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Abstract  The change in land use from forest to 
pasture has generated negative effects on the biologi-
cal, physical and chemical attributes of the soil in the 
Amazon in recent years. Agroforestry systems (AFS) 
can increase biomass production and increase the rate 
of litter decomposition. The objective of this study 
was to quantify the amount of litter accumulated on 
the soil and the rate of decomposition in multistrata 
successional agroforestry systems with Theobroma 
grandiflorum as mainly crop, compared to forest in 
the western Colombian Amazon. Samples were col-
lected for one year every 15 days starting in August 
2013 using four collection traps distributed system-
atically in each AFS. In each trap the amount of total 
biomass was calculated (Mg ha−1) and for each com-
ponent leaves, branches, flowers, fruits and seeds. 
To determine k, litterbags containing Theobroma 
grandiflorum leaves were located in each land use 
and were collected every 15  days from November 

2013 up to 150 days, for a total of 840 litterbags (6 
land uses × 10 monitoring periods × 2 mesh size × 7 
replications). The annual average litterfall produc-
tion was 50.8% higher in AFS (6.5  Mg  ha−1) than 
in forestry (3.2  Mg  ha−1), with leaves and branches 
being the major contributors with 5.2 ± 0.5 and 
0.7 ± 0.2  Mg  ha−1, respectively. The residence time 
(1/k) of the SF were higher than the average of the 
AFS. The time needed to rich a decomposition of 
50% (t50) in AFS was higher than SF. In this sense 
an average of 185  days are required to decompose 
50% of the remaining dry mass (RDM%) while in SF 
is 95  days. Agroforestry systems generated a higher 
annual mean contribution of biomass than that pre-
sented in the forest (6.5 vs. 3.2  Mg  ha−1), however, 
under the forest there was a high value of k. requiring 
125 and 95 days to decompose 50% of the remaining 
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dry mass. The leaf was the main contributor to the 
total biomass supplied to the soil.

Keywords  Litter accumulated · Litter residence 
time · Litterbag · Mesh size

Introduction

In different regions of continental Amazonia, and 
especially in Colombia, deforestation attributed to 
the expansion of grasslands stands out (Armenteras 
et  al. 2006). Due to inadequate grassland manage-
ment, highly degraded pasture lands prevail and cat-
tle graze freely on very unproductive pastures, gen-
erating high environmental pollution related to CO2 
emissions generated by slash-and-burn as well as CH4 
emissions generated by livestock farming (Etter et al. 
2006; Landholm et  al. 2019; Vargas et  al. 2019). In 
the Amazon region many pastures are degraded sup-
porting low stocking rates, and its contribution to 
ecosystem services related to nutrient cycling, ero-
sion control and many others is poor (Silva et  al. 
2022; Rodríguez et al. 2021a).

Agroforestry systems (AFS) are one of the prac-
tices implemented in degraded landscapes of the 
deforested Amazon (Álvarez et  al. 2023; Lavelle 
et  al. 2016) that have allowed for improved soil fer-
tility conditions and increased ecosystem services 
(de Souza et al. 2019; Gervazio et al. 2019). AFS can 
improve soil fertility and structure from leaf nutrient 
cycling (Che et al. 2020; Cherubin et al. 2019; Froufe 
et al. 2019; Guo et al. 2018). However, this ability to 
improve soil characteristics depend on the amount 
and decomposition rate of (provided) biomass (Pérez-
Flores et  al. 2018; Wang et  al. 2014; Das and Das 
2010; Montagnini et al. 1993; Heuveldop et al. 1988).

Different values of biomass contribution to the soil 
have been reported ranging from 1.6 to 61.2 Mg ha−1 
under different AFS such as home gardens and mul-
tistrata agroforestry arrangements (Sari et  al. 2022; 
Verma et  al. 2022; Froufe et  al. 2019; Pérez-Flores 
et  al. 2018; Fontes et  al. 2014; Das and Das 2010; 
Arato et al. 2003). As for the decomposition rate (k, 
i.e. decomposed dry mass per day) estimated using 
single negative exponential regression (Olson 1963; 
Guo et al. 2022), as the remaining dry mass (RDM%) 
of litterfall in AFS, it may vary depending on the 
leaf species and the type of agroforestry structure, as 

much as environmental factors and biotic communi-
ties (Swift et al. 1979; Heal et al. 1997; Anderson and 
Ingram 1982; Anderson and Domsch 1985). In this 
regard, Hasanuzzaman and Hossain (2014a) found 
0.9 and 2.1 k year−1 for different species of Mangifera 
indica, Zizyphus jujuba, Litchi chinensis, and Arto-
carpus heterophyllus, that make up a home garden in 
Bangladesh. Similarly, Leblanc et  al. (2006) report 
the decomposition of fresh leaves of Inga samanen-
sis and Inga edulis under alley cropping values of 
0.0981 and 0.1478 k  week−1. Under other AFS such 
as coffee, Villavicencio-Enriquez (2012) in Mexico 
reports k-values of 2.3, 2.0 and 1.8 under a Coffee 
AFS, rustic coffee system and medium forest, respec-
tively. Under a silvopastoral system (SSP) in India a 
k value between 0.5 and 1.8 was recorded (Tripathi 
et  al. 2013). Other studies of leaf litter decomposi-
tion of Theobroma cacao- Cordia alliodora and T. 
cacao-Erythrina sp. mixtures in Cocoa AFS under 
shade trees (Cordia alliodora and Erythrina poep-
pigiana) showed RDM values between 45.2 and 
48.9% (Heuveldop et  al. 1988). Similarly, leaf litter 
decomposition studies of twelve forest species under 
AFS in Bangladesh recorded a mass loss between 11 
and 63% (Hasanuzzaman and Hossain 2014b). In the 
Colombian Amazon region, there is a lack of knowl-
edge regarding leaf litter and its fractions and decom-
position rate to maintain surface soil cover and nutri-
ent supply to the soil as a strategy for the recovery 
of degraded soils. This gap compromises our ability 
to predict the impact of agroforestry arrangements as 
litterfall contributors and in the improvement of soil 
fertility.

