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Dear Dr. Ramirez:

I am pleased to accept your manuscript No. 495,
"Estimation and Use of a Multivariate Parametric Model for
Simulating Heteroscedastic, Correlated, Non-Normal Random
Variables: The Case of Corn-Belt Corn, Soya Beans and Wheat
Yields," for publication in the AJAE, subject to responding
to my final editorial instructions. At this point in time,
I anticipate that your article will appear in either the
February or May 1997 issue of the Journal.

Enclosed is an edited copy of the manuscript. Please
incorporate the editorial suggestions as best you can. 1In
addition, be careful to follow AJAE style as indicated in
previous issues of the Journal and as described on the back

cover of the AJAE under "Information on Submitting
Manuscripts". As you can see, the suggested revisions are
substantial. In addition to attempting to make the text

flow better, I have also tried to achieve some much needed
space reduction. Your manuscript, before editing, contained
approximately 38 pages, which exceeds the AJAE’s normal
limit by eight pages. With the editing I have performed,
and by eliminating the first appendix (see p. 11), I would
anticipate that enough space reduction has been achieved.
Please check all my editing marks carefully and please do
not hesitate to ask for clarification where necessary. (My
phone and fax numbers are indicated on the letterhead; my e-
mail address is Michael Wohlgenant@NCSU.Edu.)

Other administrative items to consider now include the
following. Please prepare an abstract formulated according



to the enclosed guidelines. You should sign and return the
enclosed form for the transfer of copyright to the AAEA.
Please send me professionally drawn originals of any
figures, ready for photographic reproduction. Output from
computer graphics packages should be made on a printer with
at least 1200 dots-per-inch capacity. Please set up your
table(s) in regular tabs. Do not use a table editor. We
need a computer disk copy of your final manuscript
(including the abstract). Please see the attached sheet for
instructions. Some minor editing still may occur and you
should be aware of this when reviewing the galley proofs.
Please make any needed preliminary arrangements with your
supporting institution to meet the page charge -- $65 per
journal page on an estimated 11-12 pages for this article.

Again, I am pleased to accept your manuscript for
publication, and 1look forward to receiving the final
revision (two copies, please) in the near future.

Sincerely,

Wisdo A K (Mbygra. !

Michael K. Wohlgenant
Editor, AJAE
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ESTIMATION AND USE OF A MULTIVARIATE PARAMETRIC MODEL FOR
SIMULATING HETEROSCEDASTIC, CORRELATED, NON-NORMAL RANDOM

VARIABLES: THE CASE OF CORN-BELT CORN, SOYBEANS AND WHEAT
YIELDS

Octavio A. Ramirez !

This study develops a multivariate non-normal density function that can accurately and
separately account for skewness, kurtosis, heteroscedasticity, and the correlation among
the random variables of interest. The statistical attributes of the underlying random
variables and correlation processes are examined. The potential applications of this
modeling tool are discussed and exemplified by analyzing and simulating Corn-Belt corn,
soybeans and wheat yields. While corn and soya beans yields are found to be skewed
and kurtotic, and exhibiting different variances through time; wheat yields appear normal
but also heteroscedastic. A strong correlation is detected between corn and soybeans

yields.

Key words: corn-belt yields, multivariate modeling and simulation, non-normality,

skewness and heteroscedasticity.



ESTIMATION AND USE OF A MULTIVARIATE PARAMETRIC MODEL FOR
SIMULATING HETEROSCEDASTIC, CORRELATED, NON-NORMAL RANDOM
VARIABLES: THE CASE OF CORN-BELT CORN, SOYBEANS AND WHEAT
YIELDS

Multivariate simulation is widely used in agricultural economics because many models
and optimization problems do not have analytical solutions that can account by risk.
Several flexible and comprehensive simulation methods have been proposed in the
agricultural economics literature, including Clements, Mapp and Eidman and Richardson
and Condra who developed a procedure to model and simulate multivariate, correlated
random processes under the assumption of normality.

Around that time, Anderson stressed the importance of modeling correlation, non-
normality (skewness and kurtosis) and changing variances around time/space
trends/locations, because these are important characteristics of many stochastic processes
in simulation models. The responses to such needs and challenges, however, have been
slow and incomplete. Gallagher advances a univariate procedure to model and simulate
random variables using the Gamma distribution. Because of the importance of skewness
and changing variance of soybean yields over time, mainly caused by increased variation
in weather conditions, he attempts to model these two characteristics of the corresponding
probability distribution.

