fonseca, 2009)

Brunca 1 May

Brunca 2 End of September to end of October

Chorotega 1 November‒December

Chorotega 2 September‒October

Valle Central and Puriscal 15 September–First week of October

Turrialba December

Costa Rica Brunca 1 May (Vargas et al., 2018)

Brunca 2 October

Huetar Norte November‒December

aIn Costa Rica, seasons are usually named as Primera and Segunda, with changes in the time frame of Segunda depending on the region (J. C. Hernández, personal
communication, 4 May 2021).

1. A Plackett–Luce model is fitted to the complete dataset.
2. The stability of worth parameter values, as influenced by

the covariates, is assessed for each covariate.
3. If a significant instability is detected, the data is partitioned

by the covariate with the strongest instability based on a
cut-point providing the highest improvement of the model
fit.

4. Steps 1–3 are repeated for each branch of the tree until no
more instabilities are detected or if the resultant partitions
are smaller than a given size threshold.

2.5 Model selection and validation

We first applied a forward variable selection with blocked
cross-validation to select variables that are generalizable
across the study region (Roberts et al., 2017). We used blocked
cross-validation using trials as blocks, further referred to as
leave-one-trial-out cross-validation. This partitioning struc-
ture aims to account for the geographical and temporal
heterogeneity posed by the aggregation of several tricot trial
datasets. We assume that each trial represents a particular
combination of location and time in some way equivalent to an
environment. This is also motivated by the complex arrange-
ment of planting seasons (Primera, Postrera, & Apante)
across Central America (Table 6). Similar blocking strategies

have been recently applied to validate predictive models of
genotype performance (Neyhart et al., 2021).

Models implemented with the recursive partitioning frame-
work can be tuned by adjusting the alpha hyperparameter that
conditions the tree size (Hothorn et al., 2006). Low alpha
values may result in low power for detecting dependencies
between the covariates and the response variable (Hothorn
et al., 2006). To overcome this, Hothorn et al. (2006) sug-
gest setting a very large value for the alpha hyperparameter to
assure that any dependence is detected. Therefore, we used a
large alpha value (α = .9) in the forward variable selection to
ensure that most dependence is detected. Overfitting is pre-
vented by subsequent pruning the final tree using the Akaike
information criteria (AIC) (Akaike, 1974). We used the result-
ing Plackett–Luce tree to predict variety performance in the
subsequent analysis steps (Section 2.7). A potential limitation
of a single tree is its instability, which can be overcome using
ensembles of trees (Strobl et al., 2009). On the other hand, a
single tree is more interpretable than ensembles (Strobl et al.,
2009). Here, we present our approach using a single tree to
facilitate interpretation and conceptual clarity. In future work,
potential instability can be addressed by using ensembles.

Since Plackett–Luce trees are fitted by maximum like-
lihood, we used the model deviance as the goodness of
fit metric computed on the hold-out data within the cross-
validation procedure. To provide a more interpretable metric,
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2254 BROWN ET AL.Crop Science

we also computed McFadden’s pseudo-R2 (McFadden, 1973).
As an accuracy metric, we calculated Kendall’s W (Kendall
& Smith, 1939) with the R package DescTools (Signorell
et al., 2021). Kendall’s W measures the concordance between
the observed and the predicted rankings. As each trial has
a different sample size, we calculated weighted averages of
Kendall’s W and McFadden’s pseudo-R2 using the test fold
size as weights. To evaluate for remaining spatial structure
not accounted for in the model, we subjected models with two
other sets of covariates to cross-validation for comparison: (a)
a model with selected covariates by the forward selection plus
geolocation covariates and (b) a model with only geolocation
covariates. We followed van Etten, de Sousa, et al. (2019)
for the selection of geolocation covariates: latitude, longitude,
longitude + latitude, and longitude − latitude (rotated axes).