The studies carried out in the western Colom-
bian Amazon under AFS have been based mainly on 
biological soil studies (Rodríguez et  al. 2018), soil 
macro-aggregates (Rodríguez et al. 2019; 2021a), and 
typologies of agroforestry systems associated with 
Theobroma cacao (Suárez et  al. 2018). Therefore, it 
is necessary to evaluate leaf litter production and the 
decomposition on AFS as a mechanism of nutrient 
cycling involved in improving soil fertility and recov-
ering degraded soils due to grazing pressure (Sari 
et al. 2022; Piza et al. 2021). The aim of this research 
is to measure the total amount of litterfall, and its 
fractions contributed to the soil, as well as to evaluate 
the decomposition process under different agrofor-
estry systems and adjacent natural regeneration areas. 
In this sense, we propose to answer the following 
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questions: (i). What is the contribution of biomass 
from the different leaf litter fractions under land uses? 
and (ii). What is the incidence of the different land 
uses on the rate of leaf litter decomposition? These 
questions raise the need to know the amount of leaf 
litter that an AFS can provide and the rate with which 
it decomposes, as part of the nutrient cycling service 
that AFS can generate as a restoration strategy for 
degraded soils in the Amazon. Therefore, the evalu-
ation of litter production and decomposition of mul-
tistrata AFS is important to understand the mecha-
nisms involved in the sustainability and soil fertility 
of these land use systems as restoration strategies for 
degraded pastures.

Materials and methods

Study site and description of the evaluated land use 
types

The study was developed in five agroforestry sys-
tems with no intervention (manage or inputs) for 
20  years) which were compared to near secondary 
forest (SF) areas located at the Centro de Investiga-
ciones Amazonicas CIMAZ Macagual—Universidad 
de la Amazonia (Table 1) at approximate coordinates 
1°30′4.87" N and 75°39′47.16" W, located in the 
Amazon and the Andes transition (east of the Andes 
mountains) at an altitude of 360 m, in a humid area 
with an average annual precipitation of 3793 mm and 
a monomodal rainfall. The maximum precipitation is 
distributed between April and September, with solar 
brightness of 1.707 h  year−1, average temperature of 
25.5 °C and relative humidity of 84.3% (IGAC 2014). 
The CIMAZ Amazonian research center is located in 
southern Colombia towards the foothills of the east-
ern cordillera (Fig.  1). CIMAZ is an experimental 
center of 380  ha where the plots with the five AFS 
and the SF evaluated were located. There was only 
one plot for each PFS (not repeated). The SF and the 
land uses were less than 900 m apart and the physi-
ognomy and soil type is quite homogeneous, pre-
senting a sandy loam texture. The five SAF and the 
SF had different species (deciduous and evergreen) 
and different origin (native or exotic) and their age 
is approximately 25  years while SF had an age of 
40  years (Table  1). The soils of the different agro-
forestry systems evaluated (Table  2), classified as 

Acrisols (Quesada et al. 2011) are acidic with pH val-
ues ranging from 2.64 to 5.02, aluminum saturation 
levels of 84% and very high Fe levels ranging from 
437 to 912 mg kg−1, average exchangeable acidity of 
2.5 meq100g−1 and effective cation-exchange capac-
ity averaging 3.7 meq100g−1, and low carbon organic 
(1.7%) and organic matter (2.9%) contents in the 
soil. Total bases in the soil average 1.2 meq100g−1 
and the fertility level is low, with N and P contents 
not exceeding 0.8 and 2.6 mg kg−1, respectively. The 
geology of the area corresponds to conglomerates, 
clays, and poorly consolidated sandstones with a hilly 
landscape. Soil mineralogy shows high quartz con-
tents followed by feldspars and predominance of kao-
linite (IGAC 2014).

In total, six land use types (Table 3) were investi-
gated and their structure was composed by an aver-
age 537 trees, more frequently by Hevea brasilien-
sis, Theobroma cacao, Eugenia stipitata, Cariniana 
pyriformis, among others. Likewise, these land uses 
contained leguminous tree species such as Acrocar-
pus fraxinifolius, Cedrelinga cateniformis, Inga minu-
tula and Schizolobium amazonicum, fruit trees such 
as Bactris gasipaes, Borojoa patinoi, Eugenia stipi-
tata, Theobroma bicolor, T. cacao, T. grandiflorum 
and timber trees such as Acrocarpus fraxinifolius, 
Anacardium excelsum, Calycophyllum spruceanum, 
Cordia alliodora, among others. These land uses 
have high levels of shade that exceed 70% for some of 
them, with dasometric measurements such as diam-
eter at breast height with an average of 15.1 cm and 
tree heights of 8.4 m.