Gallagher recognizes, however, that the Gamma function assumes fixed relations
between the mean, the variance and the level of skewness. In addition, these moments

depend on the values taken by two parameters only. Thus, in order to model and

simulate a changing variance, the corresponding mean and level of skewness also will



have to be allowed to vary over time/space according to arbitrary formulae. One of the
key points raised by Gallagher, nonetheless, is becoming a very important issue in
simulation analysis: A large number of studies have been conducted in recent years
exploring the impact of climate change and increased weather variation on agricultural
production in the United States and world-wide (Adams et al; Crosson, Kaiser, and
Drennen; Kaiser, H.M.; Parry et al; Rosenzweig et al).

For 1996, for example, The National Oceanic and Atmospheric Administration
reports extreme or severe drought affecting crops in the Southwest (about one-third of the
U.S. territory) and unusually or very moist conditions in nearly 10% of the United States.
Increased weather variation has a definite impact on crop yield distributions and their
simulation (Curry et al; Toure, Major, and Lindwall), possibly altering fundamental
features such as their skewness and variance over time.

Taylor was the first to tackle the problem of multivariate non-normal simulation.
He uses a cubic polynomial approximation of a cumulative distribution function instead
of assuming a specific multivariate density for empirical analysis. This makes it
impossible to assess the flexibility of this technique in terms of the potential ranges for
and combinations of means, variances, coovariances, skewness, and kurtosis levels that
are permitted. Another limitation of Taylor’s estimation method is that it is not
multivariate. Covariances are not estimated jointly with the other model parameters;
therefore statistical efficiency sacrificed. Finally, Taylor’s procedure can not be
implemented with heteroscedasticity and specialized programs are required to estimate the

model’s coefficients.



Recently, the inverse hyperbolic sine transformation (IHST) proposed by Johnson
has received increased attention for econometric estimation and for modeling and
simulating non-normal random processes. Burbidge, Magee, and Robb empirically
evaluate the usefulness of the IHST applied to the dependent variable to reduce the
influence of extreme realizations on parameter estimates.

Reynolds and Shonkwiler apply the IHST in conjunction with the tobit model.
Moss and Shonkwiler use the IHST to estimate yield distributions with a stochastic trend
and non-normal errors. Ramirez, Moss, and Boggess explore the estimation and use of
the standard form of the multivariate IHST to simulate non-normal correlated random
variables. Also, Ramirez proposed an alternative specification, in which the IHST is
applied to the error term instead of the dependent variable; he also derives and analyzes
the statistical properties of the implicitly defined endogenous variable.

In this study, a modified inverse hyperbolic sine transformation is proposed, which
extends the original parametrization to a multivariate non-normal density function that
simultaneously accounts for skewness, kurtosis, heteroscedasticity, and correlation among
the random variables of interest. The transformation can produce consistent maximum
likelihood forecasts that are linear with respect to the matrix of explanatory variables.
The proposed procedure also allows for the direct parametric testing of each of the
previously mentioned distributional characteristics.

Parameter estimation and simulation are demonstrated for the IHS multivariate
density function of non-normal (skewed and kurtotic), heteroscedastic, correlated random

variables over time. No other multivariate density function performs through full



information estimation for the modeling of all of those aspects independently and
simultaneously. The theoretical attributes of this approach are shown through applying
the model to Corn-Belt corn, soybeans and wheat yields. These yield distributions are
believed to be non-normal because of adverse weather conditions, and because of bio-
physical and technological limitations on the maximum yields attainable during any given
year, causing the distributions to exhibit left-skewness.

In addition, the larger variance that usually accompanies the ever more higher
average yields, and that could be compounded by the recently increased level of
variability in weather conditions at agricultural areas in the United States (Adams et al.;
Crosson, et al.; Kaiser, H.M. Parry et al.; Rosenzweig, et al.;), leads to believe that such
yield’s distributions could be heteroscedastic. Finally, the possibility of finding
significant correlations between farm-level and aggregate commodity yields has also been
stressed and documented by several authors, and has to be considered in any ‘modeling

and simulation effort.

The Hyperbolic Sine (HS) Random Variable

A HS random variable was defined by Ramirez as

1) sinh"(©(y,¢))/© = v,

where v, is a normal random variable with mean u and variance o and c, is a "centering
parameter” for the probability density function of y, which is allowed to vary across
observations. In single equations, for instance, c, can be set equal to x8 (Ramirez). In

typical simulation models, the x,’s would become the time-trend explanatory variables.