2.6 Modeling and predicting planting dates

We extracted climatic indices to predict genotype perfor-
mance for the growing period observed in each trial plot.
To make predictions of variety performance for unobserved
locations, the growing period for these locations needs to
be predicted. Predefined planting calendars are often used
in agricultural modeling, but this can lead to unrealistic
results, as planting dates change across seasons. Farmers
usually decide when to plant based on their experience and
seasonal weather patterns. Here, we used survival analysis
(Kleinbaum & Klein, 2012b) to estimate unobserved plant-
ing dates for each planting season in the study region. We
fitted a Cox proportional hazard regression model with time-
dependent covariates, an extension of the original Cox model
(Cox, 1972; Therneau & Grambsch, 2000). Given a subject i,
the hazard function assumed in the Cox proportional hazard
regression model is as follows:

λ𝑖 (𝑡) = λ0 (𝑡) 𝑒X𝑖(𝑡)β

where λ0 is the hazard baseline function, Χi(t) is the vector
of time-varying covariates for subject i, and β is the vector of
coefficients (Therneau & Grambsch, 2000).

To fit the Cox regression model, we used the R package sur-
vival (Therneau, 2021). Survival analysis needs to define the
observation period for modeling. For each season, we defined
the start of the observation period as 1 April for the Primera
season, 1 August for the Postrera season, and 1 October for
the Apante season. These dates correspond to roughly 1 mo
before each season is expected to begin. The end of each
observation period is defined by the latest observed plant-
ing date of each season in the aggregated dataset. Previous
studies have found that growing seasons follow rainfall pat-
terns in Central America (Alfaro et al., 2018; García-Solera
& Ramírez, 2012; Gourdji et al., 2015). In the case of the

Primera season, farmers wait for the onset of the rainy season
after the dry season. On the other hand, during the Segunda
rainy season, farmers look for short dry periods that facilitate
planting. Therefore, we selected the following variables that
putatively influence bean planting dates: daily precipitation
(DP), daily accumulated precipitation (DAP), and daily solar
radiation flux (DSRF).

For each Cox regression model, one for each planting sea-
son, we first applied a stepwise model selection by AIC using
the function step available in base R (R Core Team, 2022).
To assess the model’s goodness of fit, we used the propor-
tional hazard assumption test implemented in the function
cox.zph of the survival package (Therneau, 2021), which is
the approach proposed by Grambsch and Therneau (1994).
The proportional hazard assumption test is passed when the p
value of the chi-square statistic for each variable in the model
is nonsignificant (Kleinbaum & Klein, 2012a). The prediction
ability of the model is assessed by the c index, which is the
probability of concordance of the observed survival against
the predicted survival (Harrell, 2015; Harrell et al., 1982).
We predicted survival curves with covariate data for the target
locations and for each of the past 20 yr that were subsequently
used in the prediction of genotype performance. From each
predicted survival curve, we extract the number of days that
intersect the survival curve at 0.25 survival probability, hence
0.75 probability to plant the day after that number of days.
We choose this late cutoff to avoid undefined values in the
predicted survival curve, which can be potentially caused by
unfavorable weather conditions. This number of days is subse-
quently added to the start date of the corresponding observing
period to obtain the planting date. The end date of the grow-
ing period is calculated by adding the average number of days
of the growing season observed in the sampled trial data.

2.7 Predictions of genotype performance

Several studies have proposed using environmental covari-
ates to account for genotype × environment interaction in
the analysis of multienvironment trials (Piepho et al., 1998;
van Eeuwijk et al., 1996). Predictions of genotype perfor-
mance at new locations are less common, but recent studies
have demonstrated its feasibility (Buntaran et al., 2021; van
Etten, de Sousa, et al., 2019). To provide a visual representa-
tion of the spatiotemporal information generated by the model
predictions, we applied a spatial mapping approach.

