TURRIALBA

REVISTA INTERAMERICANA DE CIENCIAS AGRICOLAS
Efeito de variăveis micrometeorologicas e disponibilidade hidrica nọ solo sobre resistência estomática à difusióo gasosa em rejiociro. H. Bergamaschi, H.J. Vicira, L.R. Angelocii. J.C Ometto, O Brunini 445
Comparación de las dietes del guanaco, avino y bovino en Tierra del Fuego, Argentina N. Bonino, A. Pelliza Sbriller 452
Caracteristicas agronómicas, fisicas, quimicas y nutricias de quince variedades de amaranto. 458
E. Calderôn, JM González, R. Bressan
Efecto tóxico y uso de filtrados de Mycosphaerella graminicola (Septoria tritici). 465CA Cordo, LR. Marechal. FI. Babinec
Efecto del nitrógeno y de la presencia de trébol blanco sobre testuca alta
475
475
P. Cruz, H Sinoquet, F Gastal, B Moulla, C. Varlet-Gnehe, O Lomaire
482
482
M. Suárez, R Delgerdo, D. Matíncz, L Suátez 488
Efectos del Fosetil-Al en citricos. II. Influencia sobre rendimientos R. Deigado, M Suárez, R Casamayor
Efectos del Fosetil-Al en citricos. II. Influencia sobre rendimientos R. Deigado, M Suárez, R Casamayor
493
493
A. Elies, R. Mac Donald, C Ramírez
500
500
Resistencia del frijol a mustia hilachasa y su interacción con la lluvia. G. Frias, M.R. Rojas, S. Saborio 509
Imogolita en un andisol de México. C. Hidalgo, ID. Etchevers, PP Quantin
Imogolita en un andisol de México. C. Hidalgo, ID. Etchevers, PP Quantin
515
515
L. Martínez, V.L. de Stecco, R Tizio
520
520
Eatudio preliminar sobre insectos polinizadores de macadamia en Costa Rica CE Masis, HJL Lezama
524
Gome extraida de vagens de Parkia nitida Miquel para inoculação e revestimento de sementes de teguminosas.
Efecto del almacenamiento hermético en la calidad del maiz para tortillas E Moreao, M M. Reyes, Z Nieto, J Ramirez 528
Natural croos-fertilization of sesame grown in Sonora, Mexico G L.C. Musa. V. 1 Padilla 534
Propagaciön vegetativa in vitro del chayote (Sechium edule (Jacq.) Sw.). Fase de establecimiento G. Somarribas, I Sandoval, L Müler 538
Efecto de algunos caracteres agronámicos de Bothriochloa ischaemun en la producción de forraje verde y seco. 545
HA. Paccapelo, HO Lorda, L. Anton de Ferramoda
HA. Paccapelo, HO Lorda, L. Anton de Ferramoda
Composiciôn química y contenido energético de ta biamasa de malezas en arrozules de Chile Central551
C. Ramirez, J San Martín, C San Martin, D Conteras
564
564
Biologin poblacional del gramón. WI. Bases genéticas y ambientales de la productividad y arquitectura R Sarandon
572
572
Evaluación de cacao hibrido bajo dos sistemas de sombra en Turriaba, Costa Rica 1. Morera, A. Mora 578
Comparación de 56 cruces interdonalea de cacao en Pococi, Costa Rica J. Morera, A. Mora
583
583
Caracterización de una población de cacao "Nacional" en el CATIE, Costa Rica. I. Morera, A. Mora, A. Paredes
589
589
Efecto de coberturas en la base del árbol de cacao en la diseminación de Phytophinora. A.C da Gama, R A. Calheiros 598
Propagación clonal in vitro de diferentes especies de poré. A. Berrios, J. Sandoval F, L.E Müller 607
Ranking twenty two tropical browse species from Guanacaste, Costn Ricn. N. Lou Conklin,
R.E McDowell, P J Van Soest 615
Reseñas de libros $451,464,474,577$

Efeito de Variáveis Micrometeorológicas e Disponibilidade Hídrica no Solo sobre Resistência Estomática à Difusão Gasosa em Feijoeiro ${ }^{1}$

II. Bergamaschi*, II I Vieira**, L, R Angeloc.i***, IC.Omello ${ }^{* * *}$, O Brunini****

Abstract

Effects of micrometcorological variables on the stomatal diffusive resistance of common beans (Phaseolus valgaris $\mathbf{I N}_{n}$) subjected to different conditions of soil water availability were evaluated in a field experiment at Piracicaba, São Paulo (latitude $22^{\prime \prime} 42^{\circ}$; altitude 576 masl). The common bean cultivar Aroana 80, type II (ClAT classification), was sown in 30 $\mathrm{m} \times 20 \mathrm{~m}$ split-plots on July 7 , July 22 , and August 4 , with two levels of soil water availability (irrigated and non-irrigated, during a drought period from Sept. 25 to Oct. 12). Bffects of photosynthetically-active radiation (RFA), water vapour saturation deficit in the crop boundary layer (DS), and wind velocity on the stomatal resistance of common beans were evaluated through repression analysis. RFA flux density decreased the stomatal resistance exponentially, with a tendency for stabilization at high intensities, this being the main environmental factor explaining stomatal opening in irrigated plants. Higher wind velocity increases the stomatal resistance exponenfially, and it was the second most important environmental factor influencing the stomatal opening in irrigated plants. DS also increased the stomatal resistance exponentially, but only under conditions of water deficiency. Stomatal diffusive resistance appeared to respond to an interaction between the soil water availability and the atmospheric evaporative demand.

IMRODLÇAO

Odecréscimo na disponibilidade de água no solo ocasiona queda no potencial da agua nas fothas das plantas, levando à perda da turgescenteia e ao fechamento dos estômatos Com isto, aumenta a resistência à difusāo gasosa, o que determina menor perda de água por transpiração, mas, tambem, menor fotossintese pela menor troca gasosa (anidrido carbônico-oxigenio), indispensável a este processo.

[^0]
Abstract

RESLMO

Em experimento conduxido a campo, em Piracicaba - SP, Brasil (latitude $=22^{\prime \prime} 42^{\prime} \mathrm{S}$; altitude $=576 \mathrm{~m}$), foram avaliados efeitos de variaveis micrometeorologicas sobre a resistencia estomática à difusāo gasosa em feijociro (Phaseolus vulgaris L.), submetido a diferentes condiçoes de disponibilidade hídrica no solo. A cultura foi conduzida em tres épocas de semeadura (7 de julho, 22 de julho e 4 de agosto de 1983) e em dois niveis de água no solo (come sem irrigação, durante uma estiagem de 25 de setembro a 12 de outubro) em subparcelas de $30 \mathrm{~m} \times 20 \mathrm{~m}$. Através de analise de regressão, foram avaliados os efeitos dos elementos radiação fotossinteticamente ativa (RFA), déficit de saturação de vapor d`água do ar da camada limite da cultura (DS) e velocidade do vento a 2 m acima do solo, sobre a resistencia estomatica total de folhas de feijociro. Aumentos na densidade de fluxo de RIFA diminuiram exponencialmente a resistêcia estomática, com tendencia a estabiliza-la em níselis elevados de luz, sendo a variavel que methor explicou as variacoes da abertura dos estömatos da cultura irrigada. A velocidade do vento aumentou exponencialmentearesistenciaestomática, sendoasequnda variavel do ambiente que mais influenciou a abertura dos estomatos em plantas irrigadas, ODS também clevou exponencialmente a resistencia cstomatica, mas somente quando submetida a deficit hídrico no solo, A abertura dos estomatos mostrou responder a interaçäo entre a dis. ponibilidade hidrica no solo e à demanda evaporativa da atmosiera.

A abertura dos estômatos c , portanto, a resistencia por cles imposta ao fluxo de vapor d'água é função de vários fatores internos e externos a folha. O ambiente físico externo a planta tem grandes influencias sobre as relações hídricas de epiderme das folhas e, consequentemente, sobre os cstômatos. Segundo Meidner y Mansfield (14), interaçōes entre o suprimento de água c os fatores do meio ocorrem quase sempre, em condiçöes naturais. Os mecanismos pelos quais estes fatores influenciam a abertura estomática nāo sāo inteiramente entendidos, näo obstante existirem informações empíricas sulicientes que permitom uma descrição geral dessa influência (8).

A abertura estomática depende de processos fotoquímicos, sendo funçāo da densidade de fluxo quântico, da diferença de tensão de vapor d’água fothaar, da temperatura da folha, da concentraçāo de anidrido carbônico, da velocidade do vento e do estado hidrico da fotha ($10,13,20,21$).

Omecanismo peloqual aluz influencia os estômatos ainda não está suficientemente claro. Entretanto, sabese que, existindo condiçoes adequadas de potencial da água na folha, de concentração de anidrido carbônico e de temperatura, a resistência à difusão gasosa diminui com aumento da densidade de fluxo luminoso (8). Kuiper (1961), citado por Kanemasu e Tanner (12), também obteve uma relação hiperbólica entre a resistencia estomática em feijociro e a densidade de fluxo luminoso.

Entretanto, as respostas cstomáticas à luz, de abertura de manhă e fechamento à tarde, podem ser influenciadas pela mudança no teor de água na folha. Isto pode ocorrer em dias secos c quentes, quando a queda no teor de água na fotha força o fechamento parcial dos estômatos, mesmo com elevado suprimento de luy (14).

Em experimento com feijociro, a campo c em câmara de crescimento, Kanemasu e Tanner (12) mostraram que os estomatos de face ventral (adaxial) necessitaram mais lu\% para sua abertura e foram muito mais influenciados pelao sombreamento do que os da face dorsal (abaxial). No campo, a abertura cstomática do feijociro acompanhou a disponibilidade de luy, mas foi influenciada, também, pelo potencial da água nas folhas

Inúmeros trabalhos, citados por Bergamaschi (2), caracterizaram as respostas dos estômatos de varias espécies à luz, todos demonstrando efeito positivo da densidade de Iluxo luminoso sobre a abertura estomática; cm termos de respostas espectrais, cm geral, tem sido comprovada uma ação mais efetiva da luz azul, em relação aos demais comprimentos de onda.

Vários estudos tem demonstrado fechamento de estômatos independente de mudanças no potencial da água na folha ou até acompanhado por aumento no teor de água, indicando boa relação entre a resistência estomática e o déficit de saturação de vapor d’água do $\operatorname{ar}(6)$.

Schulze et al. (17) consideram que baixa umidade no ar atua no fechamento cstomático, que alta umidade condu\% a abertura, e que os estomatos funcionam como o principal sensor de umidade. Partindo desta premissa, iniciaram uma linha de pesquisa, com várias espécies de clima desértico, em Isracl. Sob condiçōes de ar seco, tanto mesólitas como xcrófitas aumentaram a resistência à difusão gasosa, clevando o conteúdo de água nas folhas, enquanto que o inverso ocorreu com ar úmido. Nestas condiçōes, a resistencia estomática do damasqueiro (mesoffita) teve resposta direta à demanda evaporativa da atmosfera, excluindo a reaçāo via potencial da agua no mesófilo, embora a influência da umidade do ar tenha sido maior em plantas com baixo suprimento de água no solo.

Ainda com damasuueiro, Schulze et al. $(18,19)$ mostraram a interação da umidade e da temperatura do ar sobre a resistência estomática, cujo efcito se pronunciou sob déficit hidrico no solo. As variaçōes do potencial da água nas folhas tiveram pequeno efeito sobre o curso diário da resistência à difusão do vapor d’água, mostrando que os mecanismos de controle interno de abertura estomática foram sobrepujados e modificados pelos fatores do meio externo, no caso, temperatura e umidade do ar. Estes trabalhos estão cm concordancia e dāo suporte a outros anteriores, com outras culturas e em outras condições. Posteriormente, pesquisas comprovaram as respostas estomáticas às condições de demanda evaporativa do ar, com diversas culturas, inclusive feijociro (2)

Farquhar (7) fe九 prolundac detalhada explanação da tcoria que envolve os mecanismos de resposta estomatica às variaçôes na diferença de umidade da folha e do ar, com implicações e interações na transpiração e no balanço de água das folhas. Mecanismos que envolvem interações positivas e negativas entre a folha coar adjacente foram descritos, mostrando que as variações de resistência à difusão de gases pelos estomatos são devidas a respostas que se dão, basicamente, ao nivel do "aparatus" cstomático, como se referiu Aston (1). Assim, pode-se inferir que todos os fatores que interferem na diferença de umidade entre a fotha e o ar que a convolve, bem como na resistencia da camada limite a troca gasosa, influenciam a abertura estomática, dentre os quais a velocidades do vento, conforme descreveram O'Toole e Hatlield (16).