The formulas for the expected value, variance, skewness and kurtosis coefficients
of y, can be characterized as follows (Ramirez): the expected value of y, given ©, u, o,
and x,f, is equal to a constant K, plus the centering parameter xf8; the derivative
dE[yJ/dx, (t=1,.2,...,T) is equal to B, , so that the B;’s can be compared directly with the
parameters associated with the independent variables in the standard linear econometric
model; the E[y,] can take on any positive or negative value regardless of the signs or
specific magnitudes of ©, u or o; xf provides unique and total control of the expected
value of the Hyperbolic Sine random variable; and the variance of y, is constant for every
t, i.e., the model is homoscedastic.

The skewness and kurtosis coefficients are also fixed across the different
realizations of the random variable y. The probability density function for y is symmetric
if and only if x=0; it will be skewed to the right if x>0, and skewed to the left if u<0.
Therefore, a null hypothesis of symmetry, but not normality, can be specified and tested
as H.: 4=0. The model specification can accommodate random dependent variables that
take on any expected values, positive or negative, in combination with any positive or
negative degree of skewness.

The kurtosis coefficient for y, can only take on positive values, so that the
marginal density function of y, is more peaked around its center than the density of a
normal curve, and has fatter tails. Any positive value of the kurtosis coefficient in
combination with any variance is possible, even if 4 = 0. As both # and © approach zero,

the random variable under consideration, y, becomes normally distributed.



The formerly discussed attributes as well as the flexibility of the HS model
specification given by (1), in general, are illustrated in tables 1, 2 and 3. Notice that,
since the expected value of the dependent variable y, is independently controlled by the
"centrality parameter” x,8, the ranges of variance-skewness-kurtosis combinations, are
achievable in conjunction with any desired expected value. Table 1 shows an ample
range of possible variance-kurtosis combinations for an HS random variable when u = 0
(i.e., no skewness).

The first four rows of table 1 illustrate how a constant variance can be maintained
in combination with a wide range of kurtosis coefficients by varying © and o in the
appropriate proportions. The last three rows show how a fixed degree of kurtosis can be
preserved in association with a wide range of variances, also by changing © and o in the
correct proportions. Table 2 shows that the variance of y, can be controlled with total
independence of the skewness and kurtosis coefficients.

The first four rows of table 3 show how, starting from zero, an increase (decrease)
in the value of u causes an increase (decrease) in skewness, and always an increase in
variance and kurtosis. Negative values of u will cause negative (left) skewness, but will
not yield negative degrees of kurtosis (thin tails). Positive values of u will cause positive
(right) skewness.

Also notice that the magnitudes of the variance and kurtosis coefficients are not
affected by the signs of © or 0. Only the absolute value of those parameters is relevant
in this case. The last four rows show how increases in the variance and kurtosis, caused

by the changes in the absolute value of u, can be offset by altering the magnitudes of ©



and/or o. In other words, the value of u can be used to control the skewness coefficient
of the dependent variable y,. In summary, the flexible nature of the IHS specification
makes it an attractive alternative for modeling and simulating random processes with
characteristics that are not known a priori, but are expected to depart significantly from

normality.

The Multivariate Hyperbolic Sine Random Process
Based on the original form of the transformation, a multivariate hyperbolic sine random
process can be defined as
) sinh'(©,(y,-x.B))/O; = v,, (i=1,...,P)
where v, (i=1,...,P) is a set of normal random variables with means y; (i=l,:..,P) and
covariance matrix 2. The standard form of the multivariate hyperbolic sine density func-
tion was derived and presented in Ramirez, Moss and Boggess:

P
©) f,=(2m) "2l Pexp{-.5(w-p) 2" (w-p) } ilzl(l+(95(yn-xa.ﬁa)’)"”

In equation (3), w is a P by 1 vector with i* element w; = sinh™(©,(y,-x,))/©; =
In([O(yix:B)]+{[O(yi-x:B)+1}D/O;; x,B, is the process that controls the expected
value of y,; and X is a P by P positive semi-definite matrix. This density can be made
a function of several variables, each exhibiting the same characteristics of the HS random
variable described in the previous section. Furthermore, such variables can be positively
or negatively correlated with each other. The only restriction in degree of correlation

allowed by this density function is the requirement that X be positive semi-definite so that

the hypersurface between the null hyperplane and the function will be of measure one.



The Heteroscedastic Multivariate HS Model

It would appear that the logical and straightforward approach to introduce

heteroscedasticity into the formerly defined model is to allow for the diagonal elements

of the covariance matrix Z (i.e., the 0;’s) to vary across observations (y,’s) according to

any number of possible specific processes as is done when modeling under conditions of

normality (Judge et al.). A quick examination of the results in Ramirez regarding the

formulas for the expected value, variance, skewness and kurtosis coefficients of the y,’s,

however, points out several major disadvantages of that approach:

1.