We defined the target region to predict the genotype perfor-
mance as the whole area covered by Costa Rica, El Salvador,
Honduras, and Nicaragua. We made a base raster layer as
a template for the predictions using the same spatial reso-
lution of AgERA5 (approximately 11 by 11 km). Cell-wise
predictions were produced for each planting season for the
whole study region covering the four countries included in
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BROWN ET AL. 2255Crop Science

the modeling stage. To obtain a temporal representation of
current climatic conditions, we predicted genotype perfor-
mance for each of the past 20 yr (2000–2019 inclusive) and
then averaged the predicted performance to have a represen-
tative prediction for each planting season. For each of the 20
yr, we predicted the growing seasons using the Cox propor-
tional hazard regression model described in Section 2.6. The
climatic data were extracted for the periods corresponding to
each of the predicted growing seasons (i.e., from planting to
harvest) to compute the climatic variables and indices selected
in the forward selection process described in the Section 2.5.
We created a raster map with each cell containing the exper-
imental line names of the top three performing genotypes
according to the averaged predictions.

We provided the ranking probabilities of a genotype to be
in its current position and not in any other position in the event
that the trial is repeated. To this end, we calculated the prob-
ability of each genotype to be in the top three or not. The
procedure is summarized as follows:

1. We fitted a Plackett–Luce tree with the entire aggregated
observed dataset.

2. For each of the resulting nodes in the tree obtained under
Step 1, we extracted the worth estimates and the quasi-
standard errors (Firth & De Menezes, 2004) using the
qvcalc function available from the PlackettLuce package.

3. For each node, we determined the probability for each rank
position for each genotype. This can be done analytically;
however, we used a Monte Carlo strategy for convenience.
We drew one million samples for each genotype from
a normal distribution centered on their worth, with the
quasi-standard error as its standard deviation, using base
R function rnorm. Then we converted the sampled worth
values to ranks.

4. We calculated relative frequencies of rank from the
sampled ranks.

5. For each of the cells in the target raster, we predicted in
which node each cell falls for each season using the model
fitted in Step 1.

6. Using the outputs from Steps 4 and 5, we computed the
probabilities for each genotype to be either in the top three
or not.

Therefore, the top three best-performing genotypes referred
to previously are the three genotypes with highest ranking
probabilities of being in the top three.

The R package terra was used for handling raster for-
mat data (Hijmans, 2021). The maps were plotted using
the R packages ggplot2 (Wickham, 2016) and sf (Pebesma,
2018). Data for mapping the administrative boundaries were
obtained from the GADM database (Hijmans, 2010).

2.8 Uncertainty assessment of model
predictions

To estimate the uncertainty of predicted rank probabilities, we
calculated the normalized entropy of the rank probabilities for
the genotypes with higher probability of being in the top three.
We followed Wu et al. (2021), who characterize uncertainty
in ranking probabilities using Shannon’s entropy defined as
follows:

𝐻 (𝑥) = −
𝑛∑

𝑖 = 1
𝑃 (𝑥 = 𝑖) log𝑏𝑃 (𝑥 = 𝑖)

For the case of genotype rankings, P(x= i) is the probability
of genotype x to be ranked in position i in a given trial. In our
case, we focused on the probability of genotypes being in the
top three, so we used the following equation:

𝐻 (𝑥) = −
(
𝑃 (𝑥 ≤ 3) log𝑏𝑃 (𝑥 ≤ 3) + 𝑃 (𝑥 ≥ 4) log𝑏𝑃 (𝑥 ≥ 4)

)

The unit of entropy depends on b, which is the base of the
logarithm (Wu et al., 2021). We used the common base-2 log-
arithm, where the unit of entropy is the bit. The entropy is
normalized to range between 0 and 1 by dividing the range
of maximum and minimum entropy for the number of n ele-
ments in the ranking (Wu et al., 2021). An entropy value of 1
represents high uncertainty.