Litter production

The samples of litterfall were collected for one year 
every 15  days from August 2013. Four collection 
traps (1 m2 area) were placed at a height of 30  cm 
above the ground and distributed in a systematic way 
in each land use to consider the intra-variation. The 
traps were made of polyshade mesh and 1/2 inch 
diameter PVC pipe. All samples were dried (70  °C) 
in paper bags to a constant weight and separated into 
leaves (LV), branches (BR), flowers (FW), fruits 
(FR) and seeds (SD). Then they were weighed on a 
dry basis (g m−2, converted to Mg ha−1 later) in an 
OhausTM balance with 0.01 g precision.
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Table 1   Description of dominant vegetation, microclimatic parameters, area and location of study sites

Land use types Description1 Average 
temperature 
(°C)

Relative 
Humidity 
(%)

Area (ha) Location

CFP1 Agroforestry system established for 24 years, with a pre-
dominance of a type of rubber tree ([Hevea brasiliensis 
(Willd. ex A. Juss; D, Nt) Müll. Arg.] characterized by 
its broad leaves, associated with the fruit trees copoazú 
[Theobroma grandiflorum (Willd. ex Spreng.) K.Schum.] 
(E, Nt) and arazá (Eugenia stipitata McVaugh) (E, Nt)

33 66 3.0 N 01°29´42.7
W 75°39´15.3

STC Agroforestry system established for 24 years, which com-
bines the trees paricá (Schizolobium amazonicum Huber 
ex Ducke) (D, Nt), rubber [Hevea brasiliensis (Willd. ex 
A. Juss.) Müll. Arg.], and peach palm (Bactris gasipaes 
Kunth) (E, Nt) with the fruit tree copoazú [Theobroma 
grandiflorum (Willd. ex Spreng.) K.Schum.]

30 65 3.5 N 01°29´53.7
W 75°39´11.8

CA2 Agroforestry system established for 25 years, in which the 
tree seed were sown in rows with a predominance of the 
species peach palm (Bactris gasipaes Kunth) and rubber 
[Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.], 
achapo [Cedrelinga cateniformis (Ducke) Ducke] (D, Nt) 
is found at a low density, yarumo (Cecropia peltata L.) 
(E, Nt), and ice cream bean (Inga minutula (Schery) T.S. 
Elias (E, Nt); between the rows are cacao (Theobroma 
cacao L.) (E, Nt), arazá (Eugenia stipitata McVaugh) and 
copoazú [Theobroma grandiflorum (Willd. ex Spreng.) 
K.Schum.]

29 67 2.0 N 01° 29´47.9
W 75°39´9.9

CFP3 Agroforestry system implemented for 21 years, composed 
of the species huito (Genipa Americana L.) (D, Nt), bilibil 
[Guarea guidonia (L.) Sleumer] (E, Nt), higuerón (Ficus 
enormis (Mart. ex Miq.) Mart.) (E, Ex), wild cashew 
[Anacardium excelsum (Kunth) Skeels] (E, Nt), Honduran 
mahogany (Swietenia macrophylla King.) (D, Nt), laurel 
[Cordia alliodora (Ruiz & Pav.) Oken)] (E, Nt), tachuelo 
(Lacmellea standleyi (Woodson) Monach.) (E, Nt), Juan 
soco (Couma macrocarpa Barb.Rodr.) (E, Nt), and sangre 
toro [Virola elongata (Benth.) Warb] (E, Nt), associated 
with the fruit trees copoazú [Theobroma grandiflorum 
(Willd. ex Spreng.) K.Schum.], arazá (Eugenia stipitata 
McVaugh), and plantain (Musa paradisiaca L.) (E, Ex). 
The system is geogaphically located near water bodies. 
Some areas of the system experience floods during periods 
of maximum precipitation

30 49 2.0 N 01°29´55.6
W 75°39´46.6

HG Agroforestry system implemented for 26 years that com-
bines diverse fruit trees such as copoazú [Theobroma 
grandiflorum (Willd. ex Spreng.) K.Schum.], pataxte 
(Theobroma bicolor Bonpl.) (E, Nt), custard apple 
(Annona cherimola Miller), borojó (Borojoa patinoi 
Cuatrec.) (E, Nt), cacao (Theobroma cacao L.), mango 
(Mangifera indica L.) (E, Ex), and peach palm (Bactris 
gasipaes Kunth); Colombian mahogany (Cariniana pyri-
formis Miers) (E, Nt), wild cashew [Anacardium excelsum 
(Kunth) Skeels], chingale [Jacaranda copaia (Aubl.) 
D. Don.] (E, Nt), and capirona (Capirona decorticans 
Spruce) (E, Nt) are found in low densities

31 46 2.0 N 01°30´6.7
W 75°39´49.2
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Decomposition of litterfall