Since the constant K; in the expected value of each y, is a function of o, making
this parameter vary across observations according to some specific process will
introduce the same process into the expectation of y, in an exponential manner'.
The form in which the o;’s enter the variances of the y,’s, through a combination
of several exponential equations, makes it very difficult, if not impossible, to
incorporate and model many of the standard heteroscedastic processes currently
used under normality’. Also, this complexity implies that isolating the effect on
the variances of the y,’s of any heteroscedastic processes incorporated into the
model through the ¢,’s would be difficult.

Because the o;’s enter the formulas for the skewness and kurtosis through a
combination of several exponential equations (see Ramirez), any attempt to model
heteroscedas-ticity by varying the o;’s across observations will result in a

heteroskewed and heterokurtotic specification, forcing marked, and not necessarily



appropriate interrelationships, between the variances and all higher order moments

of the y,’s across the different observations.

The above disadvantages suggest reparametrizing the IHST to lessen or totally
eliminate these limitations. With that goal in mind, the following modified transformation
is proposed:

4) sinh™((r1/0)(y,12))/© = v,
where v, is a normal random variable with mean 4 and variance 1; and;

) 1= [e'Sez(e .

For the former modified IHS transformation, it can be shown that (proof available from

e-eﬂ)]/Z; and 12 = - o + xf

the author):

(6) E[y]=x8

0 V(g)= 0 [(€22- ¢ @ )2 1 ¢ 2O 5O 1)part?

so that the parameter o does not enter the formula for the expected value of y, and the
variance of y, is equal to o times a "constant" that depends only on the value of the other
parameters of the model, o and 4. It also can be demonstrated that, in this case, the third,
fourth, and higher order central moments of the y’s are not affected by the value
undertaken by o (proof available from the author). This resolves the above discussed
disadvantages: o now has as its main function controlling the variance of y in a simple
linear fashion. Another change resulting from reparametrization concerns the relationship

between u and the skewness coefficient of y. This parameter can be still thought of as

the chief controller of the absolute value of the third central moment of the dependent



variable; as in the case of the original parametrization, the corresponding probability
density function is symmetric if and only if u=0.

As a result of introducing r1/o into equation (4), however, determination of the
direction of skewness now depends on the sign of o and not on the sign of u (proof
available from the author)’. Its probability density function will be skewed to the right
if 0>0, and skewed to the left if 0<0. Since the signs of © and o are meaningless in this
model specification, its best to "standardize" the results so that the corresponding
estimates always have a positive sign. This has no real effect, other than assuring that
a positive sign of o,, will always correspond to a positive covariance between the two
random variables under consideration.

With the reparametrization, a modified multivariate hyperbolic sine density func-
tion can be obtained from a multivariate normal density function applying the
transformation technique (Mood, Graybill, and Boes); the corresponding concentrated log-
likelihood function is:

T
8) L,= Z {-.5xIn|Z}+In(G)-.5x(sumc[{dvm*(Z")}.*dvm]’) }
t=1
where Z is a P by P positive semi-definite matrix with diagonal elements equal to 1, and
non-diagonal elements o;,; G is a row vector with elements:
& = r1/(09[1+{(r11/o)(y,12)}’]"") (i=1,....P),

2
LA

1, = [¢ ey nand 2, = - o, + xB,

if y, is not normally distributed and g; = o7} if y, is normally distributed.



Finally, dvim is a row vector with elements dvm, (i=1,2,...,P), where dvm, =
(In(r3+(1+(r3%))?)/©)-; and 13, = {(r1/o)(y,12)} if y, is not normally distributed and
dvm; = (y,-x,B)/o; if y; is normally distributed. The operator sumc(x) indicates to take
the sum of the (P) columns of x; the operator * indicates a matrix multiplication; and .*
indicates an element by element matrix multiplication.

It is important to emphasize that, beyond the differences previously discussed, the
two model specifications are fundamentally equivalent as long as the o,’s (i=1,...,P) are
constant for all t’s. Under the former circumstance, the maximum value reached by the
two corresponding likelihood functions will always be identical for any given data set.
This is evidence that essentially the same basic model is being fitted to the underlying

empirical probability distribution defined by the data.

The Case of Corn-Belt Yields: Model Specification and Estimation

The Corn-Belt corn, soya-beans and wheat yields (1950-1989) are analyzed in this study,
with regard to the characteristics of their probability distribution functions by specific
years, including expected value, variance, skewness, kurtosis and degrees of correlation.
Utilizing the model presented above, the variations in expected yields and variances over
time are investigated.