2.9 Applicability assessment of model
predictions

To assess the applicability of model predictions from an envi-
ronmental perspective, we calculated the area of applicability
(AOA) as described by Meyer and Pebesma (2021). This
provides geographic boundaries to separate areas where the
relationship learned by the model with the training data can
be extrapolated from those that cannot (Meyer & Pebesma,
2021). Furthermore, the AOA identifies the areas where the
model performance estimated with cross-validation applies
(Meyer & Pebesma, 2021). The AOA is derived from the
dissimilarity index (DI), which is the distance in the multi-
dimensional space of the predictor variables between training
data and new data from locations used for predictions (Meyer
& Pebesma, 2021). The AOA is a binary outcome calculated
after applying a threshold on the DI. Cell points that surpass
the threshold are labeled as 0 and otherwise as 1. The thresh-
old on the DI is defined by the maximum DI of the training
data in the cross-validation considering only the data points
that do not occur on the same fold. Hence the same blocking
structure of the cross-validation folds is used in the calculation
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2256 BROWN ET AL.Crop Science

T A B L E 7 Deviance, pseudo-R2, and Kendall’s W comparing four
models, no covariates, environmental covariates, covariates and
geolocation, and geolocation only

Model Deviance Pseudo-R2 Kendall’s W
No covariates 6,183 .6679 0.5203

Environmental
covariates

6,033 .6831 0.5215

Environmental
covariates +
geolocation

6,393 .6590 0.5146

Only geolocation 6,350 .6596 0.5122

of the DI and subsequently in the derived AOA. We calculated
the AOA with the function aoa implemented in R package
CAST (Meyer, 2018).

3 RESULTS AND DISCUSSION

3.1 Model selection and validation

The forward variable selection procedure selected the follow-
ing variables: warm spell duration index (WSDI), R20mm,
T10p, hts_mean_19_flo. The model with environmental
covariates produced better cross-validated values of deviance,
pseudo-R2 and Kendall’s W values compared with the base-
line model without covariates (Table 7). The models that
include geolocation covariates produced a worse fit than the
model with environmental covariates. Therefore, the model
with environmental covariates effectively accounts for the
spatial structure of the aggregated dataset.

The AIC-pruned tree using all the data (Figure 3) makes a
split based on the WSDI, which is the number of days with
temperature above the 90th percentile (de Sousa et al., 2020).
Terminal nodes 2 and 3 in Figure 3 present the estimated
worth values for the different resulting subsets of data after
the split with variable WSDI. Node 3 presents the genotypic
worth values for all plots with conditions of more than 4 d
with temperature higher than the 90th percentile. In these
warm conditions, the top three genotypes are: IBC 308-24,
MHC 2-13-49, and SX 14825-7-1. The genotype IBC 308-24
was released in Honduras as ‘Amilcar 58’ (Feed the Future
Legume Innovation Lab & USDA, 2018). In the case of
genotype MHC 2-13-49, it is an experimental line developed
mainly for resistance against web blight [Thanatephorus cuc-
umeris (Frank) Donk] (Rosas, unpublished data, 2022). The
genotype SX 14825-7-1 was released in Honduras in 2011 as
‘Campechano JR’ and in Nicaragua as ‘INTA Fuerte Sequía’.
It was selected within a community-based participatory plant
breeding program in Honduras, and it is well adapted to high
temperature conditions (Vargas et al., 2011).

While some genotypes were not grown and evaluated
together in the field, as shown in Figure 2, the Plackett–Luce
tree model with environmental covariates allows to make
those comparisons considering the different environmental
conditions among trial locations.

Figure 3 shows the presence of genotype × environment
interaction between the two sets of environments differen-
tiated by the Plackett–Luce tree model. For example, the
experimental line BRT 103–182 performed well in the less
warm conditions (Node 2) but poorly in the warmer conditions
(Node 3).

In general terms, the split made by WSDI is consistent with
existing knowledge about the effect of high temperature on
the performance of common bean genotypes (Beebe, 2012;
Beebe et al., 2011). van Etten, de Sousa, et al. (2019) did a pre-
liminary study of a subset of the data (the trials in Nicaragua
only) and identified maximum night temperature as the major
factor influencing differences in common bean genotype per-
formance. The interpretation of van Etten, de Sousa, et al.
(2019) was that the main difference between varieties was
their level of heat stress tolerance. We identified a similar
effect of heat stress in our study. There is a weak, positive
correlation between WSDI and maximum night temperature
(r = 0.09, p = 1 × 10−4). The current analysis has not iden-
tified additional environmental factors. The current dataset is
larger than that of the Nicaragua study but also holds more
varieties. Also, WSDI may be more generalizable across geo-
graphical space than maximum night temperature or may
capture other environmental influences beyond heat stress. In
future applications, more covariates and interactions between
them could be identified using machine-learning methods (for
example, using ensembles of Plackett–Luce trees).

