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Abstract 

Accurate models for early harvest estimation in citrus production generally involve 
expensive variables. The goal of this research work was to develop a model to provide early 
and accurate estimations of harvest using low-cost features. Given the original data may 
derive from tree measurements, meteorological stations, or satellites, they have varied costs. 
The studied orchards included tangerines (Citrus reticulata x C. sinensis) and sweet oranges 
(C. sinensis) located in northeastern Argentina. Machine learning methods combined with 
different datasets were tested to obtain the most accurate harvest estimation. The final 
model is based on support vector machines with low-cost variables like species, age, 
irrigation, red and near-infrared reflectance in February and December, NDVI in December, 
rain during ripening, and humidity during fruit growth.
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Resumen

En la producción de cítricos, los modelos precisos para estimación temprana de 
producción involucran variables de alto costo. El objetivo de este trabajo fue desarrollar 
un modelo que proporcione estimaciones tempranas y precisas utilizando características 
de bajo costo. Los datos iniciales considerados tienen diferentes costos, ya que provienen 
de mediciones en los árboles, de las estaciones meteorológicas o de satélite. Los huertos 
de cítricos estudiados correspondieron a mandarino (Citrus reticulata x C. sinensis) y dos 
naranjas dulces (C. sinensis); ubicados en el noreste argentino. Se han probado varios 
métodos de aprendizaje automático junto con diferentes conjuntos de datos, con el objetivo 
de obtener la mejor estimación de producción. El modelo final se basa en máquinas de 
vectores soporte con las siguientes variables de bajo costo: especie, edad de los árboles, 
irrigación, reflectancia roja e infrarroja cercana en febrero y diciembre, NDVI en diciembre, 
lluvia durante madurez y humedad en periodo de crecimiento de frutos. 

Palabras clave
MODIS • SVM • selección de variables • aprendizaje automático • naranja dulce • 
tangor Murcott

Introduction

According to Federcitrus (2022), citrus production in Argentina amounts to 
approximately 3.5 million tons, with sweet oranges roughly contributing 1 million tons 
and Valencia late being the most important variety. The cultivation area for Salustiana is 
increasing, and mandarins contribute around 500,000 tons, with Tangor Murcott as one 
major type.

Estimating citrus yield is challenging due to interannual and individual variations in 
productive traits. Typically, estimation relies on agronomic conditions, tree characteristics, 
historical orchard yield, and subjective observations, leading to estimation errors ranging 
from 15% to 25% (Apolo-Apolo et al., 2020). Recently, precision agriculture incorporating 
computing, robotics, artificial intelligence, and remote sensing, has improved yield 
estimation accuracy.

Several researchers have explored remote sensing and machine learning methods to 
predict crop yield. Córdoba et al. (2012) employed PCA (principal component analysis) to 
assess spatial covariation of soil properties and crop yield. Teixidó et al. (2018) developed 
semi-automated methods using different image capture systems and segmentation 
techniques. Wang et al. (2021) successfully tested various image capture methods by 
developing target image detection technology for remote sensing images based on 
deep learning.

Remote sensing data captured by civilian satellite-borne sensors enables monitoring 
Earth surface at different temporal and spatial scales. Begué et al. (2018) highlighted the 
convenience of using these images, which offer low costs per unit area while providing 
consistent spatial and temporal comparisons of vegetation conditions. Various vegetation 
indices have been developed, including the Standard Vegetation Difference Index (NDVI) 
for monitoring vegetation biomass. Arango et al. (2016a, 2016b, 2017) employed MODIS 
sensor images and associated variables such as soil properties, biophysical characteristics 
of crop sites, cultural treatments, and production, identifying arable land.

Machine learning techniques, including support vector machines (SVM), random forest 
(RF), and artificial neural networks (ANN), have proven effective in estimating agricultural 
variables of interest. Díaz et al. (2017) and Bóbeda et al. (2018) used machine learning 
systems to predict citrus production and load, respectively. Taghizadeh et al. (2020) 
employed SVM and RF algorithms to forecast land suitability for rain-fed wheat and barley. 
Numerous studies have explored the use of machine learning algorithms to predict crop 
yield for maize, and potato tuber, among other crops.