Linear time-trending processes are assumed for the expected values of the y,’s
(Elyi]=Bw+B,T; t=49,...,89; T=1,...,50; i=1,2,3). The possibility of changes in variances
of each of the y,’s over four different decades considered in the study also are explored
(o=0, if t=49,50...,59; o,=0, if t=60,61...,69; o,=0, if t=70,71...,79; and o,=0, if

t=80,81...,89; for every i=1,2,3). The parameters of the model are estimated by



maximizing L, using the GAUSS 2.01 matrix algebra language, beginning with a first-
stage limited information (i.e. variable by variable) approach by setting P=1. The results
of this estimation process for the three variables under consideration are presented in
tables 4 to 6.

In the case of corn yields, notice that allowing for kurtosis by permitting ©,»=0
significantly improves the model specification; the likelihood ratio test MLRT{A-
B}=14.260=2, indicating rejection of the null hypothesis of normality at the 1% level
significance. ~ When skewness is also allowed, =0, the model specification is
significantly improved as well (MLRT{B-C}=9.288=3, indicating rejection of the null
hypothesis of symmetry at the 1% level). Since o, is negative, the density function for
y, is left-skewed.

Heteroscedasticity is tested for by using a standard nesting procedure that allows
the possibility of up to four distinct variances, one in every decade. First, a significant
difference is detected between the variance of y, from 1950 to 1969 and its variance
from 1970 to 1989 (MLRT{C-D}=7.756=x3; thus H :0=0 can be rejected at the 1%
level). Allowing for change in the variances within any of the two time-periods yields
asubstantially improved model specification as well (MLRT{D-E}=6.984 =3, so H,:0.=0
can be rejected at the 1% level; and MLRT{D-F}=6.796~3, so H :0.=0 can be rejected).
Analyzing the fully parametrized model, however, it can be concluded that the variance
of corn yields in the period between 1960 and 1969 is very similar to the variance
observed between 1980 and 1989; incorporation of that restriction into the model can be

statistically justified (MLRT{G-H} =0.010~y3, thus H,:05=0p in G cannot be rejected



even at the 20% level of significance). Therefore, the final specification (H) allows for
skewness, kurtosis, and differential variances for 1950-1959, 1960-1969/1980-1989, and
1970-1979.

The results for the case of soya-beans yields are presented in table 5. Notice that,
as before, simply allowing for kurtosis by permitting ©,=0 significantly improves the
model specification according to the likelihood ratio test (MLRT{A-B}=7.380~y2
implying rejection of the null hypothesis of normality at the 1% level). When skewness
is also allowed, ,#0, the model specification is substantially improved again (MLRT{B-
C}=12.838~3, implying rejection of the null hypothesis of symmetry at the 1% level).
Since the sign of o, is negative, the density function for y, is also left-skewed, as in the
case of corn yields.

When heteroscedasticity is permitted, a significant difference is detected
between the variance of y, from 1950 to 1969, and from 1970 to 1989 (MLRT{C-
D}=2.230 =x}; thus H,:0,=0 can be rejected at the 20% level of significance). Allowing
for further changes in the variance within the two time periods, however, does not
improve the model specification significantly.

The results for wheat yields are presented in table 6. In this case the parameter
estimates for ©, and , steadily approach zero* before the estimation algorithm collapses,
indicating that the random variable y, exhibits a normal distribution. In regard to
heteroscedasticity, a model (F) with a base-line variance, o,, throughout, and an
additional parameter, o, that is allowed to increase or decrease the variance between

1960 and 1969 only, appears to be the best. It is statistically superior to the



homoscedastic formulation (A), with a MLRT equal to 3.604 indicating rejection of
H,:05=0 at the 10% significance level.

In light of these results of the first-stage estimation, a full information maximum
likelihood estimation effort was attempted by setting P=3 in equation (7). The results of
this final step of the estimation process for the three crops under analysis are presented
in table 7. Notice that all of the parameter values, and most of the corresponding
asymptotic t-statistics, are reasonably close to those estimated when using the single-
variable approach. It is interesting to note that the estimate of the parameter that governs
the covariance between corn and soya-beans yields appears different from zero at the 1%
level of statistical significance. In the cases of the parameters that govern the covariances
between corn and wheat, and between soya-beans and wheat yields, however, the very
low t-values do not allow us to conclude that covariances are significantly different from
zero, even at the 20% level.