3.2 Survival analysis to predict planting
dates

The coefficients estimated by the Cox regression model for
the three seasons are presented in Table 8. For instance, in
the case of the Primera season model, a millimeter change in
the daily accumulated precipitation is associated with ∼0.5%
increase in the probability of planting. The variable impor-
tance is described by the magnitude of the Z value and the
exponentiated coefficients provide the multiplicative effect of
each covariate on the estimated risk (Therneau & Grambsch,
2000).

For the Primera season, the stepwise model selection
removed DP, keeping only DAP as covariate in the model.
In the case of the Postrera season, the stepwise model selec-
tion suggested all the three variables should be kept in the
model. However, we detected a large violation of the pro-
portional hazard assumption. We overcame this by removing
DAP from the Postrera season model, keeping DSRF and DP.
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BROWN ET AL. 2257Crop Science

F I G U R E 3 Plackett–Luce tree plot of the model fitted with aggregated data from all the trials. The x axis indicates the worth parameter
estimates in logarithmic scale, which are the probabilities of each genotype to be ranked first. The bars represent quasi-standard error, and the central
vertical gray bar is the zero intercept for each node. WSDI, warm spell duration index. Color codes for genotypes: red, experimental line; gray,
released variety

T A B L E 8 Estimated Cox regression model coefficients for the three planting seasons

Season model Variable coef exp(coef) se(coef) Z p
Primera DAP 0.005 1.005 4.968 × 10−4 10.83 2 × 10−16***

Postrera DP 0.008 1.008 0.004 2.047 .0407*

DSRF 8.930 × 10−8 1.000 1.622 × 10−8 5.505 3.69 × 10−8***

Apante DP −0.051 0.95 0.013 −3.854 1.161 × 10−4***

Note. DP, daily precipitation; DAP, daily accumulated precipitation; DSRF, daily solar radiation flux.
*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level.

This improved the model from the initial fit with a modest
improvement in the ability of prediction and only a moderate
violation of the proportional hazard assumption (Table 9). The
final model for the Apante season only has DP as covariate
after applying the stepwise model selection.

The Cox regression model of the Primera season has a c
index of 0.808 (SE = 0.03)—considered a good prediction
ability—while the Postrera and Apante models have c index
values of 0.563 (SE = 0.012) and 0.625 (SE = 0.013) respec-

tively, which are relatively low, but still better than using a
fixed planting date.

For the Primera season, it makes sense that accumulated
precipitation influences farmers’ decision to plant because,
generally, farmers wait until the onset of the rainy season. The
Postrera season starts before the second peak of the bimodal
rainfall distribution (Alfaro et al., 2018; García-Solera &
Ramírez, 2012). As this occurs during the rainy season, farm-
ers need to identify a time window of sunny days to plant. For

 14350653, 2022, 6, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/csc2.20817 by C

ochrane C
osta R

ica, W
iley O

nline L
ibrary on [09/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2258 BROWN ET AL.Crop Science

T A B L E 9 Results of the proportional hazard assumption tests for
the three models (Primera, Postrera, Apante)

Season model Covariates χ2 df p
Primera DAP 1.76 1 .18

Global a 1.76 1 .18

Postrera DP 0.583 1 .4450

DSRF 10.223 1 .0014

Global a 12.901 2 .0016

Apante DP 6.12 1 .013

Global a 6.12 1 0.013

Note. DP, daily precipitation; DAP, daily accumulated precipitation; DSRF, daily
solar radiation flux. aGlobal, global test with all variables.

the Apante season model, the influence of daily precipitation
might be linked to the drier conditions of this season; hence,
farmers wait to notice some stability of precipitation to decide
to plant.