Partindo de resultados obtidos cm condições naturais de campo, este trabalho objetivou determinar as influencias de alguns latores do meio fisico sobre a resistência estomática à difusão gasosa, cm folhas de feijociro

MATERIA. E METODOS

Foi conduzido experimento de campo na Escola Superior de Agricultura "Luiz de Quciroz"/Universidade de São Paulo, cm Piracicaba-SP, a latitude de $22^{\circ} 42^{\prime}$ sul c altitude de 576 m , de junho a novembro de 1983. Oclima da regiāo é do tipo fundamenal Cwa, pela classificação de Koeppen, sendo o solo do local classificado como terra roxa estruturada.

A cultivar utilizada foi Aroana 80, de hábito de crescimento indeterminado arbustivo, tipo II segundo a classificação do CIAT. Foi semeada manualmente em linhas espaçadas de (0.5 m, obtendo-se em torno de 200000 plantas ha ${ }^{-1}$ após cstabilizada a emergência.

Em parcelas principais de $60 \mathrm{~m} \times 30 \mathrm{~m}$ foram utilizados dois tratamentos de disponibilidade hídrica
no solo: (I) irrigado quando o potencial matricial de água do solo a 0.15 m atingisse -0.05 MPa ; (D) - com deficiência hídrica, sem nenhuma irrigação durante uma estiagem de 17 dias, a partir de 25 de setembro.

Dentro de cada parcela principal, três épocas de semeadura constituiram as subparcelas: 7 de julho; 22 de julho e 4 de agosto. O período de diferenciação dos tratamentos de disponibilidade hídrica no solo coincidiu como o final de enchimento de grāos e maturação fisiológica, na primeira época; formação e desenvolvimento de legumes, na segunda; formação de botōes florais e floração, na terceira Maiores detalhes do experimento e das condiçōes do periodo experimental foram apresentadas por Bergamaschi et al $(3,4)$.

A resistência estomática à difusão gasosa foi determinada ao longo do periodo do dia, antes e durante a estiagem, com a finalidade de obter medidas cm diferentes condições de disponibilidade hidrica e demanda evaporativa da atmosfera. Foi utilizado um porômetro de equilibrio dinamico ("steady state porometer") marca L.I-COR, modelo Li-1600. Com o mesmo equipamento, foi medida a radiaçâo fotossinteticamente ativa (RFA), concomitantemente à resistencia estomática, além de outros parâmetros do ar e da folha que não foram utilizados neste estudo.

Em cada horário e em cada subparcela, os dados de porometria foram tomados cm oito plantas ao acaso, sendo quatro na face ventral (adaxial) e quatro na face dorsal (abaxial). Para isto, sempre foram utilizados folíolos completamente desenvolvidos e localizados no estrato superion do dossel da cultura. A resistencia estomática, em cada horário, foi calculada segundo

Black et al. (5), Tcare etal. (22) e Gates (8), considerando que as resistências das duas faces da folha estão associadas em paralelo. A fórmula para cálculo da soma das duas resistencias resulta:

$$
r_{c}=r_{1} r_{2} /\left(r_{1}+r_{2}\right)
$$

sendo r_{e} a resistencia estomática total de folha, r_{1} a resistencia da face dorsal (média de quatro repetiçōes) e r_{2} a resistencia da face ventral (média de quatro repeliçöes).

Através de análises de regressão simples, pelo métodos dos minimos quadrados, foram testados os graus de associaçāo entre a resistencia total e as variávels: (1) radiação fotossinteticamente ativa, medida pelo porômetro em cada leitura de resistenncia estomática; (2) déficit de saturação de vapor d'água do ar, medido por psicrômetro de pares termo-clétricos, localizados ao nível do topo da cultura; (3) velocidade do vento a 2 m acima do solo, determinada no perfil de vento, médio de 10 min , medido com anemômetros de célula foto-clétrica. Foi utilizado modelo de cálculo testando 25 combinaçōes de transformações deas variáveis independente e dependente, para seleçāo da função que melhor se ajustou a cada uma delas.

Nas análises de regressão foram utilizados resultados observados das 7 has 15 h , procurando minimizar a interação dos fatores endógenos com os do meio. Na avaliação do efeito simples de cada variável independente, foram impostas condições de contorno, buscando manter os demais fatores do meio em nível não limitante. Este procedimento foi bascado em análise prévia dos resultados, avaliando as tendencias da resposta estomática a cada fator do ambiente

Quadro 1. Análise de regressĩo linear simples, com transformaçōes de X e Y, de resistência estomática total à difusão gasosa $-\mathrm{Y}\left(\mathrm{s} . \mathrm{cm}^{-1}\right)$, em funçäo da radiaçăo fotossinteticamente ativa-RFA($\mu \mathrm{E} \cdot \mathrm{m}^{-2} . \mathrm{s}^{-1}$), déficit de saturação de vapor do ar - DS (mmHg) e velocidade do vento (m. s^{-1}), em fejeciro cultivar Aroana 80 (Piracicaba, SP, 1983),

Var. indep. (x)	Condições de contorno	eq. regressăo	r^{2}	F	n^{2} pares	erro padräo	
						a	b
RFA	DS <14; vento < 30; irrigado	$\mathrm{Y}^{2}=-4.238+9062 \mathrm{X}^{-1}$	0.897	182.91**	23	2.048	670.087
RFA	DS < 10; vento < 40; irrigado	$\mathrm{Y}^{-1}=1.458+0.3171 \mathrm{nX}$	0.724	34.164**	15	0.368	0.054
DS	RFA >750; vento <30; irrigado	$\mathrm{Y}^{-1}=0.900-1.870 .10^{-3} \mathrm{X}^{2}$	0.331	11.880**	26	0.072	5.424
DS	RFA > 750; vento < 30; năo irrigado	$\mathrm{Y}^{1 / 2}=1.176+0.003 \mathrm{X}^{2}$	0710	$31.506 * *$	15	0.118	5.267
Vento	RFA <750; DS <140; irrigado	$\mathrm{Y}=0.965+0.109 \mathrm{X}^{2}$	0.632	53 151**	33	0.200	0.015
Vento	RFA >750 : $\mathrm{DS}<100$; irrigado	$1 \mathrm{nY}=-0.546+0.365 \mathrm{X}$	0.790	$82522 * *$	24	0.140	0.040

[^1]
RESLLTADOS E DISCUSSĀO

Na Quadro 1 e nas Figuras 1 a 6 são apresentadas análisis de regressão simples, associando valores de resistência estomática total de folhas de feijoeiro aos fatores radiação fotossinteticamente ativa, déficit de saturaçảo de vapor d’água do ar junto às plantas e velocidade do vento a 2 m acima do solo. Os modelos apresentados são aqueles que melhor se ajustaram, relacionando a resistência estomática aos fatores citados.

Fig. 1. Resistência estomâtica à difusāo gasosa em feijoeiro irrigado ($\mathrm{s} \mathrm{cm}^{-1}$), cm função da radiação fotossinteticamente ativa $\left(\mu \mathrm{E} \cdot \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$, com déficit de saturação de vapor d"água no ar (DS) inferior a 14 mmHg e velocidade do vento inferior a $3 \mathrm{~m} / \mathrm{s}^{-1}$ (Piracicaba, SP, 1983).

Pode-se verificar que a mudança nos limites de uma das variáveis, apenas, altera o modelo que associa a resistência cstomálica a outra variável independente, o que mostra interação entre ambas. Contudo, é importante salientar que cstas relações de causa-efcito são um tanto restritas pelo fato de que a variaçāo de cada fator, bem como as suas combinaçōes, nāo abrangem niveis extremos Como enfatizou Jarvis (10), tal abrangencia é dificil de ser oblida em experimentos de campo, onde a densidade de fluxo de radiação solar, a temperatura do ar e o délicil de saturação de vapor d'água do ar, por exemplo, tendem a se correlacionar Por esta razão, segundo o autor, deve haver uma seleção adequada nos dados de campo para a análise ou, quando possivel, controlar artilicialmente o ambiente, para que as corrclaçōes entre as variáveis do meio sejam minimizadas.

Pela Quadro 1 c Figuras 1 c 2, varifica-sc que a resistencia cstomática esteve associada à densidade de fluxo da radiação fotossinteticamente ativa (RFA)
segundo uma exponencial negativa, concordando com resultados de Kuiper, citado por Kancmasu e Tanner (12). Este efcito direto da densidade de fluxo luminoso sobre a abertura cstomática também foi descrito em outras espécies, conforme citaçōes de Bergamaschi (2). As variaçōes de RFA explicaram 90% das variações da resistência dos estômatos quando o déficit de saluração do ar (DS) foi inferior a 14 mm Hg , o vento a 2 m acima do solo teve velocidades inferior a $3 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{c}$ as plantas receberam irrigação (Fig. I). Reduzindo o limite de DS para 10 mm Hg c aumentando a velocidade do vento para $4 \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-1}$, RFA explicou 72% das variaçoes da resistência estomálica (Fig. 2).

Fig 2 Resistência estomática à difusảo gasosa em fijoeiro irrigado ($\mathrm{s} \cdot \mathrm{cm}^{-1}$), emn função da radiação fotossinteticamente ativa $\left(\mu \mathrm{H}^{\mathrm{t}} \cdot \mathrm{m}^{-2}, \mathrm{~s}^{n}\right)$, com déficit de saturação de vapor d’água no ar (DS) inferior a 10 mm Fg e velocidade do vento inferior a $4 \mathrm{~m} \cdot \mathrm{~s}^{11}$ (Piracicaba, SP, 1983)

O déficit de saturação de vapor d'água do ar junto às plantas mostrou aumentar exponencialmente a resistência cstomática à dilusāo gasosa, concordando com resultados de Schulze et al $(17,18,19)$ c Moldau e Syber (15) No entanto, na cultura irrigada o DS explicou apenas 33% das variaçōes da abertura estomálica (Fig. 3), enquanto que na condição de déficit hidrico esta associação aumentou para 71% (Fig. 4), mantidas a RFA acima de $750 \mu \mathrm{E} \cdot \mathrm{m}^{2}$. s^{1} e a velocidade do vento abaixo de $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. A maior resposta à umidade c à temperatura do ar (DS combina estes dois elementos), quando as plantas são submetidas à condição de deficiência hídrica no solo foi mostrada por Schulzc ct al. $(18,19)$. Por outro lado, a baixa resposta observada na condição de irrigaçāo também pode ser devida a que, durante o período analisado, o déficit de saturação junto à plantas não foi muito clevado, atingido extremos de 14 mm Hg , ao
passo que, cm parcelas não irrigadas essa variável atingiu 20 mm Hg . De qualquer modo, este cfeito exponencial de demanda cvaporativa do ar da camada limite sobre a resistencia estomática evidencia e interação destes dois tatorcs (solo e atmosfera) sobre as plantas.

Fig 3. Resistêncià estomática à difusāo gasosa em fcijociro irrigado ($\mathrm{s} \mathrm{cm}^{-1}$), cm função do déficit de saturação de vapor d'água no ar (mm Hg), com tadiação fotossinteticamente ativa ($\mathrm{RI}^{\prime} \mathrm{A}$) superiora $750 \mu \mathrm{E} \mathrm{m} \mathrm{m}^{-2}$) e velocidade do vento inferior a $3 \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-4}$ (Piracicaba, SP, 1983)

Fig. 4. Resistênciacstornática à difusão gasosa em feijociro não irrigado ($\mathrm{s} \cdot \mathrm{cm}^{-1}$), cm funç̣ão de déficit de saturaçăo de vapor d'água no ar (mm Hg), com radiaçāo fotossinteticamente ativa (RI'A) superior a $750 \mu \mathrm{E} \cdot \mathrm{m}^{-2} \cdot \mathrm{~s}^{-1}$) e velocidade do ventoinferior a $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ (Piracicaba, SP, 1983).

A resistência estomática aumentou de forma exponencial em resposta à velocidade do vento, concordando com resultados de O'Toole e Hatficld (16). Na
cultura irrigada, com RFA acima de $750 \mu \mathrm{E} \cdot \mathrm{m}^{-2} \cdot \mathrm{~s}^{-1}$ e com DS inferior a 14 mm Hg , a velocidade do vento explicou 63% das variações na abertura estomática (Fig. 5). Reduzindo o limite do DS para 10 mm Hg , a associação entre aquelas vairáveis aumentou para 79% (Fig. 6), indicando que a umidade do ar interferiu no efeito do vento sobre o mecanismo estomático.

Fig. 5 Resistência cstomáticua à difusão gasusa em feijoeiro irrigado ($\mathrm{s} \mathrm{cm}^{-1}$), cm funçāo da velocidade do vento ($\mathrm{m}-\mathrm{s}^{-1}$), com radiação fotossinteticamente ativa (RFA) superior a $750 \mu \mathrm{E} \cdot \mathrm{m}^{-2} \cdot \mathrm{~s}^{-1}$) e déficit de saturaçāo de vapor d'água no ar (DS) inferior a 14 mm Hg (Piracicaba, SP, 1983)

Fig. 6. Resistência estomática à difusảo gasosa em feijociro irrigado ($\mathrm{s} \cdot \mathrm{cm}^{-1}$), cm função da velocidade do vento ($\mathrm{m} \cdot \mathrm{s}^{-1}$), com radiação fotossinteticamente ativa (RFA) superior a $750 \mu \mathrm{E} \cdot \mathrm{m}^{-2} \cdot \mathrm{~s}^{-1} \mathrm{e}$ déficit de saturação de vapor d'água no ar (DS) inferior a 10 mm Hg (Piracicaba, SP, 1983).