The objectives of this study are to identify low-cost and accessible variables for estimating 
citrus harvest while developing a methodology for early estimation of fruit number per tree 
using remote sensing and machine learning techniques.
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Material and Methods

Area and Material of Study
The study collected empirical data from citrus-producing orchards located in the 

Corrientes and Entre Rios provinces, northeastern Argentina, with geographical coordinates 
27°39´39” to 31°23´59” S and 57°00´01” to 58°58´59” W. Orchard age ranged from 7 to 
30 years and varietal composition included 44% Murcott tangor (Citrus reticulata x 
C. sinensis), 52% Valencia late, and 4% Salustiana sweet oranges (C. sinensis). Among the 
orchards, only 40% were irrigated, 78% of the trees were planted in sandy soil, and 22% 
were planted in clayey soil. Salustiana orchards were included in the dataset to increase 
variability, but further research is needed to develop a yield estimation model for this variety.

The dataset comprised three types of variables: tree and orchard characteristics, climatic 
variables, and satellite information. Field data were collected using a systematic random 
sampling method during the 2005/06 to 2015/16 seasons. The sample included 2-3% of 
trees from each orchard, and the following information was gathered:

Harvest: The target variable is the average count of fruits per tree recorded during 
harvest in each orchard.

Orchard characteristics: This category includes species (tangerine, sweet orange); 
variety (Murcott, Salustiana, Valencia late); soil type (sandy, clayey); irrigation (presence, 
absence); and age.

Tree traits: Canopy height and trunk diameter in meters. To estimate harvest time, fruits 
were counted in a sampling frame of 0.125 cubic meters at 1.5 meters from the ground and 
at the four cardinal points of the canopy. Then, fruits were manually counted 60 and 30 days 
before the estimated harvest time. Average number of fruits was calculated.

Climatic variables: This category included total rainfall, average temperature, and 
humidity during full bloom (September), fruit growth (December to March), and ripening 
(April to July). These data were obtained from weather stations located 5 to 45 km from 
the orchards.

Satellite information: MODIS data were used to obtain near-infrared reflectance, 
red reflectance, and NDVI during full bloom (September), fruit growth and ripening 
(December to June). Two monthly records allowed average value calculations for each 
month. NDVI is defined as 

where REFnir is Reflectance in the infrared spectrum and REFred, in the red spectrum. 

MODIS is aboard the Terra and Aqua satellites. The primary product used in this study 
was MOD091, which provides reflectance data for terrestrial coverage assessment with 
daily temporal resolution and a spatial resolution of 250 m. NDVI and reflectance values, 
as well as database organization related to orchards, followed an automated extraction 
process outlined in a four-stage workflow depicted in figure 1 (a) (page 68): (1) Orchards 
location, and centroids calculation. (2) The MODIS sensor time series product MOD09GQ1 
download using R Statistics routine (Arango et al., 2016a). (3) NDVI estimation based on 
seasons, specific time points, and orchard locations. (4) Database construction.

Data analysis
The cost of gathering data depends on multiple factors. The most expensive aspect 

involves the on-site laborious measurement of each tree. Climatic variables are obtained 
from closely located weather stations. Satellite data is freely available. Considering the costs 
and difficulties associated with measuring these variables, three distinct datasets were 
created to examine prediction performance based on information-collecting costs (refer to 
table 1, page 68). Noteworthy is that the variables in dataset d1 are the cheapest, while, 
conversely, certain features in d3 are quite expensive as they rely on human resources.
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Figure 1(a). Steps for data extraction from MODIS sensor.
Figure 1(b). Maps t-layer containing monthly NDVI summary for each moment (0 to t7).

Figura 1(a). Etapas del proceso de extracción data del sensor MODIS.
Figura 1(b). t-capas de mapas con los resúmenes mensuales de NDVI por momento (0 a 7).

Table 1. Description of variables in each dataset. Harvest is the target variable.
Tabla 1. Descripción de variables en cada conjunto de datos. Cosecha es el 

valor de comparación. 