The litterbag approach was used to study the dynam-
ics of decomposition (Bocock and Gilbert 1957, Kar-
berg et al. 2008). To determine the effect of land uses 
on the rate of leaf litter decomposition, a litterbag 
(20 × 15  cm) containing 20  g of Theobroma grandi-
florum leaves was used because it was present in all 
land uses studied. Theobroma grandiflorum leaves 
had a carbon content of 49.3% (Walkley and Black 
method), nitrogen content of 1.1% (Kjeldahl method) 
and phosphorus content of 1.0% (Bray II method). 
At the base level, Theobroma grandiflorum leaves 
presented a content of 0.4% calcium, 0.3% potas-
sium and magnesium and 231.5 mg  kg−1 of sodium 
(Atomic absorption method). The lignin content was 
46.9%, the cellulose and hemicellulose content were 
18.9% and 5.2%, respectively, and the lignocellulosic 
index was 0.7. Lastly, the total phenol content was of 
0.1% (Folin–Ciocalteau method). This initial weight 
of the litterbag was recorded and bags were closed 
with staples.

The effect of the soil macrofauna community on 
the litter decomposition rate for each land use was 
evaluated in 2 mm and 20 mm mesh size litterbags, 
made of nylon plastic and metal mesh, respectively 
(70 litterbags per mesh size) with seven repetitions. 
This difference in pore size attained the objective of 
inferring the incidence of the agroforestry system 
on the decomposition rate, since depending on the 
design, composition, and structure of the AFS, the 
populations of soil macrofauna can vary and therefore 
the decomposition (Toro et  al. 2015; Bradford et  al. 
2002). Twenty litterbags (10 monitoring periods × 2 
mesh size) were placed in each of the 7 groups 
(replications) by land use. The replications were 

systematically allocated in each land use to consider 
intra-variation.

The litterbags were place on top of soil after 
remove the litter. After that, the remove litter was put 
over the litterbags to simulate the natural condition 
of decomposition. The litterbags were collected at 
random, one for each replication, every 15 days from 
November 2013 up to 150 days, for a total of 840 Lit-
terbag. The litterbags were placed in a three-factor 
(6 land uses × 2 mesh size × 10 monitoring periods) 
experiment with 7 replications in a complete rand-
omized design. The material obtained in each bag 
was dry-weighed on an OhausTM scale with an accu-
racy of 0.01 g.

Data analysis

A non-linear regression model of the remaining dry 
mass (RDM) percentage as a function of time per 
mesh size under each land use was fitted, correspond-
ing to a simple exponential decay model (Olson 
1963; Casanoves et al. 2022). The RDM (%) = DMt/
DM0 × 100, where DMt is the remaining dry matter at 
the t sampling time, and DM0 is the initial dry matter 
of the litter bags for decomposition (Bahamonde et al. 
2012). The decomposition rate constant (k) of litter 
residues was estimated following single exponential 
model (Olson 1963) as indicated: DMt/DM0 = α e(−kt), 
where α is the intercept, k is the value of the decom-
position constant (k > 0) and t is the evaluation time. 
Based on these developed models, it was calculated 
time at 50% RDM (t50), time at 95% RDM (t95) and 
time at 99% RDM (t99) (Songwe et al. 1995).

Linear Models (LM) were adjusted to analyze the 
differences between litterfall production data (Mg 
ha−1 year−1) and decomposition constant (k) among the 

Alley cropping 2—CA2; Cropping in forest plantation 3—CFP3; Cropping in forest plantation 1—CFP1; Home garden—HG; Sec-
ondary Forest—SF; Shade trees for crops—STC. Evergreen—E; Deciduous—D; Native—Nt; Exotic—Ex. Sources: www.​tropi​cal.​
thefe​rnsin​fo (useful tropical plants) and www.​iucnr​edlist.​org/​search. 1From Rodriguez et al. 2018

Table 1   (continued)

Land use types Description1 Average 
temperature 
(°C)

Relative 
Humidity 
(%)

Area (ha) Location

SF Cedrela odorata (C, Nt), Laurus nobilis L. (P. Ex), Inga 
sp., Miconia appendiculata Triana (E, Nt), Miconia elata 
(Sw.) DC. (E, Nt) Cecropia peltata, Cedrelinga cateni-
formis among others. Natural system of approximately 
40 years without any type of human intervention

28 75 55 N 01°29´42.9
W 75°39´14.2

http://www.tropical.thefernsinfo
http://www.tropical.thefernsinfo
http://www.iucnredlist.org/search
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Fig. 1   Total amount 
of litterfall components 
produced under six land use 
types collected for one year 
from August 2013. Second-
ary forest—SF, Shade trees 
for crops—STC, Alley 
cropping 2—CA2, Crops in 
forest plantation 3– CFP3, 
Crops in forest planta-
tion 1– CFP1 and Home 
garden—HG
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different land uses. The model for litterfall production 
data considered the fixed effect of land uses and the 
ANOVA was obtained for each collection type (leaves 
LV, branches BR, flowers FW, fruits FR and seeds SD) 
and for the total litterfall. The model for decomposi-
tion constant considered the fixed effect of land uses, 
bag size and its interaction. Assumptions of normal-
ity and homogeneity of variance were evaluated by an 
exploratory residual analysis. Mean values were com-
pared using Fisher’s LSD post-hoc test (α = 0.01). The 

selection of the fitted models was based on Akaike 
(AIC) and Bayesian (BIC) Information Criteria (Littell 
et al. 1996) and on likelihood ratio tests (LRT). Analy-
ses were performed using the gls function (Pinheiro 
et  al. 2012) in R language software, version 4.2.0 (R 
Core Team. 2022), using the interface in InfoStat (Di 
Rienzo et al. 2022).