As respostas dos estômatos à demanda evaporativa da atmosfera e à disponibilidade hidrica do solo
mostram que o fechamento estomático é um mecanismo sensivel e destinado a reduzir o déficit hidrico nas plantas para suportar determinados periodos de seca, conforme referiram-se Kanemasu e Tanner (11) e Hsiao el al. (9), muito embora as respostas em termos de desenvolvimento da planta c da superficie foliar tenham-se mostrado ainda mais sensiveis (2).

CONCLLSOLS

Para as condições sob as quais foram oblidos os resultados, conclui-se que:

Na ausencia de limituçôes por outros fatores, a resistencia dos estomatos do feijociro esteve associada à densidade de fluxo da radiação fotossinteticamente ativa segundo uma exponencial negativa, sendo a variável do meio que methor explicou as variaçōes da abertura estomática na cultura imigada.

A velocidade do vento aumentou exponencialmente a resistência estomática, sendo a segunda variável do ambiente que molhor explicou as alterações da abertura dos estômatos em plantas irrigadas.

O déficit de saturação de vapor d'água do ar da camada limite da cultura também aumentou exponencialmente a resistência cstomática à difusāo gasosa. Entretanto, este efeito somente se pronunciou cm plantas sujeitiss a deficiencia hidrica no solo.

A resistencia estomática do feijociro mostrou responder à interação entre a disponibilidade hidrica no solo e a demanda evaporativa da atmosfera, bem como entre as variáveis analisadas.

L.IIERATURACITADA

1 ASION MJ. 1976 Variation of stomatal diffusive resistance with ambient humidity in sunilower (lielianthus annuus) Australian Joumal of Plant Physiology 3:489. 501
2. BERGAMASCIII, II 1984 Perda de agua e desenvolvimento do feijociro (Phaveolus vulgaris I,) sob diferentes cendiçes de disponibilidade hídrica no solo e da atmoslera lese Ph D Piracicaba, ESAL Q/USP 204 p

3 BLERGAMASCHI, H: VIIIRA. HJ.; OMIIHO, JC: ANGEAOCCI I.R. I.IBARDI, P.I. 1988 a Defleiencia hidrica em feijociro I Análise de crescimento e fenologia Pesquisa Agrofectária Brasileira 23(7):733743

4 BERGAMASCHI, H: OMEITO.JC : VIEIRA, HIJ: ANGEL, OCCl, L. R ; I. IBARDI, PL 1988b Deficiencia hidrica em feijociro II Balanço de energia Pesquisa Agropectária Brasilcira 23(7):745-757.

5 BLACK, I A. IANNER, C B ; GARDNIER, W.R. 1970. Fvapotranspiration from a snap bean crop Agronomy Journal 62:66-69

6 BLACK C R ; SQLHRI: CR 1979. Effects of atmosphere saturation delicit on the stomatal conductance on pearl millet (Pennisetun typhoidewn S. e II) and groundnut (Arachis hypogaea L.) Joumal of Experimental Botany 30:935-945.

7 IFARQUHAR, GD. 1978. Feedforward responses of stomata to humidity Australian Journal of Plant Physiology 5:787-8(4)

8 GAIES DM 1980 Biomhysical ecology. New York, Springer-Verlag 6:11p

9 HSIAO IC: O IOOIL J C ; TOODMAR, V.S 1979. Water stress as a constrain to crop production in the tropics. In Conferencia Priorities for Alleviating Soll-Related Constraints tol wod Production in the Tropics (1979. Los Banos, Philippines) IRRI. (Preprinted Paper)
$10 \mathrm{JARVIS}, \mathrm{PG} 1976$ Ihe interpretations of the variations in leal water potential and stomatal conductance found in the field. Philosophical Transactions of the Royal Socicty of London Serie B-Biological Sciences 273:593-610.

11 KANEMASU, IE I: IANNER, CB 1969a Stomatal diffusion resistance of smap beans 1. Influence of leaf water potential Plat Physiology 44:1547-1552

12 KANIMASU EI: TANNIR, C B. 19696 Stomatal diffusion resistance of smap beans. II E:fect of light Plant Physiology 44:1542-1546.

13 KAUIMANN, MR 1976 Water transpont trough plants: Corrent perspectives In Iransportand transfer processes in plants. IIF Wardlaw. IB Passoura (Eds) New York, Academic Press 484 p
14. MEIDNER H: MANSIAELD TA 1968 Physiology of stomata London Mc Hill 179 p

15 MOLDAU, K A; SYBI:R, A.Y 1975 Effect ofairhumidity on the conductivity of stomates and mesophyl of beans leaves at two values of soil moisture Soviet Plant Physiology 21 (4):663-668
16.OTOOLE JC. HACILEDD, J. 1983. Effect of wind on the crop water stress index derived by infrared thermonetry Agromom Journal 75:811-817.
17. SCHULKL, IAD: I.ANGI: OL;BUSCIBOM, U; KAPPIEN, L.: EVENARI, M. 1972 Stomatal responses to changes in hamidity in plants growing in the desert. Planta 108:259-270
18.SCHUL/L: I:D.: I.ANGE, O.I. ; KAPPIEN, L.; BUSCHBOM, H: IVVINARI, M 1973. Stomatal responses to changes in temperature at increasing water stress Planta 110:29-42.

19 SCHUI $\nearrow 1:$ I: D: ANGIA OL. KAPPEN, I. : I:VIENARI. M ; BUSCIHBOM. H. 1975. The role of air humdity and leal temperature in controlling stomatal resistance of Prunus armeniaca I... under desert conditions II The significance of leaf water status and interval carbon dioxide comentration Oecologia 18:219-233

20 SIVAKUMAR. MVK : SIlAW, R.II 1979 Stomatal conductance and leal water polential of soybeans under mois-
ture stress lowa State Joumal of Research 54(i):1727.

21 SI.ATYER. R.O. 1967 Pant-water relationships. New York. Academic Press 366 p

22 IEARE, ID. KANI:MASU, I T: POWIRSS, NI.: JACOBS. I1S 1973 Water ase efficiency and its relations to crop camepy area. stomatal regulation and reon distribution Agronomy Journal 65:207-211

RESEÑA DE LIBROS

GROOT, J.I.R.; WILLIGEN P. DE; VERBERNE,

 E.L.J. (EDS.), 1990. Nitrogen turnover in the soil-crop system. Dordercht, Holanda, Kluver Academic Publ. $388 \mathbf{p}_{n}$La investigación agrícola moderna ticne entre sus retos el alcanzar una producción económicamente adecuada, sin causar deterioro ambiental. El manejo correcto de los abonos con base en N inorgánico no es fácil en los sistemas productivos. Un conocimiento y una representación adecuada, por medio de modelos de este ciclo del N en suelos, plantas y aguas, son la meta de muchas investigaciones que se llevan a cabo, especialmente en algunas regiones de Europa Occidental donde la aplicación de abono es frecuente, el clima relativamente húmedo y los requerimientos de limpieza ambientales elevados.

El Instituto para Investigaciones de Fertilidad de Suelos de Holanda celebró su centenario reuniendo investigadores en este campo, especialmente de Europa Occidental y un representante de Canadá. Se evaluaron los diferentes sistemas de modelaje, tomando como referencia datos registrados en Holanda. Así se observó su utilidad para asesorar a los agricultores y determinar las áreas que requieren investigación adicional.

Se denotó que muchos de los modelos predecían cl comportamiento del trigo, cultivo usado para este estudio; pero, en cuanto a la suerte del N en el suclo, todavía se necesita mayor investigación, sobre todo para determinar las pérdidas en el suclo y su llegada a
las aguas subterráneas, reservas de agua potable en muchos casos.

La información resumida indicó, con cierta frecuencia, que modelos muy sofisticados y con una gran cantidad de datos no contribuyeron más a lograr mejores predicciones que los sencillos.

El libro refleja la gran preocupación de muchos investigadores de países industrializados y el progreso alcanzado en este campo, donde aún hay bastante por hacer, como por ejemplo aclarar el comportamiento del N en el suclo, especialmente en su relación con la masa microbiana, expuesta a cambios rápidos, lo que sin duda es uno de los temas cuyo conocimiento contribuirá a la comprensión total del sistema. Por otro lado hace falta información referente a las condiciones de los trópicos húmedos, donde el uso de N inorgánico es considerable y presenta problemas Las condiciones climáticas especiales de estas regiones presentaron enfoques nuevos, que tal vez, algún dia, permitirán el empleo de un modelo universal para cada cultivo.

Los capítulos tienen bibliografías más o menos completas. Lastimosamente el libro no tiene un índice que habría hecho más sencillo su uso. Sin duda es una referencia muy útil en un campo de gran actualidad: el agrícola y de conservación ambiental.

[^2]
Comparación de las Dietas del Guanaco, Ovino y Bovino en Tierra del Fuego, Argentina ${ }^{1}$

N.Bonino*, A Pelliza Sbriller*

Abstract

A microscopic analysis of faeces was used to determine the diet of guanacos (Lama gtanicoe), sheep (Ovis aries) and cattle (Bos taurus) in the steppe and the forest-steppe ecotone of Tierra del Fuego, Argentina, during the different seasons of 1986. The plant species identified were grouped as grasses, sedges (Juncaceae and Ciperaceae), herbs and shrubs, trees and lichens. In both study areas, and especially in the steppe, grasses were the principal group in the diet of all animals. The most important grass was Festuca spp. In all cases, except for the sheep in the steppe, where Puccinellia spp. was the predominant species. In general, the diversity of plant species in the diet of animals studied was highest in the ecotone area and there was no significant difference in the incidence. The composition of the diets consumed by the three animal species was very similar and greatest in the ccotone, where the degree ofsimilarity was at least 65%; the correlation of diet composition between animals was significant.

Key words: South American camelids, ruminants, fecal analysis.

INTRODUCCION

EI guanaco (L guanicoe) es el único ungulado que caracteriza la fauna silvestre autóctona de la isla Tierra del Fuego, en Argentina. La colonización de este territorio trajo consigo, entre otros, la introducción del ganado doméstico (principalmente ovino), que invadió el hábitat del guanaco, con el consiguiente efccto sobre csa población Posiblemente entre ambas especies se estableció una compctencia por el alimento, causa probable del desplazamiento del guanaco de algunas áreas de la isla $(2,9)$.

El objetivo de este trabajo es comparar, con base en el análisis de heces, las dietas del guanaco, ovino y bovino en la estepa y en el ccotono bosquc-estepa en Ticrra del Fuego, Arg

[^3]
COMPENDIO

Con base en el analisis microscópico de las heces se determinaron las dietas del guanaco (Lama guanicoe), del ganado ovino (Ovis aries) y del ganado bovino (Bos taurus), en la estepa y en el ecotono bosque-estepa en Tierra del Fuego, Arg., en diferentes épocas de 1986. Las especies vegetales identificadas se reunieron en cinco grandes grupos: gramineas, graminoides (juncáceas y ciperaceas), hierbas y arbustos, árboles y líquenes. En ambas areas de estudio, especialmente en la estepa, las gramíncas eran el grupo principal en la dieta de todos los animales. Siempre la mas importante fue Festuca spp, excepto para el ganado ovino de estepa, donde fuesuplantada por Paccinelliaspp. En general, la diversidad de especies vegetales en la dieta de los animates fue mayor en el area de ecotono y no hubo diferencias significativas entre cllos. La similitud de dietas de las tres especies animales también fue mayor en el ecotono, y, ent todos los casos, superó el 65%, existiendo una correlación significativa ($P<0.0 \mathrm{I}$) en la dieta de todos los herbívoros.

Palabras claves: Camélidos suramericanos, rumiantes, análisis fecal.