Type of variables Set Variables

Satellite d1
Near-infrared reflectance, red reflectance and NDVI at 
full bloom (September) and fruit growth and ripening 
(December to June). Harvest.

Orchard + climatic + satellite d2

Specie, season, soil type, irrigation, and tree age.

Total rainfall, average temperature, and humidity at full bloom 
(September), during fruit growth (December to March) and 
ripening (April to July).

Near-infrared reflectance, red reflectance and NDVI at 
full bloom (September) and fruit growth and ripening 
(December to June). Harvest.

Tree + 
orchard + climatic + satellite d3

Canopy height and larger diameter, fruit number at the four 
cardinal points and average value.
Specie, season, soil type, irrigation, and tree age.

Total rainfall, average temperature, and humidity at full bloom 
(September), during fruit growth (December to March) and 
ripening (April to July).

Near-infrared reflectance, red reflectance and NDVI at 
full bloom (September) and fruit growth and ripening 
(December to June). Harvest.
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Methods to estimate orchard production
ANNs are machine learning algorithms inspired by brain neural networks. They are 

widely used for both classification and regression tasks across various domains, including 
agriculture (9). One type of ANN is the multilayer perceptron (MLP), which consists of 
multiple layers of neurons. Each neuron receives input solely from neurons in the previous 
layer and provides output exclusively to neurons in the next layer. The first layer represents 
dataset input features, while the last layer represents the output. The number of hidden 
layers in between is typically determined through experimentation. During the training 
process, weights between adjacent neurons are adjusted to minimize prediction error. MLP 
has been applied in agricultural studies (27).

SVMs transform input data into a high-dimensional feature space using a predefined 
kernel function, wherein a hyperplane is derived to capture nonlinear relationships. SVM 
discovers this hyperplane by utilizing support vectors (essential training tuples) and 
margins (defined by the support vectors). Even though SVMs interpretation can be complex, 
they have been applied in agriculture with high accuracy (15, 35).

RT adopt a divide-and-conquer strategy to construct a tree. Each path from root 
to leaf determines a region representing a more homogeneous subset of the input data. 
Various existing regression tree-based models are characterized by different splitting 
criteria, prune rules, and methods for estimating leaf values. CART uses variance as the 
splitting criterion, M5 employs standard deviation reduction, and conditional trees utilize 
covariance. In CART and conditional trees, the estimated value for a leaf remains constant, 
while M5 approximates it using linear regression models (21). In general, M5 outperforms 
CART and conditional trees in terms of accuracy and simplicity. These models have been 
extensively used in agriculture (7, 20).

Random Forest (RF) constructs decision trees by repeatedly sampling the original 
training data through bootstrapping. Each decision tree is trained on a different random 
sample, resulting in trees trained on slightly different data subsets. RF combines the 
individual decision trees by averaging their predictions, reducing variance in predictions 
and improving overall accuracy. By assembling a collection of decision trees, RF mitigates 
the risk of overfitting and enhances model generalization performance on unseen data (16).

Lazy methods (as KNN) are distance-based learning methods that predict output values 
based on the nearest neighbors in the training set, assuming all features used to describe 
the dataset are relevant, and that close examples are likely to have the same output value. It 
computes distances (Euclidean or other) between examples to classify each training example 
by selecting the k closest neighbors. Since based on distances, KNN is quite sensitive to 
sliding scale but can be useful when interpretability is not a requirement for modelling a 
prediction problem (12).

Training and testing
Each dataset was divided into training and test sets, with a split ratio of 75% for training 

and 25% for testing. This process was repeated 50 times, ensuring unbiased results. 
The training phase followed a cross-validation model with 10 folds. The tested methods 
included M5, conditional trees (ctree), CART (implemented as rpart and rpart2), SVM with 
polynomial kernel (svm1) or radial kernel (svm2), perceptron with one layer (mlp) or two 
layers (mlpMP), k-nearest neighbors (knn), and random forest (RF).