This means that the parameters of the multivariate model must be estimated again,
subject to the restrictions 0,,=0,,=0. The results of this estimation, presented in table 7,
show that the estimate of o,,, and its asymptotic t-value, remain fairly stable; the
maximum value of the concentrated log-likelihood function in this case is only 0.20077
lower, yielding an insignificant likelihood ratio test statistic of MLRT=0.40015m3.
Observe, however, that further restricting 0,,=0 reduces the concentrated log-likelihood
function to -216.106 (which, as expected, is equal to the sum of the maximum values
reached by the individual functions in the limited-information approach). This yields a
MLRT= 16.855=Z, which indicates a highly significant covariance relation beh;t'een corn

and soya-bean yields.



Yield Simulation

The above results can be used to simulate the estimated distributions of corn, soya-beans
and wheat yields in the Corn Belt during any given year. This simulation assumes a
time-trend process as well as heteroscedasticity, skewness and kurtosis, and takes into
account correlation between the variables of interest, where appropriate.

The first step in this procedure is to generate a matrix of correlated normal random
variables with a mean vector u (u=[u,,44;]) and covariance matrix £ as previously
defined. For this purpose, an N by 3 matrix of standard normal random variables is
multiplied by the Cholesky decomposition of £ (Clements, Mapp, and Eidman), and the
corresponding k4, is added to the appropriate column vector of the resulting N by 3 matrix
(M). Then, the yield distributions, y,’s, are simulated separately for each crop and any
given time period t by applying the inverse function of the transformation defined in

equation (4):

©® u= (@) e V2 4y,

where r,; and r,, are as specified in (7), and v, is the i" column vector of M. Utilizing
the previously described procedure, 2,500 yields were simulated for each crop, and for
the years of 1955, 1975, and 1995. In the case of 1995, x,B, was forecasted by setting
t=95 (i.e. T=46), and the estimate of o, for the last decade (1980-1989) was used. The
graphs of the estimated yield distributions for the non-normal cases, corn and soybeans,
during those three different time periods, are presented in figures 1 through 6. Notice that
in all cases, the simulation outcomes are compatible with the conclusions in the previous

section about the signs and values of the parameter estimates and the related theoretical



results. Although it is not easy to visually detect kurtosis in the graphs, the estimated
corn yield distributions are clearly and significantly skewed to the left. Furthermore, the
degrees of skewness and kurtosis (i.e., the general shapes of the distributions) are
maintained through time, as anticipated.

Observe also that the variances are different in the three time periods under
consideration. Simulated 1955 corn yields ranged from 38 to 63 bushels per acre, while
1975 yields ranged from 49 to 117 bushels per acre. This is approximately a 172%
increase in variability. 1995 yields ranged from 108 to 153 bushels per acre, implying
about an 80% increase in variability from 1955. Notice that the absolute value of o for
1955 is o, = 7.4409, for 1975 it is o,+0. = 20.3435 (a 173.40% increase) and for 1995
it equals o,+0p = 13.6085 (an 82.90% increment from o,). Since o is proportional to
the standard deviation of the random dependent variable by design, it can be stated that
the heteroscedasticity-governing mechanism built into the model performs as expected.

Very similar results are found for soybeans. The estimated yield distributions are
clearly and significantly skewed to the left. Furthermore, the degrees of skewness and
kurtosis (i.e., the general shapes of the distributions) are maintained through time, as
well. Simulated 1955 soya beans yields range from 16 to 26 bushels per acre; while
1975 yields extend from 22 to 36 bushels and 1995 yields range from 31 to 45 bushels
per acre for a 140% increase in variability with respect to 1955. Notice that, in this case,
the value of o for 1955 is o, = 3.9393, while for 1975 and 1995 it is of o,+0p = 5.6418
(a 143.22% increase). The heteroscedasticity-governing mechanism built into this model

specification again performs as expected.



The finding of significant degrees of heteroscedasticity in all of the three variables
reinforces Anderson’s (1974) proposition about the importance of modeling and
simulation methods that can account for changing variances over time and/or space.
When homoscedasticity is assumed, the variance of corn yields during the last decade
(which would be the appropriate one to use for simulation) is underestimated by 15%, the
variance of soya-beans yields is underestimated by 20%, and the variance of wheat yields
is underestimated by 10%.

This happens because the homoscedastic models (C in table 4, C in table 5, and
A in table 6, respectively) estimate average variances for the 40-year period under
analysis, while the heteroscedastic formulations (H in table 4, D in table 5, and F in table
6, respectively) capture an increased variance that usually accompanies higher average
yields. This phenomena of increased variance is apparently compounded by the recently
increased level of weather variability at agricultural areas in the United States.