Table 2   Soil chemical composition in the six land use types evaluated in the western Colombian Amazon

Mean ± Standard error. Secondary Forest– SF; Shade trees for crops—STC; Alley cropping 2—CA2; Cropping in forest plantation 
3—CFP3; Cropping in forest plantation 1– CFP1; Home garden—HG. OC: Organic carbon; OM: Organic matter; SB: Sum of bases; 
EA: Exchangeable acidity; ECEC: effective cation-exchange capacity; BS: Base saturation; AlS: Aluminum saturation

Soil attribute Unit SF STC CA2 CFP3 CFP1 HG

pH 2.64 ± 0.36 3.58 ± 0.28 3.52 ± 0.1 5.02 ± 0.24 3.26 ± 0.23 4.34 ± 0.06
OC % 1.77 ± 0.17 1.47 ± 0.3 1.77 ± 0.17 1.14 ± 0.19 1.62 ± 0.29 2 ± 0.15
OM % 3.06 ± 0.3 2.53 ± 0.53 3.06 ± 0.3 1.97 ± 0.32 2.79 ± 0.5 3.46 ± 0.26
N % 0.86 ± 0.01 0.86 ± 0.02 0.81 ± 0.04 0.69 ± 0.03 0.86 ± 0.03 0.83 ± 0.01
P mg kg−1 3.15 ± 0.01 2.41 ± 0.11 2.48 ± 0.09 2.33 ± 0.03 2.53 ± 0.11 3.3 ± 0.11
K meq 100 g−1 0.04 ± 0.01 0.04 ± 0.01 0.07 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.05 ± 0.01
Ca meq 100 g−1 0.5 ± 0.11 0.7 ± 0.1 0.33 ± 0.05 0.7 ± 0.11 0.43 ± 0.13 0.71 ± 0.22
Na meq 100 g−1 1.02 ± 0.4 0.43 ± 0.06 0.74 ± 0.18 0.25 ± 0.09 0.14 ± 0.08 0.32 ± 0.07
Mg meq 100 g−1 0.06 ± 0.01 0.12 ± 0.04 0.14 ± 0.03 0.26 ± 0.02 0.05 ± 0.02 0.22 ± 0.05
TB meq 100 g−1 1.62 ± 0.45 1.3 ± 0.19 1.28 ± 0.23 1.24 ± 0.16 0.67 ± 0.16 1.3 ± 0.24
Zn mg kg−1 1.07 ± 0.04 1.5 ± 0.32 1.88 ± 0.3 4.21 ± 1.57 1.26 ± 0.2 2.25 ± 0.27
Cu mg kg−1 0.45 ± 0.03 1.28 ± 0.05 0.74 ± 0.09 2.6 ± 0.78 0.97 ± 0.15 2.03 ± 0.35
Fe mg kg−1 912.22 ± 8.89 748.78 ± 95.38 860.08 ± 31.25 811.96 ± 46.2 841.14 ± 17.39 654.05 ± 49.87
Mn mg kg−1 2.63 ± 0.61 10.51 ± 7.26 8.86 ± 2.51 26.37 ± 1.18 7.03 ± 3.11 19.34 ± 1.32
EA meq 100 g−1 5.29 ± 0.12 1.8 ± 0.78 4.05 ± 0.4 0.13 ± 0.06 3.63 ± 0.26 0.34 ± 0.09
ECEC meq 100 g−1 6.91 ± 0.49 3.1 ± 0.6 5.33 ± 0.4 1.37 ± 0.16 4.3 ± 0.34 1.64 ± 0.16
BS % 6.27 ± 1.17 9.3 ± 1.09 5.45 ± 0.63 10.45 ± 2.11 3.17 ± 0.71 5.72 ± 1.73
AlS % 77.44 ± 4.34 49.6 ± 15.32 75.85 ± 3.72 9.68 ± 5.23 84.73 ± 3.00 22.84 ± 8.23

Table 3   Composition and structure of the six land use types evaluated in the western Colombian Amazon

DBH: average value of diameter at breast height. 1mean. Secondary Forest—SF, Shade trees for crops—STC, Alley cropping 2—
CA2, Cropping in forest plantation 3—CFP3, Cropping in forest plantation 1– CFP1, Home garden—HG

Land use types Tree density (Trees 
ha−1)

Aboveground biomass 
(Mg ha−1)

Number of 
species

DBH1 (cm) Total height1 
(m)

Shade 
level 
(%)

STC 492 45.1 4 14.2 9.2 75
CA2 468 41.4 8 14.5 6.4 70
CFP3 473 44.3 12 13.5 5.1 85
CFP1 399 127.8 3 27.6 11.4 65
HG 1292 61.6 11 7.9 5 85
SF 102 41.7 6 10.6 12 45
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Results

Litterfall production

The average annual production under AFS was 
6.5 ± 0.3 Mg ha−1 of litter with maximum and mini-
mum values of 4.5 and 7.6  Mg  ha−1 for STC and 
HG, respectively, while in the SF, the annual lit-
ter production was 3.2 Mg  ha−1 (Fig.  1). The Theo-
broma grandiflorum litter fall percentage in each 
AFS was CFP3 = 9.6%, HG = 15.7%, CA2 = 0.9%, 
CPF1 = 13.7% y STC = 3.3%.