Model performance was assessed through various metrics, including the root mean 
square error (RMSE), commonly used for validating physical system models (6). It is defined 
as follows:

where:
n = the sample size
 i = the output value and u is the prediction
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The mean absolute error (MAE) quantifies the average difference between the measured 
data and the estimated data (17), quantifying error magnitude without considering direction. 
A lower MAE indicates a better model fit, and can be calculated using the following formula:

Results

Machine learning + datasets comparison
Different machine learning methods were assessed for prediction performance. Graph 

analysis indicated that random forest (rf) and SVM with polynomial kernel (svm1) had the 
lowest MAE and RMSE values. Across all datasets, svm1 consistently outperformed the 
other methods. Statistical significance was determined after conducting one-tailed t-tests 
to compare average MAE and RMSE differences for svm1 against all other methods. All 
comparisons showed significant values (p≤0.05), confirming that, for citrus production, 
svm1 had lower MAE and RMSE errors than other methods. The only exception was the 
RF comparison using dataset d1, showing no statistically significant difference in RMSE 
compared to svm1 (p=0.486). SVM with polynomial kernel (svm1) showed the best 
performance in terms of MAE and RMSE across all input datasets. Therefore, the analysis 
focused on evaluating svm1 performance.

Figure 2 shows the MAE vs. RMSE comparison obtained with svm1 using d1, d2 and d3 
as inputs. Note that the worst performance was obtained with d1 dataset. A paired t-test 
compared d1 and d2 results and observed significant differences in MAE (p=1.757206-07) 
and RMSE (p=1.007665-06). Thus, d2 resulted the best dataset. On the other hand, d2 and 
d3 show small, non-significant differences (MAE (p=8.356207-01), RMSE (p=1.339823-01). 
Dataset selection was based on the variables used, considering measurement difficulties 
and costs. Given tree variables were the most difficult and expensive to collect, dataset 
d2 was chosen for not including these variables. This combination method-dataset threw 
a prediction average error of 3.99% with 3.7 % standard deviation for fruit number 
estimation. This error results much smaller than the 10% and 46% obtained in maize yield 
estimation (20).

Figure 2. MAE (a) and RMSE (b) values obtained with svm1 for datasets d1, d2, d3.
Figura 2. Valores de MAE (a) y RMSE (B) obtenidos con svm1 para los conjuntos de datos d1, d2 y d3.
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Analysis of relevant features
As previously demonstrated, the optimal combination for harvest prediction involves 

using dataset d2 and the machine learning method svm1. However, one SVM drawback is 
the complicated assessment of feature relative importance in model construction, besides 
the fact that there is no standardized approach for evaluating variable importance in 
SVM-based classification models.

Despite this limitation, investigating the most relevant variables in this context remains 
important. To this end, this research assumed that if SVM performance weakened when all 
variables except one were used for training, then that excluded variable was significant for 
model construction. To check this assumption, the training used all variables except the 
one being considered, obtaining the associated error (ei). Afterwards, each variable was 
ranked according to this errors, obtaining a ranking, ri. This process was repeated 50 times, 
obtaining 50 different rankings, then aggregated using scoring ranking rules and assigning 
each candidate with a score, finally obtaining variable importance. Although many different 
ways may obtain a consensus ranking (28, 29, 30, 31, 32), the Borda count is a quite simple 
convex-ranking-rule (8), already successfully applied similarly by Rúa et al. (2023).

The 10 more important variables were species, age, irrigation, red reflectance in February 
and December, near-infrared reflectance in February and December, NDVI in December, rain 
during ripening, and humidity during fruit growth.

To check this “variable importance estimation”, svm1 was trained with a new dataset 
called d2-filtered, using only the 10 most important variables selected above. Figure 
3 compares svm1 trained with d2 and with d2-filtered. Note that training svm1 with 
d2-filtered seems to reduce MAE and RMSE, although not significantly (MAE, p=0.05455, 
RMSE, p=0.2808). Thus, by using only these 10 most relevant variables, performance is not 
affected, and costs are reduced.

Figure 3. Comparison of MAE and RMSE using svm1 with d2 and d2 - filtered. 
Figura 3. Comparación de MAE y RMSE empleando svm1 con d2 y d2 - filtrado.
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Discussion

This work evaluated several machine learning methods for low-cost orchard production 
estimation. These previously tested models determined volume, fruit number to harvest, 
or crop yield, using different remote sensors and yielding results in agreement with our 
research. RF and SVM resulted the best performance methods (14, 15).