Area de estudio

Las heces utilizadas en los análisis fueron recolectadas en dos áreas del sector: estepa y ecotono bosqueestepa (3)

La estepa, conocida como "Estepa Magallánica", abarca la parte norte de la isla con una superficie de $4180 \mathrm{~km}^{2}$ (Fig. 1). De relieve ondulado, esta zona presenta cañadones que limitan planicies bajas y húmedas ("vegas") con abundante vegetación herbácea compuesta por diferentes especics de gramincas (Festuca spp., Poa spp , Bromus spp., Agrostis spp.), dicotiledóncas (Taraxacum officinale. Caetha sagittata), ciperáccas (Carex spp) y juncáccas (Juncus spp., Luzula spp.). Las tierras altas se encuentran cubiertas, generalmente, por plantas de "coirón dulce" (Festuca gracillima), "mata ncgra" (Chiliotrichum difussum), y "murtilla" (Empetrum rubrum), Dentro de la Estepa Magallánica se encuentra una zona atipica, en la Bahia San Scbastián, que consiste en una planicic baja cubierta de pastos cortos y matorrales de "mata verde" (Lepidophyllum cupressiforme) y con numerosas lagunas de agua salada (3)

Fig. 1. Mapa de Tierra dei Fuego (Arg.), donde se indican las tres regiones ecológicas del estudio y las zonas de muestreo

El clima de esta estepa es templado frio, con una temperatura media anual de 5° centigrados Las precipitaciones aumentan de norte a sur, registrándose un promedio de 380 mm anuales en Rio Grande (4). La Estepa Magallánica presenta gran aptitud para la producción ganadera y, de hecho, el 50\% de los ovinos y el 45.2% de los bovinos de Tierra del Fuego se encuentran en esta zona, con una carga promedio de 0.94 equivalente ovino por hectárea (4)

Entre la Estepa Magallánica y el área boscosa del sur se cncuentra una zona de ecotono que abarca la partc, central de la isla con una superficie de $4664 \mathrm{~km}^{2}$ (Fig. 1). De relieve más pronunciado que el de la estepa, se caracteriza por la alternancia de pequeños manchones de bosque abierto de nire (Nothofagus antarctica), que alternan con la estepa de coirón en las partes elevadas, y con comunidades herbaceas ("vegas") en las depresiones El bosque aumenta on superficie y densidad hacia el sur y el ocste, donde la lenga (N. pumilio) se incorpora al estrato arbóreo (3) El clima es más frío y húmedo que el de la cstepa -no se cuenta con registros sobre temperatura y precipitación. Las nevadas son frecuentes y, durante el invierno, la parte sur del área generalmente permanece cubierta por la nieve (4).

En la región de ecotono se encuentra el $44.6 \% \mathrm{del}$ ganado ovino y el 358% del ganado bovino de la isla, con una carga promedio de 0.74 equivalente ovino por hectárea (4).

MATERIALES Y METODOS

Los resultados del análisis de la dicta del guanaco en Tierra del Fuego fueron obtenidos en 1986 por Bonino y Sbriller (1). En este trabajo se comparan con los obtenidos para las dictas de la oveja y del ganado bovino, en las mismas áreas y épocas de dicho año.

La composición botánica de la dicta se determinó por medio del análisis microhistológico de la materia fecal ($5,13,14$). La recolección de heces se realizó en las estancias San Martín y Cullen, ubicadas en el área de estepa, y en los alrededores de las estancias Buenos Aires y El Rodeo, en el área de ecotono bosque-estepa (Fig. 1). Los mucstreos se efectuaron en abril (otoño), agosto (invierno) y noviembre-diciembre (primaveraverano) de 1986. De cada muesta se realizaron cinco preparados, de los cuales se analizó con 250 aumentos un total de 250 campos microscópicos para la identificación de fragmentos vegetales (7). Se identificaron las especies de plantas, las cuales se reunicron en cinco grandes grupos vegetales: gramincas, graminoides (juncáceas y ciperáceas), hierbas y arbustos, árboles y liquenes

La composición botánica de las dictas se expresa como la frecuencia relativa de cada especie vegetal presente en la dieta; no se efectuaron correcciones que tomaran en cuenta la digestibilidad diferencial entre especies de plantas.

La diversidad de especies vegetales en la dieta se estimó al utilizar la fórmula de Shannon (6)

$$
H^{\prime}=-\sum_{i=1}^{n}(\mathrm{Ni} / \mathrm{N}) \log 2(\mathrm{Ni} / \mathrm{N})
$$

donde: $\quad H^{\prime \prime}=$ diversidad úfica; $\mathrm{Ni}=$ valor de la especic i en la dieta;
$N=$ suma de los valores correspondientes a todos los componentes de la dieta. En este caso, debido a que se trabajó con frecuencias relativas, $\mathrm{N}=100$

También se estimó la similitud de especies en la dieta, para lo cual se aplicó el indice de Bray y Curtis (8)

$$
\mathrm{I}:=\mathrm{M} w(\%)
$$

donde: $M w=$ suma de los valores más pequeños de las especies vegetales en común de las dictas que se comparan.

Para calcular el grado de asociación entre la dieta del guanaco y la de las especies domésticas, se empleó
elcoeficiente de correlación de rango de Spearman (Rs) con un nivel de significación $P \leq 0.01(11,12)$.

Las diferencias entre grupos vegetales, a lo largo del año, se sometieron a pruebas de significancia (Chi cuadrado) al nivel de $P \leq 0.01$ (12).

RESULTADOS

Area de estepa

En la Fig. 2 se pueden apreciar los porcentajes de los distintos grupos vegetales en la dieta del guanaco, ovino y bovino, en diferentes épocas del año y el promedio anual.

A lo largo del año, las gramineas constituycron el grupo principal en la dieta de las tres especies animales.

El promedio anual alcanzó el 90% en el guanaco, 76.8%, en el ganado vacuno y 65.6%, en el ovino, valores que difirieron significativamente ($\mathrm{P}<001$) de los demás grupos botánicos, en todos los casos. En cuanto a especies vegetales, Festuca spp. fue la principal gramínea en la dieta del guanaco y ganado bovino, mientras que Puccinellia spp. to fuc en la de las ovejas. Otras gramineas relativamente importantes fucron Poa spp. y Hordeum spp.

En la dieta del ganado ovino y del bovino, otro grupo vegetal de relativa importancia fucron las hierbas y arbustos, cuyo promedio anual fue de 30.1% y 20.7%, respectivamente. Las ovejas utilizaron dicho grupo de manera similar en todas las épocas del año, mientras que el ganado bovino principalmente en invierno. Entre las especies más importantes merecen mencionarse a Salicornia ambigua y Colobanthus subulathus.

Fig. 2. Proporción de los diferentes grupos de especies vegetales en las dietas del guanaco, ganado ovino y bovino en la estepa de Iierra del Fuego, Arg.

El grupo de las plantas graminoides no superó el 5\% anual en la dieta de ninguin animal.

Cuadro 1. Promedio anual de la diversidad de especies vegetales (Indice de Shannon) en las dietas del guanaco, ganados ovino y bovino, en el área de estepa y de ecotono bosque-estepa ea Tierra del Fuego, Arg.

	Estepa	Ecotono
Guanaco	1.63	2.17
Ganado ovino	2.05	2.09
Ganado bovino	1.74	2.04

Con respecto a la diversidad de especies vegetales en la dieta (Cuadro 1), el mayor indice anual correspondió al ganado ovino, seguido por el bovino y el guanaco, aunque los promedios respectivos no difieren significativamente entre sí. La época en que el índice de diversidad alcanzó su máxima expresión en la dieta de los tres herbivoros fue el invierno, lo cual indica que, durante esta ćpoca crítica, éstos utilizan todos los recursos alimenticios disponibles.

Cuadro 2. Promedio anual del índice de similitud (Is) y cocficiente de correlación de Spearman (Rs) entre las dietas del guanaco, ovino y bovino, en el área de estepa y de ecotono bosque-estepa en Tierra del Fuego, Arg.

	Estepa		Ecotono	
			Is (\%)	
Guanaco versus ovino	52	0.60	66	0.58
Guanaco versus bovino	63	0.59	69	0.58
Bovino versus ovino	53	0.63	68	047

La mayor similitud de dicta, a lo largo del año, se dio entre el guanaco y ganado bovino (63%), seguido del ovino-bovino (53%) y del guanaco-ovino (52%), aunque las diferencias entre sí no fueron significativas (Cuadro 2). El cocficiente de correlación indica la existencia de una asociación significativa ($\mathrm{P}<0.01$) entre la dieta de los pares de herbívoros mencionados.

Area de ecotono
 bosque-estepa

En la Fig. 3 se presentan las frecuencias de los distintos grupos vegetales en la dieta del guanaco, del
ganado ovino y del bovino, en diferentes épocas del año, y el promedio anual.

Al igual que en la estepa, el grupo más importante en la dieta de los animales estudiados lo integraron las gramincas, cuyo promedio anual fue 38.9% en el guanaco, 41%, en el ovino y 39.9%, cn cl bovino. En todos los casos, la gramínca más importante fue Festuca spp., scguida por Poa spp. y Agrostis spp., mientras que Carex spp. se constituyó en la principal planta graminoide. La frecuencia de gramincas y graminoides fue similar, a lo largo del año, en la dicta de las tres especies animales. En la dieta anual del guanaco, las gramincas difiricron significativamente de los grupos restantes cuyos promedios fueron semejantes entre sí y, en ninguin caso, superaron el 22 por ciento En el caso del ganado ovino, la frecuencia anual de las gramíncas (41%) no difirió de la correspondiente a las graminoides (37.1%), pero si de la de los árboles (12.5%) y hicrbas y arbustos (9.4%). Algo similar ocurrió en el bovino, donde el promedio anual de las graminoides fue 38.6%, mientras que el de hierbas y arbustos, 14%, y el de árboles, 7.5 por ciento.

La frecuencia de árboles fue relativamente constante, a lo largo del año, en la dicta del guanaco y de la oveja, mientras que en la del ganado bovino fue mayor en primavera y verano. En todos los casos los árboles, fuente de alimento, fueron N antarctica y N. pumilio, ünicas especies arbóreas presentes en el área de estudio.

Las hicrbas y arbustos fueron consumidos por el ganado ovino y bovino, principalmente en la época invernal, mientras el guanaco los consumió en forma pareja todo el año. Las especies que se destacaron en dicho grupo vegetal fucron la mata negra y Berberis spp., especialmente en la dicta del guanaco y del ganado bovino

El guanaco es el unico animal que presento liquenes en su dieta, aunque solamente en otoño e invierno y en muy baja proporción (2% y 3%, respectivamente). No se descarta una subestimación de dicho grupo en la dieta, según lo señalan Bonino y Sbriller (1).

En cuanto a la diversidad de especies vegetales en la dieta (Cuadro 1), el mayor promedio anual correspondió al guanaco, aunque este valor no difirió significativamente del correspondiente al ganado ovino y bovino. En este caso, tambićn fue en la ćpoca invernal cuando la dicta de los tres animales alcanzó la mayor diversidad

Las medias anuales de similitud de dicta resultaron ser semejantes en todos los pares de animales analizados y ligeramente mayores que los correspon-
dientes al área de estepa. El par guanaco-bovino presentó un valor del 69%, ovino-bovino, del 68% y guanaco-ovino, del 66 por ciento. Al igual que en la estepa, dichas especies presentaron entre sí una asociación significativa ($\mathrm{P} \leq 0.01$) en la composición de sus dietas.

DISCUSION

Se desconoce la existencia de estudios en que se compara la dieta del guanaco con la del ganado doméstico. La escasa información disponible se refiere a otras especies afines al guanaco, especialmente a la llama, L glama, y a la alpaca, L pacos (10).

En Tierra del Fuego se observó un patrón bastante semejante en la composición de la dieta anual del guanaco, del ganado ovino y del bovino. Los pastos
constituyeron la base principal de las dictas en todas las épocas, aunque en el ecotono todos los animales, y en especial el guanaco, usaron más extensivamente los recursos forrajeros disponibles. Esto probablemente se debe a que en dicha área las condiciones climáticas durante cl otoño y el invierno son más rigurosas que en la estepa, por lo cual la disponibilidad de alimento se toma mâs crílica en dicha época. El guanaco esel único animal que presenta consumo de liquencs en el ecotono, si bien en baja proporción, lo cual sumado a las afirmaciones anteriores llevaria a pensar en que esta especic está mejor adaptada que el ganado doméstico en el uso de una amplia gama de recursos forrajeros.

La gran similitud de dieta entre el guanaco, la oveja y el ganado bovino indica la existencia de una interacción competitiva potencial por la utilización de los recursos forrajeros, tanto en la estepa como en el ecotono bosque-estepa

Fig. 3. Proporción de los diferentes grupos de especies vegetales en las dietas del guanaco, ganado ovino y bovino en la estepa de fierra del Fuego, Arg.

LITERATLRA CITADA

1. BONINO. N. PELLIZA SBRILLER. A 1986 Composición botanica de la dicta del guanaco (Lama guanicoe) en Tierra del Fucgo, Argentina EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria Informe Tecnico 14 p
2. BONINO, N; MERNANDE7., E 1989 Estimacion de las poblaciones de guanacos (Lama guanicoe) en Tierra del Fuego. Argentina Dirección de Recursos Naturales de Tierra del Fuego. Boletín no 113 p.
3. CASSOLA, A G.; LAIOUR, M C. ; PERIEYRA, J A.; SERRA, J. 1975 Relevamiento de vegetación In Relevamiento expeditivo de los recursos naturales de la zona cordillerana de la region Patagonica: Informe ténico. J. A. Vallerini, L E. Cohen, A.A Marcolin, A G Cassola, M.C Latour, J A. Pereyra, J. Serra (Eds.). Arg, Instituto Nacional de Tecnología Agropecuaria, Consejo Federal de Inversiones 185 p
4. CATAL ANO, A; FERNANDEZ, E 1986 Aspectos de la producción pecuaria de las distintas zonas agroecológicas de la Tierra del Fuego: Informe técnico. AlER Rio Grande, Instututo Nacional de Tecnología Agropecuaria. 12 p

HOLECIEK, JL. 1982. Sample preparation techniques for microhistological analysis Joumal of Range Management 35:541-542
6. HURIUBIA, J 1973. Trophic diversity measurement in sympatric predatory species. Ecology $54: 885-890$.