The substantial left skewness that characterizes the probability distributions of corn
and soya beens yields is another interesting result. A logical interpretation of this
phenomena is the following: -The right hand side of the distributions terminate in a
relatively abrupt manner, suggesting that it is not possible to obtain yields that are much
higher than the more frequently observed production levels. Most yields must be
constrained between a "absolute maximum" determined by the current technology, and
a "likely minimum" also located relatively close to the more frequently observed
production levels. There always is, however, a low but feasible probability that, because
of pest incidence or quite unfavorable weather conditions, a yield significantly below the

likely minimum is observed in any given year.



The formerly described phenomena can be detected in the actual data set for the
cases of corn and soya beans. Corn yields in 1970, for example, were 77.54 bushels per
acre, while the production levels in the other years from 1967 to 1973 oscillated between
89.59 and 107.73 with a mean of 97.56. Also in 1974, cormn yields were 76.86 bushels
per acre; production levels from 1971 to 1977 fluctuated between 95.76 and 107.73 with
a mean of 100.09. Very similar situations occurred during 1981-85 and 1986-89 (see the
appendix).

The soybeans yields distribution is perceptibly less skewed than com yields, but
a similar phenomena still can be detected in the actual data set. In 1974, soya beans
yields were 25.20 bushels per acre, while the production levels in the other years from
1971 to 1977 fluctuated between 30.36 and 35.86 with a mean of 32.27. In 1988, soya
beans yields were 28.13 bushels per acre, while yields from 1985 to 1989 oscillated
between 36.54 and 39.67 with a mean of 38.41. Similar situations occurred during 1951-
55 and 1962-66.

It is important to notice the coincidence in several unusually low production years
for both crops (1964, 1974, 1983, 1988), corn and soya beans. This strengthens the
hypothesis of adverse weather conditions partially explaining the left skewness of their
yields’ probability distribution functions; it also supports the finding of a strong and
significant covariance between the production levels of those two crops in any given year.
On the other hand, the extremely low corn yields of 1970 were caused by a wide-spread

attack of a fungal disease caused by Helminthosporium maydis (race T).



In the case of wheat, no unusually low yields are observed through time, and the
related covariation with the corn and/or soya beans yields cannot be seen when examining
the data. This is quite consistent with the theoretical results presented and discussed in
the previous section.

Finally, it is important to ascertain whether the covariance modeling mechanism
built into the model was able to accurately capture the interrelationship between the two
random variables in the actual data set, so that it could be transfered in such a way to be
correctly reflected in the simulation outcomes. To explore this issue, the standard formula

to compute the covariance between any two random variables was used:

N N
(10) cov(ynys) = Z {[y,wrM(y)]x[y2rM(y2)IN; M(y) = Z (y:)/N;
t=1 t=1

Applying equation (9), the covariance between the actual detrended corn and soya beans
yields is 24.6664°. Using (9), the covariance between the 7,500 simulated yields equals
22.5995, indicating that the correlation-governing mechanism built into the model

performed reasonably well.

Concluding Comments

The inverse hyperbolic sine transformation is successfully reparametrized to develop and
formally define a multivariate non-normal density function that can accurately and
separately account for skewness, kurtosis, heteroscedasticity, and correlation. The
parameter estimation process, and the use of the newly designed multivariate density
function for simulating non-normal (skewed and kurtotic), heteroscedastic, correlated

random variables over time is effectively demonstrated with the case of Corn-Belt corn,



soya beans and wheat yields. No other multivariate density function has been proposed
and shown to perform in the modeling of all of those aspects simultaneously.

The theoretical attributes of this modeling tool are discussed and exemplified by
analyzing and simulating Corn-Belt corn, soya beans and wheat yields. While corn and
soya beans yields are found to be skewed and kurtotic, and exhibiting different variances
through time; wheat yields appear normal but also heteroscedastic. A strong positive
correlation is detected between corn and soya beans yields. Hypotheses are advanced to
explain the resulting shapes of the probability distribution functions that are markedly
asymmetric, and the significant correlation detected between corn and soya beans yields.

The simulation outcomes are observed to be highly consistent with the attributes
of the actual data that can be assessed through visual inspection or with the help of
simple numerical indexes such as the correlation coefficient. In addition to the clear
advantages that this modeling tool exhibits when applied to simulation analysis; other
distinctly important uses include the estimation of systems "seemingly unrelated
regressions" (please see Judge et al.) in general; when the random dependent variables of
interest are suspected to be non-normal, heteroscedastic, and mutually correlated. The
former with the intention of improving statistical efficiency with respect to a model
specification based on the assumption of normality.