Leroux et al. (2019) compared a linear regression model with RF and found that RF 
outperformed the linear model and estimated maize yield two months before harvest using 
only data from the vegetative period. Han et al. (2019) explored four machine-learning 
regression methods (linear regression, SVM, ANN, and RF) modelling maize above-ground 
biomass using remote-sensing data.

ANN and SVM were considered difficult to interpret while the RF model gave the most 
balanced results, with low error and a high ratio of explained variance for the training and 
tested set. Feng et al. (2020) used machine learning-based integration with remotely sensed 
data to improve capabilities in monitoring agricultural drought.

Maya Gopal & Bharghavi (2019) evaluated features for accurate crop yield prediction 
and demonstrated that the RF model performed better. The variables used were planting 
area, number of tanks, number of tube wells and open wells, canal length for irrigation, 
amount of fertilizers consumed, seed quantity, cumulative rainfall, cumulative global solar 
radiation, and maximum, average and minimum temperatures. 

Nyalala et al. (2019) developed a computer vision system for tomato volume and mass 
estimation based on depth images and several regression models. SVM showed significant 
advantages over other supervised learning algorithms. Kurtulmus et al. (2013) investigated 
various techniques for peach number estimation in a canopy, including SVM, ANN, and 
discriminant analysis. SVM demonstrated superior performance in certain scenarios, 
consistent with our findings. After evaluating multiple methods, RF and SVM with a 
polynomial kernel resulted the most effective, with the latter performing significantly better 
than other approaches across all datasets.

Figure 3 (page 71), shows harvest estimation using low-cost information related to 
species, season, tree age, soil type, irrigation, temperature, rain, and humidity, as well as 
satellite data at different moments. Begué et al. (2018) found similar results. Available 
literature on remote sensing for mapping cropping practices, concludes that testing at 
local scale is highly dependent on ground data. Robson et al. (2017) found a consistent 
positive correlation between vegetation index using near-infrared band 1 and red edge 
band with total fruit weight and average fruit size, concluding that orchard location and 
growing season influence this relationship. In the same line, Rahman & Zhang (2017) 
evaluated high-resolution satellite imagery for mango yield estimation by integrating tree 
crown area and spectral vegetation indices. They used ANN models, considering that the 
combination of these types of data allows estimating total fruit yield and fruit number with 
high accuracy. In addition, our estimation with almost 4% error for fruit number per tree, 
resulted in better fittings than those obtained by Leroux et al.(2019). The method presented 
in this study represents an improvement over Bóbeda et al. (2018), who relied on on-field 
information and the RT procedure to estimate fruit number in sweet orange and tangerine, 
with 29% error.

The 10 finally selected variables agree with previous research. Genotype and tree-age 
effects on citrus production are well-known and significant traits (25) for fruit number 
estimation in citrus. Concerning humidity, rainfall, and irrigation, plant optimal water 
intake is necessary for optimal plant growth and development. Kern et al. (2018) found 
an association between rain and yield in winter crops. NDVI and reflectance values for 
yield estimation resulted as previous yield predictors, based on the conclusions of Kern 
et al. (2018) and Lopresti et al. (2015). In addition, noteworthy is that several of the most 
important features are measured during early crop stages.
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Conclusions

This study presents a methodology using SVM for accurate estimations of fruit count 
per tree in Murcott tangor and Valencia late sweet oranges. The SVM model employs 
a polynomial kernel and considers several variables, such as species, tree age, irrigation 
conditions, rainfall during fruit maturation (April to July), humidity during fruit growth 
(December to March), red and near-infrared reflectance in February, and NDVI, near-infrared, 
and red reflectance in December. Easily obtainable ground variables, including species, 
tree age, and irrigation conditions, were recorded in each orchard. Meteorological stations 
provided rainfall and humidity data, while civilian satellites offered information. Estimations 
rely on low-cost variables obtained early in the determination process. The proposed 
estimation method enables safe and accurate anticipation of harvests at a reduced cost, 
demonstrating practicality and applicability.
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