We consider our results a good first approximation to
model planting dates in function of observed data and climatic
covariates. Previous studies have applied survival analysis to
seasonal forecasting (Maia & Meinke, 2010). However, to the
best of our knowledge, the approach presented here is the first
application of a Cox model with time-dependent covariates to
predict crop planting dates. Further refinement is required in
this research field such as adjustment in terms of optimal start-
ing point of observation, required sample size, and selection
of additional covariates. This was not the main objective of the
present work, and the approach might be considered as an ad
hoc solution to the problem of obtaining planting dates to be
used as inputs in the genotype performance model. We believe
that our findings can support further exploration and develop-
ment of the application of survival analysis to model planting
dates especially when the alternative is the use of unrealistic
fixed planting dates.

3.3 Maps of predicted genotype
performance

The average estimated performance of common bean geno-
types across the four countries in the study region for
the Primera, Postrera, and Apante seasons is presented in
Figures 4a, 5a, and 6a, respectively. Figures 4b, 5b, and 6b
present the normalized entropy for the ranking probabilities.
Low entropy values represent areas where the predictions of
ranking probability have low uncertainty. For instance, geno-
types predicted to be in the top three for a given area with
low entropy have a high probability to be in the top three in a
long series of repetitions of the same experiment. Figures 4c,
5c, and 6c present the AOA, which differentiates areas where

model predictions are supported by the sample data from
those from where they are not. For the three seasons, a group
of seven genotypes is in the top three (Table 10); within that
group, ranking positions swap depending on the season and
the location. A consistent pattern across the seasons is that
areas in which the top three is either SRC 2-18-1 ≻ SX 14825-
7-1 ≻ ALS 0532-6 or SRC 2-18-1 ≻ ALS 0532-6 ≻ SX
14825-7-1 have the lowest entropy and good AOA. Therefore,
these two predicted rankings are the most reliable across sea-
sons. The predictions are also consistent with the known traits
of the genotypes. For instance, genotypes ALS 0532-6 and SX
14825-7-1 are tolerant to drought and heat, while genotype
SRC 2-18-1 is tolerant to heat (Table 10). These three geno-
types seem to perform well across the Central America dry
corridor.

Differences in entropy values seem to be driven by the rep-
resentativeness of genotypes in each of the trials. For instance,
Costa Rica presented the highest levels of entropy compared
with the rest of Central America. Genotypes SX 14825-7-
1 and SRC 2-18-1 were not evaluated in Costa Rica. On
the other hand, areas with relatively high entropy in El Sal-
vador, Honduras, and Nicaragua are those in which BCR
122-74 is present in the top three, which was only evaluated in
Costa Rica. Genotype ALS 0532-6 is in the top three in areas
with lowest entropy and was evaluated in 10 of the 14 trials
(Figure 7).

The AOA values that indicate the areas in which the model
predictions cannot be applied correspond to locations well
known to be unsuitable for common bean production because
of the unfavorable climatic conditions. Many of these loca-
tions are within conservation areas. For instance, Costa Rica’s
Talamanca Mountain range was identified as having no appli-
cability of the models in the three seasons. In this case, the
environmental constraints are the high altitude, cold temper-
atures, and humid conditions (Oostra et al., 2008). Another
example is the Indio Maíz Biological Reserve in Nicaragua.
This area is very humid with annual precipitation of >4,000
mm consisting of tropical forest and swampland (Jordan et al.,
2019). We mapped all modeling results for demonstration rea-
sons also covering the area of no applicability; however, in
future applications, these areas can be masked. Overall, the
AOA maps show that the trials jointly cover most environmen-
tal conditions under which bean growing occurs in Central
America. This is an indication of the potential of aggregating
trial results across space and time to make predictions across
the whole region.