The improved statistical efficiency and accuracy that could be achieved through
the use of this modeling and simulation tool can have important positive consequences
in key areas of application such as the analysis of agricultural policies, where the proper

simulation of variables such as commodity yields and prices is a critical condition.
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Footnotes

! Efly =K+ x4, =[e '5@?0%(5 O ¢ -eﬂi)]/zei + X,

2 yiy= (2O ¢ Oy 204, 20 5 Ol e

3 Notice, however, that the sign of o affects neither the sign nor the absolute value
of the variance of y,.

4 The maximum value of L, approaches the one of a concentrated likelihood
function set up under the assumption of normality, as well.

S In order to detrend the random variables to the arbitrary year of 1950, the

formulas y,-B,,T and y,-p,, T (T=0,...,49) were used. Notice, however,
that the value of cov(y,,y,) in (10) will be the same, independently of the

specific year to which the random variables are detrended.



Table 1. Some possible variance-kurtosis combinations for an IHS random (original

specification) variable when x4 = 0 (no skewness).

© o ©/c Variance Skewness Kurtosis
+0.0000 +1.7873 0.0000 3.1945 0.0000 0.0000
+0.7689 +1.1500 0.6686 3.1945 0.0000 14.6905
+1.0000 +1.0000 1.0000 3.1945 0.0000 33.1881
+1.3109 +0.8500 1.5422 3.1945 0.0000 82.2300
+4.0000 +0.2500 16.0000 0.1997 0.0000 33.1881
+1.0000 +1.0000 1.0000 3.1945 0.0000 33.1881

+0.2500 +4.0000 0.0625 51.1124 0.0000 33.1881




Table 2. Control of the variance of IHS random variable (original specification) with

total independence of the skewness and kurtosis coefficients.

© y7i o Variance Skewness Kurtosis
0.5000 +0.5000 1.5000 4.499 +0.978 7.809
1.0000 +0.2500 0.7500 1.125 +0.978 7.809
1.5000 +0.1667 0.5000 0.500 +0.978 7.809
2.0000 *0.1250 0.3750 0.281 +0.978 7.809
2.5000 +0.1000 0.3000 0.180 +0.978 7.809
3.0000 +0.0833 0.2500 0.125 +0.978 7.809

Note: Positive values of u are associated with positive skewness coefficients and vice

versa.



Table 3. Effect of the value of u on the variance, skewness and kurtosis coefficients of

an IHS random variable (original specification).

(S) U o Variance Skewness Kurtosis
+1.0000 0.0000 +1.0000 3.1945 0.0000 33.1881
*+1.0000 +0.2500 +1.0000 3.4926 *2.1077 41.6467
+1.0000 +0.5000 *1.0000 4.4628 *3.6279 60.0362
+1.0000 +0.7500 +1.0000 6.3529 *4.7602 77.6816
+1.0000 0.0000 +1.0000 3.1945 0.0000 33.1881
+1.0000 +0.2500 +0.9750 3.1092 *+1.9437 34.6043
+1.0000 +0.5000 +0.9250 3.1323 *+2.9588 35.0098
*1.1250 +0.7500 +0.7750 3.1391 +3.4785 34.5114

Note: Positive values of u are associated with positive skewness coefficients and vice-

versa.
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APPENDIX
National Agricultural Statistical Service crop yields (bushels) for

the Corn Belt.

Year Corn Soya Beans Wheat
50 48.98 23.07 20.32
51 47.53 22.59 17.57
52 55.67 22.97 23.49
53 51.14 19.44 27.50
54 51.12 22.09 29.07
55 51.94 21.42 30.67
56 59.01 24.29 31.03
57 59.22 24.86 22.84
58 64.48 26.717 30.65
59 63.54 25.29 25.25
60 64.56 25.16 31.17
61 74.87 27.63 32.85
62 78.20 26.81 31.53
63 80.91 27.85" 37.84
64 73.72 24.90 33.46
65 86.23 27.26 32.07
66 82.50 27.32 39.35
67 90.47 26.61 35.49
68 89.59 31.00 35.71
69 96.16 31.50 36.77
70 77.54 30.22 36.59
71 100.59 31.61 44.03
72 107.73 31.97 44,17
73 100.82 30.70 31.41
74 76.86 25.20 34.14
75 97.54 33.12 39.38
76 98.09 30.36 36.91
77 95.76 35.86 43.09
78 109.78 33.67 37.48
79 122.05 36.41 45,25
80 99.49 33.88 46 .58
81 120.60 35.76 45.00
82 122,77 36.13 39.83
83 79.12 29.81 44.77
84 112.38 30.64 43.18
85 127.28 39.67 49.59
86 130.74 38.77 42.18
87 129.13 38.64 55.18
88 79.92 28.13 50.66

89 120.44 36.54 53.34