7 LATOUR, MC: PELI.I/A SBRHILIRR, A. 1981. Clave para la determinación de la dieta de herbivoros en el NO de Patagonia Revista de Investigaciones Agropecuarias 16:109-157
8. MUELLER-DOMBOIS, D ; EL LEMBERG, II 1974 Nims and methods of vegetation ecology New York. Wiley. 547 p.

9 RAEDEKE, K 1982 Habital use by guanacos (Lama guanicoe) and sheep on common range, Tierra del Fuego. Chite Turrialba 32:309-314
10. SAN MARIIN, F ; BRYANI, F. 1987. Nutricion de los camélidos sudamericanos: Estadode nuestro conocimiento College of Agricultural Science, Fexas Technological University Articulo Técnico T-9-505 65p.

11 SIEGL:L, S 1986. Estadistica no paramétrica Méx, Trillas. 344 p.
12. SNIEDECOR, GW.; COCHRAN, W G 1967. Stalistica methods 6 ed Ames, lowa State University Press. 573 p .
13. SPARKS. DR ; MAILCIHEK. J C. 1968 Estimating percentage dry weight in diets using a microscope technique. Joumal of Range Management 21:264-26.5
14. WILLIAMS, OB 1969 An improved techniçue for identification of plant fragments in herbivore feces Joumal of Range Managemen 22:51-52

Características Agronómicas, Físicas, Químicas y Nutricias de Quince Variedades de Amaranto ${ }^{1}$

E. Calderón*, JM. González**, R. Bressani***

Abstract

ABSIRACT Some agronomic as well as physical, chemical and nutritional characteristics of 15 amaranth selections are presented. The selections reached physiological maturity at 110 days at a height of between 160 cm and 230 centimeters. Grain yield varied between $5129 \mathrm{~g} / 27 \mathrm{~m}^{2}$ to $10484 \mathrm{~g} / 27 \mathrm{~m}^{2}$. Average seed weight was 0.79 mg and size $1.88 \mathrm{~mm} \times 1.70 \mathrm{~mm}$. Protein content averaged 13.84% and fat 6.53 per cent. Likewise, average values for lysine, threonine, feucine and tryptophan were $333,269,346$ and $101 \mathrm{mg} / \mathrm{g} \mathrm{N}$, respectively. Significant differences in protein quality were found between raw processed samples; differences were also found among raw samples, but not among processed ones. The process induced a significant increase in protein quality and digestibility. Once again, the information confirms the high nutritional value of grain amaranth protein and the existence of a genetic variability among cultivars that permits selecting those with the best yield and high nutritional quality.

INIRODECCION

E1 amaranto (Amaranthus spp.) se utilizó en la época precolombina con fines alimenticios y religiosos. Por razones no establecidas cayó en desuso y actualmente se utiliza sólo en algunas comunidades indigenas de México, América Central y América del Sur. Recientemente se ha descubierto que sus hojas y granos, ambos de alta calidad proteínica ($16,18,20$), constituyen potenciales fuentes de alimento para el ser humano $(2,4,10,16,18)$.

[^4]
COMPENDIO

En el presente estudio se evalúan algunas caracteristicas agronomicas de 15 selecciones de amaranto, así como las diferencias en propiedades físicas, quimicas y nutricionales del grano. Las selecciones llegaron a la maduración fisiológica en 110 d , a una altura que varió entre 160 cm y 230 centímetros. El rendimiento del grano varió entre $5129 \mathrm{~g} / 27$ m^{2} y $10484 \mathrm{~g} / 27 \mathrm{~m}^{2}$, con lo cual se encontraron diferencias estadisticamente significativas entre cultivares. El peso promedlo por semilla fue de 0.79 mg con un tamaño de 1.88 min x 1.70 milimetros. El contenido de proteina promedió 13.84% y el de grasa cruda, 6.53 por ciento. Asimismo, los promedios en lisina, treonina, leucina y triptofanofucron 333, 269,346, y $101 \mathrm{mg} / \mathrm{g}$. N , respectivamente. Hubo diferencias significativas en la calidad de la proteina en las muestras crudas, en comparación con las procesadas, pero tambien dentro de las muestras crudas, no asi en las procesadas. El proceso indujo un aumento importante en la calidad y digeslibilidad de la proteina. La información confirma nuevamente el alto valor nutricio de la protefna del grano de amaranto y la existencia de una variabilidad genética que permite seleccionar las variedades de mejor calidad nutricia y de mayor rendimiento.

La calidad nutricia de la proteina del grano es importante por su contenido relativamente alto en aminoácidos azufrados y lisina (11), de los cuales hay una cantidad deficiente en las proteinas de los cereales comunes y de las leguminosas, respectivamente $(5,14)$

Descubierta la utilidad del amaranto como otro recurso para la alimentación humana, es importante hacer investigaciones dentro del mismo género, a fin de clasificar los materiales de acuerdocon sus propicdades quimicas, físicas y nutricias. Asimismo, se debe analizar el comportamiento de matcriales introducidos, para generar información que sirva de base para las investigaciones que sobre este cultivo se realizan en diferentes paises.

Estudios previos incluyen una caracterización del germoplasma del amaranto en Guatemala (6), asi como evaluaciones agronómicas y de composición quimica de varios grupos de muestras de diferentes especies (9, 15). En el presente cstudio se cvaluaron 15 materiales que representan tres especics, con el propósito de conocer las diferentes características quimicas, fisicas y
nutricionales, que pueden existir entre ellas, y así poder seleccionar las mejores para incluirlas en programas posteriores de producción Anteriormente se informó sobre algunas diferencias entre especies y variedades $(6,10,15)$.

MATLRIAISS Y MLTODOS

Se utilizaron semillas de 15 selecciones de amaranto (14 provenientes de Estados Unidos de América (EE UU.) y una de Guatemala), sembradas y cosechadas en 1985 en la Finca Experimental del InsLituto de Nutrición de Centroamérica y Panamá (INCAP), ubicada a 1500 msnm , en San Raymundo Sacatepeque\%, Gua Los datos que identifican a los materiales usados se presentan en el Cuadro 1

Cada selección lue sembrada en parcelas de $3 \mathrm{~cm} x$ 3 cm con tres repeticiones cada una. El mancjo de cada parcela experimental ya fue discutido (12) Despućs de la preparación de la tierra, se aplicaron 30 g por surco de fertilizante 15-15-15. La semilla se colocó en forma continua en el surco. Luego se hicicron dos raleos para dejar la misma población de plantas por parcela. La fecha de siembra fue el 8 de junio de 1985 . Durante el desarrollo de las plantas se tomaron datos sobre la edad y altura al lloreary sobre la cdad y la altura al cosechar, usando tres plantas por parcela. El rendimiento por repetición relleja la producción de grano de todas las plantas en la parcela de nueve metros cuadrados. Las
semillas recolectadas de cada selección de amaranto fucron sometidas a una caracterización física, química y nutricia

Análisis físico

Para estudiar el peso de las semillas de cada una de las varicdades, se regisuraron tres pesadas de 100 semillas cada una Se utilizó una balanza analítica marca Meuler H2OT, a fin de obtener un promedio representativo del peso de la semilla de cada varicdad, el cual se expresó en miligramos.

Para determinar el tamaño de la semilla se usó una lupa de aumento con escala de 0 a 15 milimetros. Se midieron el largo y el ancho de 30 semillas de cada variedad, con el objeto de obtener un promedio representativo con el método cmpleado por Imeri et al (15)

Análisis químico

Cada variedad se trabajó con tres repeliciones, de las cuales se sacó una muestra de aproximadamente 20 g , que fue molida y, luego, conservada en condiciones de temperatura ambiental en frascos de vidrio debidamente ctiquetados

Se estableció la humedad siguiendo la metodología descrita por la Assouiation of Official Agricultural

Cuadro 1. Identificación de las selecciones de amaranto.

Número	Variedad	Clave variedad	Especie	Origen
$15-\mathrm{EU}$	A-412	(1)	Hypochondriacus	Estados Unidos
$16-\mathrm{EU}$	A-622	(2)	Cruentus	de América
$17-\mathrm{EU}$	80S-649	(3)	Cruentus	
$18-\mathrm{EU}$	83S-538	(4)	Hypochondriacus	
19-EU	83S-K112	(5)	Cruentus	
20-EU	84S-1157	(6)	Cruentus	
22-EU	84S-1157	(7)	*	
23-EU	84S-K243	(8)	*	
24-EU	84S-K254C	(9)	Hybridus	
25-EU	84S-K266	(10)	Cruentus	
26-EU	84S-K277	(11)	Cruentus	
27-EU	84S-K283	(12)	Cruentus	
28-EU	*	(13)	Hypochondriacus	
29-EU	*	(14)	Cruentus	
17-G	17-GUA	(15)	Cruentus	Guatemala

Notas: Se determinó la especie en todas las variedades en la Finca Experimental del INCAP, durante la época de floración del amaranto. Se partió de las variedades conocidas y sembradas anteriormente en la finca (Gua, noviembre de 1985).

* No identificadas.

Chemists (AOAC) (1). Se usaron cápsulas de humedad y un horno de vacio, para lo cual se pesó entre 0.5 g y 0.9 g de muestra. La determinación de grasa se midió por el método de extracto ctéreo, descrito lambién por la AOAC, paralocual se utilizó cl aparato Soxhlet y se pesó entre 091 g y (099 g de mucstra que se extrajo durante 16 h en éler anhidro

El contenido de nitrógeno se obtuvo por medio del método macro-Kjeldahl, pesando muestras entre 0.90 g y 0.99 g , siguiendo las técnicas descritas en la metodologia de la AOAC (1). Los resultados se expresan como proteina cruda ($\mathrm{N} \times 6.25$)

El contenido de aminoácidos se obtuvo de hidrolizados ácidos (6 N HCl). Se usó el analizador automático de aminoácidos Technicon. Los resultados se expresan en miligramos de aminoácidos/gramo de nitrógeno. El triptófano se midió en hidrolizados enzimáticos por colorimetria (8).

Evaluación nutricia

Para determinar la calidad de la proteina y su digestibilidad se alimentaron ratas con dietas que contenian harina de semilla de amaranto, tanto cruda como cocida. La harina cocida se preparó dejando remojar la semilla durante 30 min en agua a $60^{\circ} \mathrm{C}$, lucgo se pasó por un deshidratador de rodos, calentado con vapor a 60 lb , a una velocidad de los rodos de 3 rpm , con una abertura cotte cllos de 05 milimetros. La temperatura fue de 120° centigrados Luego se molicron con un molino de martillos, a fin de obtener una harina deshidratada a 40 mallas Se determinó el nitrógeno tanto de ta harima obtenida de semilla cruda como de la harina cocida, con el propósito de preparar dictas a un nivel de 10% de protema. A ćstas se les agregó 4% de sales minerales (13), 1% de aceite de higado de bacalao, 5% de aceite vegetal y seajustaron con almidón de maiz. hasta completar el ciento por ciento. Además, se agregaron 5 ml de una solución de vitaminas por cada 100 g de dicta (17)

Se prepararon dos dictas: una de control de caseina y otra libre de nitrógeno. Las dietas se proporcionaron a ratas de 21 d o 22 d de edad de la raza Wistar, cuyo peso osciló entre 40 g y 50 gramos Cada dicta se asignó a ocho animales cuatro hembras y cuatro machos, colocados en jaulas individuales, proporcionándoles agua y alimento ad libitum. El ambiente se ajustó a $20^{\circ} \mathrm{C}-21^{\circ} \mathrm{C}$ con 12 h de lu\% por dia

Despućs de iniciado el experimento se controlaron los cambios en peso, ast como el consumo de alimento a los siete y catorec dias Se recolectaron las heces excretadas por los animales durante la segunda semana
despućs de iniciado el experimento y lucgo se secaron a $60^{\circ} \mathrm{C}$; se limpiaron, se pesaron, se molieron y se les determinó el nitrógeno por la técnica de macro-Kjeldahl (1)

La calidad de la proteina se determinó por el indice de razón proteínica neta (NPR) (3) con duración de 14 d, calculándose, además, la digestibilidad de la proteina ingerida en recolecciones de heces, y datos de consumo durante los últimos cinco dias del estudio (19).