During study litterfall period there was decrease 
of rainfall between august-2013 to april-2014 and 
increase in average temperature (Fig.  2A). We reg-
istered high litter production during first quarterly 
2014, which it was associated to low rainfall and high 
average temperature (Fig.  2B). The land use STC 
showed high litter in march 2014 associated with low 

rainfall respect to the others AFS evaluated. On the 
other hand, land uses CA2 and CFP3 showed slightly 
increase in litterfall production when increase rainfall.

We registered high litter production during first 
quarter of 2014, which was associated with low rain-
fall and high average temperature (Fig. 2A). The land 
use STC showed higher litterfall in march 2014, asso-
ciated with low rainfall. Among components, leaves 
and branches were the largest contributors to total 
production with 5.27 ± 0.5 and 0.72 ± 0.2  Mg  ha−1, 
respectively (Fig. 1).

Decomposition of litterfall

The residual mass of the litter decreased exponen-
tially over time under all land uses evaluated (AFS’s 
and SF), with an effect on the decomposition rate (k). 
There was a significant interaction between land uses 
and mesh sizes (p = 0.0017). When comparing land 

Fig. 2   A. Monthly varia-
tion of rainfall and average 
temperature during study 
period of litterfall among 
land use types evalu-
ated.  Source: http://​www.​
ideam.​gov.​co/ B. Monthly 
variation in litter production 
among land use types evalu-
ated. Secondary forest—SF, 
Shade trees for crops—
STC, Alley cropping 
2—CA2, Crops in forest 
plantation 3– CFP3, Crops 
in forest plantation 1– CFP1 
and Home garden—HG
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uses, the SF presented a higher k value compared to 
the AFS, but in SF there were not differences between 
mesh sizes (Table 4). The effect of land use and mesh 
size affected the rate of decomposition, for example, 
in the SF the decomposition rate was higher com-
pared to AFS (Fig. 3) in the different times evaluated 
(t50, t95 and t99; Table  4). Overall, the soil macro-
fauna under all land uses evaluated increased the lit-
ter decomposition rate by 27.2%, reducing the time to 
decompose 99% of RDM by 92 days. When compar-
ing AFS under CFP3 in a mesh size of 20 mm there is 
a higher rate of decomposition (Table 4) which affects 
the remaining dry mass (Fig. 3). With all the Table 4 
results variables we perform a principal component 
analysis to ordinate the AFS´ in relation with SF, 
getting the following order: SF >​ HG ​> STC​ > CFP​
1 > CF​P​3 >​ CA​2.

Discussion

Litter production

The inverse relationship observed in several AFS 
between litter production and rainfall was similar to 
studies made in Brazil (Lima et  al. 2015; Sanches 
et al. 2009). However, trees leave deposition does not 

always show an evident inverse relationship with rain-
fall as we seen in land uses CA2 and CFP3 (Fig. 2), 
indicating in some cases that litterfall is dependent 
on the plant species (Fernandes et  al. 2006; Barlow 
et  al. 2007). On the other hand, under Amazonian 
conditions, agroforestry systems presented a higher 
biomass contribution to the soil compared to the SF. 
This is due, among other things, to the fertility of the 
soil (Wood et al. 2006) since it promotes the contri-
bution of biomass. The characteristics of the soil in 
which the SF was found were a very high acidity 
condition with a pH of 2.64 ± 0.36 and very high lev-
els of Fe and Al as well as exchangeable Al, which 
probably influenced the development of the biomass 
above the soil. In this sense, it has been reported that 
biomass production in the forest is very variable, 
for example in a lowland tropical forest it reached 
between 2.3 to 13.9 Mg ha−1 year−1, or in an upland 
tropical forest a biomass production between 3.7 to 
14.3  Mg  ha−1  year−1 (Zapata et  al. 2007) and in a 
humid tropical forest as in the present study a biomass 
production of 2.8 to 15.6 Mg  ha−1  year−1 (Collantes 
et al. 2014). However, in the Amazon, forests depend 
solely on nutrient cycling to meet their nutritional 
requirements, so the rate of nutrient supply depends 
on species composition and diversity (Lagemann 
et al. 2022; Lips and Duivenvoorden 1996).

Table 4   Decomposition constants (k calculated for 
t = 365  day, litterfall residence time (1/k) in a year) and time 
required (t = d) for loss of 50%, 95% and 99% of initial leaf dry 

weight in decomposition litterbags under six land use types in 
the western Colombian Amazon

Mean ± Standard error. RDM: remaining dry mass. dd: decomposition days. Means with a same letter are not different (Fisher’s 
LSD, p > 0.05). Secondary Forest—SF, Shade trees for crops—STC, Alley cropping 2—CA2, Cropping in forest plantation 3– CFP3, 
Cropping in forest plantation 1– CFP1 and Home garden—HG

Site Mesh size 
(mm)

k (days−1) t50 t95 t99 1/k RDM150dd

STC 2 0.0034 ± 0.0003c 202 ± 19 705 ± 75.1 921.7 ± 99.1 292 ± 20.3 58 ± 2.5
20 0.0044 ± 0.0006d 166 ± 27 601 ± 116 788.4 ± 154 229 ± 28.4 50 ± 3.8