In the case of the Primera season, in a large portion of the
predicted area the top three genotypes are SX 14825-7-1 ≻

SRC 2-18-1 ≻ BCR 122–74. The exception is Costa Rica,
where genotype SRC 2-18-1 is not in the top three in a large
part of the country. From an environmental perspective, the
largest unrepresented area delimited by the AOA (Figure 4c)
is Costa Rica’s Talamanca Mountain range (described above).
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F I G U R E 4 (a) Map of genotypes with the higher probability of being in the top three across the study region for the Primera season. (b)
Normalized entropy (0–1) of the genotypes with higher probability of being in the top three; the legend scale is constrained to easily visualize the
differences. (c) Area of applicability (AOA) for the Primera season; areas in red denote no applicability of the model

F I G U R E 5 (a) Map of genotypes with the higher probability of being in the top three across the study region for the Postrera season. (b)
Normalized entropy (0–1) of the genotypes with higher probability of being in the top three; the legend scale is constrained to easily visualize the
differences. (c) Area of applicability (AOA) for the Postrera season; areas in red denote no applicability of the model
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F I G U R E 6 (a) Map of genotypes with the higher probability of being in the top three across the study region for the Apante season. (b)
Normalized entropy (0–1) of the genotypes with higher probability of being in the top three; the legend scale is constrained to easily visualize the
differences. (c) Area of applicability (AOA) for the Apante season; areas in red denote no applicability of the model

F I G U R E 7 Presence of genotypes included in the top three in at least one of the trials

For the Postrera season, Figure 5a shows that areas in which
the top three are SX 14825-7-1 ≻ SRC 2-18-1 ≻ BCR 122-74
are similarly large to those predicted for the Primera season,
but the areas where the top three are SRC 2-18-1 ≻SX 14825-
7-1 ≻ ALS 0532-6 are larger in El Salvador, Honduras, and
Nicaragua. This area has the lowest values of entropy, indicat-
ing that these genotypes have a high probability of not being

outperformed by other genotypes (Figure 5b). The AOA for
the Postrera season has a similar pattern as the Primera season
with an additional small area in Honduras with environmental
conditions not covered by the trials (Figure 5c).

The map of predictions of the top three genotypes for the
Apante season shows a major difference with the Primera
and Postrera seasons. In this case, in most of the area the
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top three are SRC 2-18-1 ≻ ALS 0532-6 ≻ MHC 2-13-49
(Figure 6a). Relative to Primera and Postrera, a much larger
area has genotype MHC 2-13-49 ranking third in the top three.
Still, the areas with the lowest entropy (Figure 6b) are those in
which the top three are SRC 2-18-1 ≻ SX 14825-7-1 ≻ ALS
0532-6 (Figure 6a). Therefore, the main difference in terms of
entropy for the Apante season seems to be presence of either
MHC 2-13-49 or ALS 0532–6 in the top three. The genotype
MHC 2-13-49 was only evaluated in Costa Rica (Figure 7). In
areas where this variety is among the top three, entropy val-
ues are higher than in areas in which ALS 0532-6 is among
the top three. The latter variety has less uncertainty associ-
ated with it, as it was evaluated in 10 out of 14 trials across
the four countries. The AOA for the Apante season is similar
to the one for the Postrera season with an increase in Hon-
duras for areas in which the environmental conditions were
not represented in the trials. These areas mainly correspond
to the locations of the Pacayita Volcano Biological Reserve,
the Opalaca Biological Reserve, and the Cacique Lempira
Señor de las Montañas Biosphere Reserve. Another important
change is that most of the coastal areas delineated as with no
applicability in the cases of Primera and Postrera are classified
as having good applicability in the Apante season. However,
in the case of Apante, the coastal areas present high levels
of entropy. This higlights the importance of considering both
uncertainty assesments—the entropy and the AOA—as they
are complementary.