Se hicicron analisis de variancia, prucbas de comparación múltiple de medias Tukey y se determinaron las correlaciones entre caractenisticas fisicas, quimicas y de rendimiento de las diferentes variedades en estudio (22)

RESLL TADOS Y DISCLSION

De acuerdo con los resultados agronómicos (Cuadro 2), el inicio de la floración se observó entre los 43 d y 59 d después de la siembra a alturas que variaron entre 45 cm y 95 centimetros. La cosecha varió entre 51 d y 78 d, a alturas que oscilaron entre 100 cm y 230 centimetros. El total de dias entre siembra y cosecha fue entre 94 d y 123 dias. Se informó acerca de datos similares en estudios de adaptabilidad de otros grupos de selecciones de amaranto, realizados en la Finca Experimental del INCAP $(8,15)$. Es de interés indicar que el tiempo de cosecha de 94 d y 123 des alractivo, yaque el matzacsa altura (1500 msnm) toma alrededor de seis a siete meses para cosechar. Por consiguiente, de haber humedad y variedades de amaranto, no sensitivas al fotoperiodo, sería factible obtener dos cosechas por año.

En el Cuadro 2 también se resumen los rendimientos del grano con diferencias estadisticamente signilicativas entre selecciones. El rendimiento de las tres parcelas, o sca por $27 \mathrm{~m}^{2}$, varió entre 10484 kg cn la selección núm. 20 hasta 5129 kg , en la nim. 24. Esta última se caracterizó por tener además de la panoja principal, otras muchas pero podridas, to que podria explicar su bajo rendimiento. El promedio de todas las selecciones fue de $8457 \mathrm{~kg} / \mathrm{m}^{2}$ ó $31.32 \mathrm{~kg} / \mathrm{ha}$, cantidad similar a la que se obliene del maiz ($3200 \mathrm{~kg} / \mathrm{ha}$) en la misma localidad. Por consiguiente, habria algunas ventajas económicas para el productor, en particular si fucra posible obtener dos cosechas de amaranto en la misma área de cultivo.

Los resultados de los promedios de peso, longitud y anchura por semilla de las 15 diferentes variedades de amaranto en estudio se presentan en el Cuadro 3. El peso varió de 0.58 mg a 096 mg con un promedio de 0.796 mg , en tanto que la longitud osciló entre 1.74 mm

Cuadro 2. Datos agronómicos de 14 selecciones de amaranto.

Variedad (núm.)	Floración		Cosecha		Total (d)	Rendimiento/réplica (g)**			Rendimiento total (g)**
	dias	altura (m)	dias*	altura (m)		A	B	D	
15	59	0.95	64	230	123	3419	2122	2451	7992
16	59	0.60	52	1.70	111	2325	2208	1902	6435
17	51	080	59	1.85	110	3519	4102	2108	9729
19	59	050	51	1.70	110	3659	1538	1048	6245
20	51	0.70	58	1.85	109	3813	3696	2975	10484
22	45	060	78	165	123	3260	2766	2250	8576
23	45	0.45	65	165	110	3119	2108	1555	6782
24	43	0.55	51	110	94	1438	1898	1793	5129
25	45	0.60	65	1.95	110	3590	3657	1638	8885
26	59	080	51	1.80	110	4099	3369	2426	9894
27	51	0.60	58	1.60	109	3779	3572	1395	8746
28	45	045	64	1.70	109	3491	3046	3311	9848
29	51	0.70	58	1.80	109	4292	3231	2885	10108
$17 . \mathrm{GUA}$	59	0.70	51*	1.80	110	4233	2947	2370	9550

Notas:

* Días entre floración a cosecha
** $\quad g / 9 \mathrm{~m}^{2}$ (parcela).
*** $\quad \mathrm{g} / 27 \mathrm{~m}^{2}$.
y 2.06 mm , con un promedio de 1.88 mm , y la anchura entre 1.59 mm y 1.81 mm , con un promedio de 1.70 milímetros. Ya se han dado datos similares $(8,15)$, que

Cuadro 3. Caracterización física de las selecciones de amaranto.

Variedad	Peso $(\mathbf{m g})$	Longitud (mm)	Anchura (mm)
1	0.96	1.98	1.74
2	0.58	1.77	1.62
3	0.82	1.99	1.79
4	0.68	1.74	1.59
5	0.77	1.81	1.66
6	0.86	1.93	1.78
7	0.70	1.83	1.64
8	0.72	1.88	1.72
9	0.91	1.95	173
10	0.68	1.78	1.61
11	0.75	1.91	1.70
12	0.80	1.84	1.68
13	0.95	2.06	181
14	0.80	1.88	174
15	0.96	193	173
$\mathrm{X}=$ Promedio	0.796	1.885	1.70
Minimo	0.58	1.74	1.59
Rangos:			
Máximo	0.96	2.06	1.81

sugieren la posibilidad de seleccionar variedades con un grano más grande.

Los resultados de los diferentes análisis químicos se presentan en el Cuadro 4, La proteina varió entre 12.74% y 14.65% con un promedio de 13.84%, el porcentaje de grasa se encontró entre 5.16% y 7.44%, con un promedio del 6.53 por ciento. La variabilidad y el valor promedio son similares a los informados anteriormente ($6,8,15$)). Los resultados del análisis de aminoácidos se presentan en el Cuadro 5. El contenido de lisina expresado en miligramos por gramo de nitrógeno fue entre $298 \mathrm{mg} / \mathrm{g} \mathrm{N}$ y $495 \mathrm{mg} / \mathrm{g} \mathrm{N}$; el de treonina, cntre $163 \mathrm{mg} / \mathrm{g} \mathrm{N}$ y $463 \mathrm{mg} / \mathrm{g} \mathrm{N}$; cl de leucina, entre $240 \mathrm{mg} / \mathrm{g}$ N y $4.51 \mathrm{mg} / \mathrm{g} \mathrm{N}$; y cl de triptolano, entre $80 \mathrm{mg} / \mathrm{g} \mathrm{N} \mathrm{y} 112 \mathrm{mg} / \mathrm{g}$ de nitrógeno. Estos datos contirman resultados previos y vuelven a indicar diferencias entre especies en contenido de nutrimentos $(2,8,15,21)$. Para fines comparativos, el mencionado cuadro incluye datos del patrón de aminoácidos FAO/OMS de referencia (19). Esta comparación con el promedio sugiere la limitación en el aminoácido Icucina.

En el Cuadro 6 se presenta la cvaluación de la calidad de la protena de las muestras crudas Los analisis estadísticos indicaron diferencias significativas entre mucstras para el aumento en peso, el indice de utilización de la proteína (NPR) y la diges-

Cuadro 4. Caracterización quimica de las selecciones de amaranto.

Variedad	Proteina $(\%)$	Grasa $(\%)$	Humedad $(\%)$
1	12.74	5.16	10.21
2	14.65	5.59	10.27
3	13.86	6.40	10.01
4	13.26	6.34	10.08
5	12.98	5.75	10.38
6	13.68	6.59	10.16
7	13.73	7.41	10.61
8	14.00	6.70	10.28
9	14.33	6.91	9.81
10	14.31	7.03	1061
11	14.15	7.44	11.13
12	13.94	6.65	10.64
13	14.64	6.46	1060
14	14.01	7.35	1025
15	13.37	6.30	10.51
$\mathbf{X = \text { Promedio }}$	13.84	6.53	10.37
Minimo	12.74	5.16	9.81
Rangos:			
Maximo	14.65	7.44	11.13

Cuadro 5. Análisis de aminoácidos esenciales (mg/g N).

Variedad	Lisina	Treonina	Leucina	Triptófano
1	437	302	361	106
2	298	336	240	80
3	361	463	321	100
4	495	228	341	110
5	351	240	362	96
6	322	198	341	110
7	447	230	333	104
8	393	198	385	98
9	414	190	333	111
10	359	163	254	91
11	381	145	397	92
12	466	325	284	103
13	466	301	430	101
14	393	302	451	95
15	339	363	254	112
$\mathrm{X}=$ Promedio	io 333	269	346	101
Patrón				
FAO/OMS	340	250	440	60
Minimo	298	145	240	80
Rangos				
Máximo	495	463	451	112

tibilidad aparente de la proteina La variabilidad es de interés, ya que permite seleccionar materiales de mejor valor nutritivo. El promedio del NPR fuc de 2.49. Resultados similares se han informado anteriormente $(9,15)$.

Cuadro 6. Calidad proteinica de las selecciones de amaranto crudo.

Variedad	Incremento en peso (g)	NPR	Digestibilidad de la proteina (g)
1	28 ab	283 cdefgh	83.1abcdef
2	34	295 abcdefgh	79.5 efgh
3	14 bcd	2.22 ijk	80.1 cdefgh
4	10 d	209jk	76.7 h
5	13 cd	$2.21 \mathrm{j} k$	79.2 fgh
6	20 bcd	268 efghij	79.1 fgh
7	28 abc	2.94bodefgh	78.4 gh
8	22abod	2.71 defghi	79.5 efgh
9	28 ab	2.71 defghi	79.8 defgh
10	17 bcd	2.36 hijk	78.0 g
11	18 bcd	2.59fghij	80.1defgh
12	10 d	$1.86 k$	82.1 badefgh
13	26 abc	2.63 fghij	82.16 cdefgh
14	17 bcd	2.19 ijk	80.1efgh
15	16bcd	2.50 ghij	80.1 cfgh

Notas: Variedades con igual letra son estadisticamente iguales Diferencias no-significativas Letra" a " $=$ mejor respuesta

En el Cuadro 7 se resumen los datos de calidad proténica en los materiales procesados. La información y el análisis estadístico indican diferencias significativas entre selecciones, en cuanto al aumento en peso y digestibilidad, no así en NPR, el cual promedió 3.34. Es de interés indicar que el análisis estadístico en NPR en las mucstras crudas mostró diferencias significativas, lo cual no ocurrió en las mucstras procesadas. Esto había sido informado con anterioridad $(7,9,15)$ y sugiere posibles diferencias en sabor, presencia de sustancias tóxicas o de algún otro factor climinado por el procesamiento. Asimismo, es importante señalar que el procesamiento produce un efecto sobre la calidad nutritiva de la proteina $(7,9)$. Los factores responsables de esta diferencia, inducida por el procesamiento, no han sido todavia cstablecidos. Otro aspecto interesante y significativo es que el promedio de la calidad en crudo fue de 2.49 , mientras que en los materiales procesados aumentó a 334 Los incrementos en calidad proteinica oscilan entre 11% y 94%, lo cual sugiere que existen diferencias en sustancias antifisiológicas en los materiales crudos.

El analisis de variancia (ANDEVA) efectuado para estudiar la digestibilidad de la proteina (Cuadros 6 y 7),

Cuadro 7. Calidad proteínica de las selecciones de amaranto procesado.

Variedad	Incremento en peso (g)	NPR	Digestibilidad aparente $(\%)$
1	50 bcd	3.36 a	80.2 cdefgh
2	62 ab	3.49 a	78.1 h
3	43 cd	3.01 a	79.5 gh
4	53 abcd	3.47 a	78.3 gh
5	58 ab	3.30 a	80.1 cdefgh
6	49 bcd	3.12 a	84.0 abcde
7	54 abcd	3.28 a	845 abc
8	42 d	3.18 a	86.2 ab
9	67 a	3.55 a	83.3 abcdef
10	50 bcd	3.31 a	82.3 abcdefg
11	44 cd	3.16 a	84.3 abcd
12	50 bcd	361 a	842 abcd
13	$56 a \mathrm{bc}$	3.37 a	86.5 a
14	59 a	352 a	85.5 ab
15	55 abcd	3.39 a	84.5 abc

Notas: Variedades con igual letra son estadísticamente iguales. No presentan diferencias significativas Letra "a" = mejor respuesta
detectó diferencias significativas entre las variedades crudas y procesadas, a un nivel de confianza de 95\%, por lo cual se procedió a hacer una prucba de medias de Tukey La digestibilidad en promedio de la proteína para las muestras crudas fue de 79.7%, valor que aumentó a 82.7% en las muestras procesadas Esto indica que el proceso mejora la biodisponibilidad de la proteina, lo cual ocurrió en 12 de las 15 selecciones. Por consiguiente, el aumento en la digestibilidad de la proteína puede explicar parte del incremento en la calidad protcínica por proceso.

Finalmente, en el Cuadro 8 se resumen las correlaciones encontradas entre los diferentes parámetros utilizados para caracterizar las selecciones de amaranto. Ninguna de las correlaciones mostró significancia estadística, aunque en algunos casos las correlaciones fueron negativas y en otros positivas.

Cuadro 8. Coeficientes de correlación entre características físicas, químicas y de rendimiento en 15 variedades de amaranto.