CA2 2 0.0027 ± 0.0004c 266 ± 34 930 ± 120 1216 ± 158 366 ± 34.5 64 ± 3.2
20 0.0041 ± 0.0007d 167 ± 28 642 ± 119 846.9 ± 159 243 ± 28.7 49 ± 4

CFP3 2 0.0029 ± 0.0003c 230 ± 26 827 ± 102 1083 ± 135 346 ± 26.5 61 ± 1.8
20 0.0094 ± 0.0005a 82.1 ± 4.1 257 ± 13 332.5 ± 16.9 107 ± 5.1 27 ± 1.9

CFP1 2 0.0029 ± 0.0003c 218 ± 15 806 ± 71.8 1059 ± 97.4 342 ± 15.5 60 ± 1.7
20 0.0040 ± 0.0003d 176 ± 11 591 ± 40.4 769.1 ± 53.6 249 ± 11.6 55 ± 2.2

HG 2 0.0039 ± 0.0003c 187 ± 12 621 ± 44.3 808.3 ± 58.3 260 ± 13.0 57 ± 2.3
20 0.0044 ± 0.0004d 164 ± 15 547 ± 52 711.9 ± 68 227 ± 15.8 52 ± 2.7

SF 2 0.0062 ± 0.0005b 108 ± 8.4 377 ± 28.1 492.2 ± 36.7 162 ± 9.4 38 ± 2.5
20 0.0062 ± 0.0004b 95.5 ± 6.8 364 ± 26 479.5 ± 34.5 162 ± 7.8 36 ± 2.2
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Thus, when we compared the biomass production 
of agroforestry systems, they provided more biomass 
compared to that of the SF. For example, in agrofor-
estry systems associated with cocoa cultivation, it has 
been reported that the biomass contribution to the soil 
reaches between 1.7 to 8  Mg  ha−1  year−1 (Saj et  al. 
2021, 2022; Asigbaase et  al. 2021a; Pérez-Flores 
et  al. 2018; Schneidewind et  al. 2018; Fontes et  al. 
2014; Muoghalu and Odiwe 2011; Tridiati et al. 2011; 
Fassbender et  al. 1991), and under a coffee agrofor-
estry system between 2.6 to 9.1 Mg ha−1 year−1 (Nes-
per et  al. 2019; Villavicencio-Enríquez 2012; Beer 
1988). The above findings depend on the complex-
ity of the agroforestry design in terms of its structure 
(density of individuals) and the species composition, 
which has a significant impact on biomass contribu-
tion (Verma et al. 2022). For example, under the STC 
agroforestry system, a greater biomass of leaf litter 
was produced due to the presence of the Paricá tree 
species (Schizolobium parahyba var. amazonicum), 
which is a legume native to the Amazon with a high 
adaptation to acid soils, with biomass production 

reaching 4.51 Mg ha−1 year−1 (Gonzalez et al. 2021; 
Leal-Silva et  al. 2011) and which has been used 
for the restoration of degraded soils in the Amazon 
region (Rosário et  al. 2014; Gazel et  al. 2007). In 
the case of the CA2 agroforestry system, a high bio-
mass production of more than 7 Mg ha−1 year−1 was 
also found due to its composition of species such as 
Bactris gasipaes to produce peach palm fruit (Chon-
taduro). Annual production for this species has been 
reported, when 53% of weight corresponded to leaf-
lets and 47% to rachis (Ribeiro et al. 2020; McGrath 
et al. 2000). When we analyzed the biomass produc-
tion by components, we found a predominance of 
leaf litter (68.4—95.7%) which is within the range 
reported by several authors (Saj et al. 2022; Sari et al. 
2022; Costa et  al. 2017; Tripathi et  al. 2009; Gupta 
et  al. 2010) who mention ranges of leaf litter pro-
duction between 65—76% of the total biomass pro-
duced. However, the reproductive material (flowers 
and fruits) in the studied AFS (< 13%) was lower than 
that recorded for the AFS in Brazil (20.07%) (Arato 
et al. 2003).

Fig. 3   Decomposition rate of Theobroma grandiflorum in lit-
terbags with different mesh size under six evaluated land use 
types. Secondary forest—SF, Shade trees for crops—STC, 
Alley cropping 2—CA2, Cropping in forest plantation 3—

CFP3, Cropping in forest plantation 1– CFP1, Home garden—
HG. Remaining Dry Mass (RDM; n = 7). The segments repre-
sent standard errors
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Litter decomposition rate of Theobroma grandiflorum

Although the SF did not produce more biomass in the 
soil compared to the agroforestry systems, it had a 
greater degradation of aboveground biomass in both 
pore sizes. This is due to extrinsic factors, e.g., lit-
ter consumption by termites and earthworms (Asig-
baase et al. 2021b; Durán-Bautista et al. 2020). This 
increase in the decomposition rate constant is due 
to the density and diversity of individuals of macro-
fauna communities present in the SF compared to that 
found in agroforestry systems (Rodríguez et al. 2018), 
which significantly reduced the days in which total 
biomass degradation is required (t99).