One use of the predictions from the data synthesis is to
identify promising locations for new genotype evaluations.
For instance, EAP 9508-93 has been released only in Hon-
duras as ‘Cedrón’ and the present study only included tricot
trials in Honduras (Figure 7). Yet, EAP 9508-93 was found
to belong to the top three genotypes in most parts of Costa
Rica (Figure 4a). Relatively high entropy in those areas indi-
cates that a direct recommendation to introduce this genotype
in Costa Rica is not warranted, but our findings suggest it is a
relevant candidate for future evaluations, which are required
to release this variety also in Costa Rica. Another example is
ALS 0532-6, a relatively new genotype again released only
in Honduras but tested across the four countries. The low
entropy in areas where this genotype belongs to the top three
(in Costa Rica, El Salvador, Nicaragua) indicates relatively
large certainty about its superior performance. Therefore, this
genotype is considered a good candidate for introduction in
these areas. The results of this study feed directly into decision
making on common bean breeding, which is well coordinated
in Central America (Reyes et al., 2016). Another enabling
factor is that market preferences are relatively homogeneous
in Central America, and food quality traits are considered
by farmers in tricot trials (Supplemental Figure S1). Within
countries, our findings can be used to recommend genotypes
directly to farmers.

4 CONCLUSIONS

We demonstrated the use of a data synthesis approach to
aggregate data from on-farm trials to produce location-
specific information about common bean genotype perfor-
mance across four countries in Central America.

The use of environmental covariates in the Plackett–Luce
tree model allowed us to identify WSDI, a proxy for elevated
heat, as the main abiotic factor influencing the genotype per-
formance across the study region. The approach also allowed
taking advantage of the different locations and growing sea-
sons represented in the aggregated dataset in contrast to what
might be possible when single trials are analyzed in isolation.

The maps of predicted variety performance produced with
our data synthesis approach can provide useful insights for (a)
local plant breeding programs to target new locations for test-
ing and (b) extension agents to generate recommendations for
farmers. The combination of entropy and the AOA allowed
us to quantify the uncertainty of two different dimensions:
the rankings and the environmental conditions. We expect our
data synthesis methodology to be applicable to other crops
and regions.

While the analysis of ranking data is less common in the
evaluation of crop varieties, significative efforts have been
made recently to facilitate both the collection and analysis
of tricot trial data. For data collection, the digital platform
ClimMob provides the required functionality to collect and
store the data in a standardized format (van Etten et al.,
2017). A challenge for the aggregation of trials from dif-
ferent countries is the different naming used for released
varieties. For future cases, we concur with Rosas, Beaver,
Beebe, et al. (2004) that coordinated regional releases—in
contrast to individual releases—help to avoid this problem.
For the large number of already released materials under
different names, an open-access database with harmonized
variety names might facilitate variety identification across
countries. For instance, a solution has been proposed within
the breeding management system Breedbase (Morales et al.,
2022). Still, further developments are required to also provide
a solution to a wider audience including farmers. With regards
to the modeling and analytical stage, most of the develop-
ments made within our work are being fed into the R package
gosset, which complements the functionality of the package
PlackettLuce. This will help researchers to apply the methods
presented in this study to other datasets.

Our work also enables further synthesis of a larger dataset.
As more tricot trial data becomes available, it could be
aggregated and iteratively reanalyzed using the data syn-
thesis approach. Two promising next steps are the use of
ensembles of Plackett–Luce trees (Plackett–Luce Forests)
and the integration of tricot and nontricot on-farm trial
data.
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D AT A AVA I L A B I L I T Y S T AT E M E N T
All the R code and the data required to replicate the results are
available in GitHub (https://github.com/AgrDataSci/Data_
synthesis_bean_tricot_CA). We used R for all the statistical
analysis (R Core Team, 2022). In addition to R packages cited
in the main text, we also used: ag5Tools (Brown & de Sousa,
2022), caret (Kuhn, 2022), colorspace (Zeileis et al., 2009),
dplyr (Wickham, François, et al., 2022), ggparty (Borkovec
& Madin, 2019), janitor (Firke, 2021), network (Butts, 2008),
RColorBrewer (Neuwirth, 2022), readr (Wickham, Hester,
et al., 2022), stringr (Wickham, 2019), survminer (Kassam-
bara et al., 2021), partykit (Hothorn & Zeileis, 2015), qvcalc
(Firth, 2020), patchwork (Pedersen, 2020), and viridisLite
(Garnier et al., 2021).
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