	Rendimiento	Peso	Lisina	Leucina	Treonina	Grasa
Proteina	-0.2441	-0.26661	-0.1348	-0.0138	-0.0687	0.4472
Grasa	0.3412	0.3417	0.1616	0.4069	-0.2813	-
Treonina	0.2477	0.2507	-0.1065	-0.0973	-	
Leucina	0.2471	0.2824	0.5230	-		
Lisina	-0.0173	0.1728	-			
Peso	0.2680	-				

LITERATURA CITADA

1 AOAC (ASSOCIATIONOFOHICIAL AGRICUL TURAL CHEMISTS) 1970. Official methods of analysis of the AOAC 11 ed Washington, DC.AOAC 1015 p
2. BECKER,R;WHEELER,EL, LORENZ,K;STAFFORD. A.E.; GROSJEAN, O.K ; BETSCHART, AA: SAUNDERS, RM 1981. A compositional study of amaranth grain Journal of Food Science 46:1175-1181.
3. BENDER, AE: DOELL, BH. 1957. Biological evaluation of proteins: A new aspect. British Joumal of Nutrition 11:140-148
4. BRESANI, R 1983. Calidad proténica de la semilla de amaranto cruda y procesada. Boletín El Amaranto y su Potencial no 3

5 BRESSANI, R 1983. Rescarch needed to up-grade the nutritional quality of common beans (Phaseolus vulgari) Qualitas Plantarum-Plant Foods for lluman Nutrition 32:101-110

6 BRESSANI, R.; ELIAS,L G.; GONZALIEZ, JM; GOMEZBRENES, R. 1987 The chemical composition and protein quality of amaranth grain germ plasm in Guatemala Archivos Latinoamericanos de Nutrición 37:364-371
7. BRESSANI, R.; GONZALEZ, JM.; ELIAS, L G.; MIL GAR, M. 1987. Effect of fertilizer application on the yield, protein and fat content and protein quality of raw and cooked grain of three amaranth species. Qualitas Plantarum-Plant Foods for Human Nutrition 37:59-67

8 BRESSANI, R.; GONZALEZ, J.M; ZUÑGA, J: BREUNER, M; ELIAS, L.G. 1987. Selections of amaranth grain representing four species. Journal of the Science of Food and Agriculture 38:347-356

9 BRESSANI, R; KALINOWSKI, I. S.; ORTIZ. MA.; ELIAS, L. G. 1987. Nutritional evaluation of roasted. flaked and popped A caudatus Archivos L. atinoamericanos de Nutrición 37:525-531.
10. BRESSANI, R ; ELIAS, L G.; DE BOSQUE, CM. 1988 Supplementary value of amaranth leaves to cercal grainbased diets Amaranth Newsletter no. 1 .

11 BRESSANI, R: ELIAS, L G; GARCIA-SOTO, A. sf Limiting amino acids in amaranth grain protein from biological tests.
12. GONZALEZ, J.M. BRESSANI, R. 1987. A guide to amaranth cultivation: Summary of experiences at the INCAP experimental farm. Amaranth Newsletter 2:5-7.
13. HEGSIED, D. M.; MLLS, R.C ; ELVEHIEM, C.A ; HART, E.B. 1941 Choline in the nutrition of chicks. Journal of Biological Chemistry 138:459-466.

14 HOWE, EE ; JANSEN, GR; GILFILLAN, EW. 1965 Amino acid supplementation of cercal grains as related to the world food supply. American Journal of Clinical Nutrition 16:315-320.

15 IMERI, A G.; GONZALEZ., JM ; HLORES, R ; ELIAS, L. G; BRESSANL, R 1987. Variabilidad genética y correlaciones entre rendimiento, tamaño del grano, composición química y calidad de la proteina de 25 variedades de amaranto (Amaranthus caudatus). Archivos Latinoamericanos de Nutrición 37:132-146
16. LEES, P. 1983. Amaranto: ¿E supercultivo del futuro? Agricultura de las Américas 32:16-17

17 MANNA, L.; HAUGE, S.M. 1953. A possible relationship of Vitamin B12 to orotic acid Joumal of Biological Chemistry 201:91-96
18. MARX, J.1. 1977 Amaranth: A comeback for the food of the Aztecs Science 198:40
19. NUTRITIONAL EVALUATION of protein foods 1980. P.L. Pellet, V R., Young (Eds.) Tokyo, Japan, United Nations University World Hunger Programme Food and Nutrition Bulletin (Supplement no. 4).

20 SANCHEZ-MARROQUIN, A 1983. Dos cultivos olvidados de importancia agroindustrial: El amaranto y la quinas. Archivos Latinoamericanos de Nutrición 33:1132

21 SENFT, JP. 1980. Protein quality of amaranth grain In Amaranth Conference (2). Proceedings Emmaus, PA. Rodale Press p. 43-47.

22 SNEDECOR, G W., COCHRAM, W.G 1980. Statistical methods. 7 ed Ames, Iowa State University Press.

RESEÑA DE LIBROS

SNEH, B.; BURPEE, L.; OGOSHI, A. 1991. Identification of Rhizoctonia species. The St. Paul, Minnesota, USA, American Phytopathological Society. 133 p.

Todo lo que necesita saber acerca de la taxonomia, identificación y caracteristicas de los grupos de anastomosis, puede encontrarlo en forma muy bien condensada en este excelente libro.

Es reconocida la importancia de este hongo como fitopatógeno de suelo y su distribución universal; asi como los intentos de clasificación, mediante métodos sencillos, utilizados por los fitopatólogos y técnicos de laboratorio. Sin embargo, al revisar rápidamente esta información detallada y concisa nos damos cuenta de la complejidad del sistema, y de su utilidad para los investigadores que tengan interés especial en este hongo.

Para aquellos fitopatólogos que han tenido frecuentemente la mala experiencia de no obtener infección al inocular masivamente el hongo en el suelo,
resulta de especial interés el capítulo dos, donde se describen los métodos para aislar, multiplicar y estimar poblaciones en el suclo, asi como para preservarlas.

Para los investigadores con interés en el control biológico de la enfermedad causada por Rhizoctonia binucleada, se describe en detalle y con fotografias muy nitidas el proceso de tinsión de núcleos. El estado actual de la clasificación y las características de los grupos de anastomosis de ta Rhizoctonia binucleada, están descritos en los capítulos siete y ocho

En resumen se hace énfasis en la identificación de los aislamientos, caracterización de los grupos de anastomosis y taxonomia de los estados anamórficos y teleomórficos, incluyendo datos muy importantes, pero poco asequibles, procedentes de los especialistas japoneses.

EDGAR VARGAS
LABORATORIO DE FIIOPATOLOGÍA
UNTVERSIDAD DE COSTA RICA

Efecto Tóxico y Uso de Filtrados de Mycosphaerella graminicola(Septoria tritici) ${ }^{1}$

C A Cordo*, L. R. Marechal**, F J. Babinec***

Abstract

To study the effect of Mycosphacrella graminicola filtrate upon wheat leaves and its possible usage as a resistance selection method, a liquid medium was used to culture the fungus; the culture filtrate was partially purified and two leaf bioassays were carried out to observe reproduction of the lesion on wheat leaves. The hystological study was performed comparing the action of the inoculum and of the filtrate at cell level; its effect was focused upon the cell wall. Activity of hidrolicil enzymes (pectic and cellulolytic), their production by the pathogen, and their effect on wheat leaf bloteh were detected. The activity was measured by reading viscometrical reduction and by detecting free reducing groups as reaction products. Pathogenic action of four M. graminicola strains was correlated with the toxic action of the strains" filtrate on three varicties of wheat. The fourth leaf of each variety was inoculated and filtrate applied to the leaves with polyurethane slides. Inoculum effect was measured through picnidial coverage. Filtrate effect was established by a scate of necrotic injury. Statistical analysis showed that inoculation and topical application were not correlated ($r=0,192$) in regard to host-specific reaction. However, a general relationship was established between strain pathogenicity and filtrate aggressivity. Buck Naposta cultivar was the most sensitive wheat to fungus filtrate. It was concluded that a fungus filtrate with cellulolytic enzymes cannot be used for selecting resistant varieties.

Key words: Mycosphaerella graminicola (Septoria tritici), wheat, enrymes, filfrate, selection method.

(OMPLNDHO

Se estudió el efecto del filtrado de Mycosphaerella graminicola sobre hojas de trigo, con el objeto de emplearlo en el método de selección de cultivares resistentes. Para el crecimiento del hongo se utilizó un medio de cultivo líquido. El filtrado se purificó parcialmente. Para observar la reproductibilidad del sintoma en las hojas, se emplearon dos bioensayos. Se realizó un estudio histológico para comparar la acción del inóculo y del filtrado celular. El cultivo filtrado danólas hojas cuando se inyectó y cuando se topicón Su efecto se localizó sobre la pared celular. Se detectaron la actividad de enzimas hidroliticas (pécticas y celuloliticas), su producción por el patógeno in vitro y su efecto sobre la hoja de trigo. Se midió la actividad enzimática mediante la lectura de la reducción de la viscosidad y por detección de grupos reductores libres, como productos de reacción. Se determinó el caracter constitutivo de las enzimas celulolíticas y el adaptativo de las pécticas. Se correlacionóla acción patogénica de cuatroaislamientos de M, graminicola con la acción tóxica del filtrado de los aislamientos sobre tres cultivares de trigo. El análisis estadístico mostró que la inoculación y la topicación no se correlacionaron en cuanto a su reacción especiffea para cada variedad. Sin embargo, se estableció una relación entre patogenicidad de los aislamientos y agresividad de los filtrados füngicos. Se concluyó que un fillrado fúngico con enzimas celuloliticas no puede ser usado para seleccionar cultivares resistentes.

Palabras claves: Mycosphatrallagraminicola (Septoriatrilici), trigo, enzimas, filtrados, método de selección.

INTRODLCCION

!a "mancha de la hoja del trigo" causada por Mycosphaerella braminicola (Fucke) Schrocter \&Rob. ex Desm. produce necrosis en las partes aćrcas de la planta (30), ocasionando pérdidas considerables en caso de epilitias severas (13)

Como en otras enfermedades, el método de control más eficiente es la selección de cultivares resistentes mediante infecciones naturales o inoculaciones artificiales. Se han empleado las toxinas producidas por los patógenos respectivos en lugar del inóculo, para la búsqueda de fuentes de resistencia, como en el caso de la caña de azucar, contra llelminthosporium sacchari (26), y del maiz, contra ll carbonum, (16), o para detectar la sensibilidad del hospedante al patogeno, como en el caso de la avena frente a ll victoriae (17),
del sorgo frente a Peritomia circinata (23); de la cebada, ante $/ /$ sativum (14), o del álamo, ante Ceratocystis ulmi (22).

El conocimiento sobre la toxina de S tritici es limitado Malcom (18) describió un glucopéptido específico, con actividad enzimática celulotítica. Cordo y Marcchal (11) establecicron la participación de enzimas celulotiticas como responsables del síntoma de la enfermedad; lo hicieron a través del estudio histológico y de reacciones comparativas con otras celulasas.

El objetivo de este trabajo fue estudiar la posibitidad de emplear el filtrado de M graminicola (Fuckel) Schroeter en la selección de genótipos resistentes. Se analizó la actividad enzimática, se investigaron técnicas de aplicación y se compararon los resultados obtenidos mediante la aplicación del filtrado y del inóculo sobre cultivares de trigo.

MATERIALES Y METODOS

Los filtrados empleados en este trabajo fueron obtenidos por crecimiento de cuatro aislamientos del hongo (38388C.D.L.HW3, LHW4 LHW5) en medio Fries núm. 3 con extracto de levadura (6). Se centrifugaron a 12000 g . durante 15 min y los supernadantes se liofilizaron. Se redisolvieron en agua destilada en un volumen de 18 a 20 veces menor que el original y se desalinizaron con una columna de Bio Gel P6, Bio Rad Laboratorios (50-100 mesh), cquilibrada y eluida con agua; la velocidad de flujo fue de 10 ml por minuto. Se midió el contenido de azúcares (prueba fenolsulfúrica) y de proteinas por lectura de absorbencia a 235 nm y con el reactivo de Bradford (7).

Se probaron dos bioensayos foliares: 1) Inyección del filtrado purilicado en hoja joven (26) y 2) topicación del filtrado purilicado en hoja joven (16).

Se analizó histológicamente el daño ocasionado por el filtrado en el tejido de la hoja La composición química del filtrado se determinó mediante reacciones específicas para celulasas, poligalacturonasas (4) y pectínpectato liasas (3).

La actividad enzimática se detectó al considerar el porcentaje de reducción de la viscosidad de la me»cla de reaccion (12) y el incremento en grupos reductores por el Método Somoggi-Nelson (24) Los aislamientos empleados (38388C.D. y LHW5) se cultivaron en el medio Frics núm. 3 con extracto de levadura, empleando inductores para la producción de celulasas y poligalacturonasa: carboximetil celulosa y pectinas de manzana (ambas al 1%), respectivamente.

La actividad de la poligalacturonasa (PG) se estudió al medir la reducción de la viscosidad de una solución del 2% de pectina de manzana como sustrato, con un viscosimetro Fenske-Ostwald 150. La mezcla de reacción contenia 2.5 ml de pectina al $2 \% ; 0.1 \mathrm{ml}$ de 0.5 M "buffer" citrato al $\mathrm{pH} 4.8 ; 2 \mathrm{ml}$ de extracto, llevando a 8 ml con agua destilada. Se emplearon dos testigos:
$\mathrm{T}_{1}=$ mezcla de reacción sin filtrado cnzimático.
$\mathrm{r}_{2}=$ agua destilada.