As the objective was to measure the incidence of 
macrofauna populations (exclusion of the effect of the 
mesh size Bradford et  al. 2002), as a product of the 
effect of agroforestry systems on the rate of decom-
position, leaves of the same species were used to 
analyze this effect. In this sense, the same chemical 
indicators of litter quality were maintained, mainly 
related to nitrogen content, C:N ratio, lignin, polyphe-
nol content, characteristics that can predict decom-
position rates (Siqueira et al. 2022). Thus, under the 
agroforestry systems the value of k increased 39.9% 
as a result of the activity of macrofauna populations 
(0.00526 for 20 mm mesh size vs. 0.00316 for 2 mm 
mesh size), this difference being greater under the 
CFP3 agroforestry system (69.1%). However, when 
we compared the value of k between the agroforestry 
systems and the SF, the latter increased the value of 
k by 32.1%. This is an evident proof that the design 
and composition of the AFS do not only influence the 
biomass contribution but also the macrofauna popu-
lations which impact the litter decomposition rate 
(Pech et al. 2022; Rodríguez et al. 2018; Durán et al. 
2018; Suárez et  al. 2015; Toro et  al. 2015). When 
analyzing k at the tree species level, Negash and 
Starr (2021) mention variations of k from 2.58 year−1 
(0,0071  day−1) for Persea americana to 6.1  yr−1 
(0.0167  day−1) for Millettia ferruginea, differences 
that are mainly due to variations in the chemical com-
position of the leaf (Cissé et al. 2021). However, the 
decomposition rate presented in our study was rela-
tively low, perhaps due to the high values of lignin 
(46.9%) and C:N ratio (44.4) present in the Theo-
broma grandiflorum leaf.

According to the decomposition rate categories 
described by Gimenes et  al. (2010), it was found 

that the leaves of Theobroma grandiflorum in agro-
forestry systems STC, AC2, CFP3, CFP1 and HG 
in 2 mm mesh size, as well as leaves from CFP1 and 
HG in 20 mm mesh size had a low k (< 0.005 day−1). 
Leaf SF at 2  mm mesh size and STC, CA2 and SF 
at 20  mm mesh size were a medium k (0.005—
0.010 day−1) and CFP3 at 20 mm mesh size a fast rate 
in decomposition value (k > 0.010 day−1). The decom-
position rate in 20  mm mesh size can be overesti-
mate for small litter fractions losses. However, some 
authors have used 10 mm, 15 mm y 50 mm mesh size 
(Rubio et al. 2016, Zúñiga-Céspedes et al. 2018, Dar-
mawan et al. 2021 respectively). In this sense, when 
we compared the value of k and the decomposition 
behavior presented, it was found that the values of the 
for plantations and tropical forests according to those 
described by León and Osorio (2014) and are slightly 
higher than the values of k (0.00167—0.00403 day−1, 
simple exponential model) of the litterfall of the sim-
ple montane rainforest (Bothwell et al. 2014).

Although CFP3 showed the lower soil macrofauna 
abundance and richness also it presented the high-
est k value in decomposition bag with a pore size of 
20  mm due to some event that generated a greater 
decomposition of the leaf litter on the 70th day. These 
changes during the process of leaf litter decomposi-
tion may be due to fauna present in the tree canopy 
that by phenomena such as heavy rains or wind gusts 
can lead to the fall of ant nests to the ground (Yusah 
et al. 2012).

Under agroforestry systems, mean residence time 
has been reported between 2 to 3 years, being higher 
values than those recorded in the present study (0.2—
0.8 years) which depend on the availability of radia-
tion (Hairiah et al. 2006) as well as on the conditions 
of each site and especially on the recalcitrant condi-
tion of tree leaves (Tangjang et al. 2015). In our study 
the value of 1/k was lower in the SF compared to that 
found under agroforestry systems, a situation similar 
to that reported by Dawoe et al. (2010) who mention 
that the forest presented values of 2.8 years compared 
to 4.4  years in cocoa crops. A study of decomposi-
tion under agroforestry systems who used bags with 
1 mm mesh size, recorded values for RDM of 58% in 
Theobroma cacao, 10% in Gmelina arborea, 60% in 
Cedrela odorata and 25% in Gliricidia sepium during 
a period of four months (Rojas et al. 2017), observing 
that cacao leaves have a slower decomposition than 
legumes. Schwendener et  al. (2007) found a time of 
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2.4 years to have the total biomass of the T. grandi-
florum litter decomposed in in AFS, meanwhile en in 
our case, between 1.7 and 3.8 years were required for 
99% of the litter to disappear in different AFS.

Conclusions

We found that the annual biomass input was 
50.8% higher in AFS (6.5  Mg  ha−1) than in SF 
(3.2 Mg  ha−1), with leaves being the main contribu-
tor to the total biomass input to the soil. However, 
under SF the litter decomposition rate was higher 
compared to the other land uses, requiring between 
95 and 125 days to decompose 50% of the remaining 
dry mass, respectively. Overall, the soil macrofauna 
under all land uses could potentially increase the lit-
ter decomposition rate by 27.2%, reducing the time 
to decompose 99% of the remaining dry matter by 
92  days. (Multistrata) Agroforestry systems can be 
a strategy for the recovery of degraded soils in the 
Amazon as they increase the nutrient cycling as well 
as the rate of litter decomposition, when compared to 
SF.
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