La actividad de la celulasa se estudió al medir la reducción de la viscosidad de una solución al 2% de carboximetil celulosa sódica (CMC) como substrato. El viscosimetro utilizado fue F.O. tipo 300. La mezcla de reacción contenía 2.5 ml de CMC al 2% a pH 43 , 0.1 ml de 0.5 M de "buffer" citrato a pH 4.8 y 2 ml de extracto, on un volumen final de 8 mililitros Se emplearon dos testigos:
$\mathrm{T} 1=$ mezcla de reacción sin filtrado enzimático.
$\mathrm{T} 2=$ agua destilada.

La lectura de afúcares reductores se hizo en un fotocolorimetro Coleman a 520 nanómetros. La incubación de la reacción se hizo durante 240 minutos a 35 grados centígrados. Todos los ensayos se repiticron dos veces y cada repetición se realizó por duplicado. Los resultados se expresaron con una significancia de P0.05.

Para comparar los resultados obtenidos, entre la topicación con filtrado y la inoculación artificial con suspensión de esporas, se condujeron ensayos con los cuatro aislamientos anteriormente indicados y tres cultivares nacionales: Trigal 708 (T 708), Buck Napostá (BN) y Klein Tolcdo (KT), en un factorial 4×3 según un diseño completamente alcatorizado con tres (topicado) y cuatro (inoculado) repcticiones, respec. tivamente.

Para el topicado, en cada unidad experimental (parcela), 10 hojitas fucron limpiadas previamente con agua destilada estéril, sobre las que se colocaron cubos de poliuretano de 4 mm de lado, sobresaturados con filtrado. Las hojas topicadas se cubricron con tapas de vidrio y el sistema quedó en cámara húmeda durante 96 horas. Al finalizar el periodo, se retiraron los cubos y se observó el daño producido. La sensibilidad de la hoja se clasificó en cuatro niveles $(0=$ ausencia; $1=$ ampollado cpidérmico; $2=$ menos del 50% del ancho de la lámina nccrosada; y $3=$ más del 50% del ancho de la lamina necrosada).

Para el análisis de la variancia se calculó el daño en promedio para cada unidad experimental: suma de las
frecuencias multiplicadas por los valores respectivos Se probó el ajuste de las observaciones a una distribución normal por Kolmogorov-Smimov (25).

La inoculación se realizó por medio de la técnica descrita por Cordo (10): se preparó el inóculo con aislamientos cultivados en medio Fries núm. 3 con extracto de levadura. La concentración de esporas se ajustó a 3.5×10^{6}. Cada unidad experimental consistió en una maceta con cinco plantas. Para el análisis del porcentaje de cobertura pecnidial promedio se usó la transformación angular.

resultados

En el filtrado desalinizado se detectaron azúcares ($150 \mathrm{umol} / \mathrm{ml}$ de filtrado) y proteinas $(2.5 \mathrm{mg} / \mathrm{ml} \mathrm{de}$ filtrado)

Técnica de aplicación del filtrado

La inyección produjo una lesión necrótica similar a la producida por el hongo, de contorno difuso, con cicatriz del pinchazo, centro necrótico definido y halo de epidermis blanqueada, paralelo a las nervaduras. Cuando se aplicó diluido (1:1) sólo se produjo un halo clorótico. La infiltración con medio de cultivo purificado y con agua destilada (testigos) no produjo reacción. Con esta técnica cl sintoma apareció en 48 h (Fig. la).

La topicación del filtrado produjo adelgazamiento y dilatación del ancho de la lámina con necrosis de la zona también topicada. Como tipos extremos de lesión se pudo observar, desde el ampollado epidérmico con desorganización celular, hasta la hendidura de la cpidermis en casos más agudos, que comprometió a ambas epidermis

El sintoma se manifestó entre el cuarto y quinto dias (Fig. 1b). El tipo de lesión, producido por topicación, condujo a investigar la acción de enzimas participantes en el colapso de la pared celular. Mediante el estudio histológico se determinó que el espesor de la lámina foliar se redujo a la mitad, y las paredes de las células parenquimáticas se destruycron, con desaparición del contenido, mientras que el haz vascular se mantuvo intacto (Fig. 2ab) Estos caracteres resaltan al compararlos con tejido sano (Fig. 2c). Estas observaciones hacen suponer que el filtrado parcialmente purificado actuó sobre elementos cementantes y la propia pared; y se presupone yue las enzimas coluloliticas y pectoliticas participaron en el proceso inicial de patogénesis.

Actividad enzimática

La actividad de la poligalacturonasa se destacó cuando cl aislamiento 38388 C . D creció bajo inducción pectina de manzana. Produjo 121.7 Mmol glucosa reductora/mg proteina a los 240 min , reducićndose en un 83% la viscosidad del substrato En cambio, el mismo aislamiento sin inductor redujo un 3% la vis-

Fig 1. Lesion producida por a) inyeccion del filtrado parcialmente purificado de M graminicola (aumento de x I); por b) topicación del filtrado parcialmente purificado de M graminicola (aumento de $\times 1$)

Fig. 2. Corte transversal de la hoja de trigo, a) inyectada con filtrado de cultivo de M graminicula (obsérvese la reducción del espesor de la lámina en la zona afectadá aumento de x210); b) infectada por M graminicola (obsérvese la reducción del espesor de la lámina en la zona afectada); c) comparación con el tejido normal (aumento de $\times 280$)
cosidad, producicndo 3.43 Mmol glucosa reductora por miligramo de protcina a 240 minutos. Ninguno de los testigos acusó pérdida de viscosidad ni climinación de grupos reductores. Este resultado confirmaría la naturaleza inductiva de la poligalacturonasa producida en cultivo por M graminicola (Figs. 3a y 3b).

La actividad de la celulasa se evidenció por la reducción de la viscosidad del substrato cuando se ensayó con filtrado producido sin inducción. La reducción en la viscosidad del substrato para el aislamiento 38388 C . D se vio casi triplicada al finalizar la cuarta hora de reacción (33%), comparado con la reducción de la viscosidad medida para el aislamiento LHW5 (13%). Cuando el aislamiento 38388C. D. creció, sujeto a inducción con CMC, la reducción en viscosidad aumentó a un 84% en la cuarta hora. Los valores elevados de reducción en la viscosidad del substrato, cvidenciados en los aislamientos no inducidos, sugeririan la naturaleza constitutiva de la celulasa (Fig. 3c).

Contrariamente a lo acaccido con la mezcla de reacción completa, los controles (T 1 y T 2) no manifes-
taron reducción de la viscosidad ni liberación de azúcares reductores en el transcurso de la cuarta hora de observación. El tipo de celulasa producido por M. graminicola, no fuc detectada por Somoggi-Nelson al menos con 240 min de incubación.

La naturaleza inductiva de la poligalacturonasa (un incremento) del 89% en la reducción de la viscosidad y de más de 100 veces en los moles de glucosa reductora por miligramo de protcína, climinados al cabo de la cuarta hora de reacción, indicaria que los constituyentes de la pared celular cstimularian la producción de enzimas.

Efecto del filtrado
 versus efecto del inóculo

El análisis de ambos efectos mucstra falta de correlación entre los dos métodos de cevaluación de la reacción de los cultivares frente al patógeno. En el Cuadro 1 se observa que el cuadrado medio para inoculación fue altamente significativo para las fuentes de variación: tratamientos, aislamientos y para la

Leyenda:

1: aislamiento 38388 C D sin inductor;
: aislamiento 38388 C . D con inductor;
3: aislamiento LIWS sin inductor:
4: controles (I 1 mezcla de reacción sin embima; 12 agua destilada). Los puntos de los gráficos seguidos por diferentes letras difieren significativamente de $\mathrm{P} \leq 005$

Fig. 3. a y b) Aetividad de poligalacturonasa; porcentaje de reducción de viscosidad de la mezela de reaceion y actividad enamática por medio del incremento en grupos reductores por el método de Somoggi-Nelson. Mediciones readizadas durante 240 min; 3e) actividad de celulasa; poreenaje de redacción en viscosidad de la mezela de reacción durante 240 minutos
interacción aislamiento por cultivar Esto último indicaría cierto grado de especialización para los aislamientos LHW4 y LHW5, cuyos porcentajes de cobertura pienidial son intermedios entre los otros dos aislamientos (Cuadro 2). Los cultivares utilizados mostraron diferencias significativas y altamente significativas tespectivamente, con estas cepas

Cuadro 1. Análisis de la variancia para inoculación (CM_{1}) y topicación (CM_{2}).

Fueate de variación	G. ${ }_{\text {. }}$	CM_{1}	Humedad
Tratamientos	11	0.330302 **	$1805.258^{* *}$
Cepas	3	$0.809 .977^{* *}$	3.666.962**
Variedades	2	0.044119^{24}	$2.008 .992^{* *}$
Cepa x variedad	6	$0.115859 * *$	$0.806 .494^{*}$
Variancia en LH_{3}	2	$0.224791 * *$	$0.639 .186^{\text {ax }}$
Variancia en LH_{4}	2	0.176575^{*}	$0.173 .334^{\text {a. }}$
Variancia en LH_{3}	2	$0.108 .781^{\text {ax }}$	$0.501 .511^{\text {ax }}$
Variancia en 38388 C . .	2	$0089673^{\text {na }}$	3.114.445**
Error	36	029343	-
	23		0.263643
Cocficiente de			
variabilidad (\%)		20.12	38.42

Notas:

ns. no significativo.

Para la técnica de topicación, la variación se concentró en el aislamiento 38388 C . D de mayor virulencia En este caso la interacción significativa no es necesariamente un indicador de especialización. El coeficiente de variación es considerablemente superior al obtenido para inoculación. Este dato alertaría sobre la reducida precisión de la téenica de topicación. Los resultados obtenidos con la variable índice medio de daño-para topicación-muestra además escasa concordancia con los obtenidos para cobertura pienidial (Cuadro 3). La correlacion entre ambos no fue sig-

Cuadro 2. Comportamiento promedio de las cepas

	Cobertura picnidial (\%) (inoculación)	Daño promedio (topicación)
LH_{3}	7.6 a	0.46 b
LH_{4}	13.0 ab	1.83 a
LH_{3}	23.6 bc	1.79 a
38388 CD	28.2 c	125 ab

Notas: Cepas con la misma letra no difieren significativament al 1% (Prueba de Student).
nificativa ($r=0.192$). La topicación con filtrado fúngico de composición celulolítica no es efica\% para detectar el comportimicnto de cultivares frente a S tritici (Figs 4 y 5) La observación de la Fig. 5 realza la sensibilidad de cada cultivar frente al filtrado lúngico y su correspondencia con la acción del inóculo.

La reaccion de los tres cultivares se correlacionó con la aplicación del inóculo y la topicación del filtrado, sólo para el aislamiento monos virulento (LHW5). Para los restantes aistamientos se observó una reacción hetcrogéneay no correlativa porlaaplicación de los dos tratamientos Así para el aislamiento LHW3, la topicación produjo una reacción de intermedio en los tres cultivares, mientras que con la inoculación se registraron los tres tipos de reacción.

También se pudo detectar, mediante graficos, el grado de virutencia de los aislamientos y su correspondencia con la sensibilidad de la variedad a la aeción del filtrado (Fig. 4) El aislamiento LHW5 se caracterizó por su bajo grado de virulencia. Su filtrado ocasionó una respuesta insensible on T 708 y KT; en cambio, moderadamente sensible en BN (tipo 2). Esta diferencia no fue detectada estadísticamente. La virulencia de ninguno de los restantes aislamientos se reflejó en la sensibilidad de los correspondientes cultivares a la acción de los respectivos fillrados. Los aislamientos 1 HW4 y 38388 C C demostraron comportamientos

Cuadro 3. Correlación entre técnicas de inóculación y topicación.

Cepa Variedad	$1 \mathrm{H}^{3}$			LH_{4}			LH_{5}			38388 C. D		
	BN	KT	1708	BN	Kr	T708	BN	KT	1708	BN	KI	T708
Inoculación	$34.98^{11.2}$	$22.21{ }^{\circ}$	$14.99^{\text {b }}$	$11.38{ }^{\text {a }}$	$6.63{ }^{\text {a }}$	$20.44^{\text {b }}$	3.48	8.73	11.65	20.79	31.23	32.95
Topicación	1.17^{3}	1.40	0.77	1.63	1.77	2.50	0.13	092	0.33	0.73 *	$2.77{ }^{\text {c }}$	187°

Notas:

1 Variedades con igual letra no difieren significativamente (dentro de cada cepa); ausencia de letras iadica que no hay diferencias significativas
2 Promedio general del porcentaje de cobertura picnidial.
3 Indice medio de daño.

Fig. 4. Frecuencia de daño inóxulo versus daño filtrado sobre tres cultivares de trigo (Trigal 708, Buck Napostá, Klein Toledo) para los aislamientos LHW5, L.HW4, 38388C D. LHW3.

Leyenda: Barras de posición derecha: Frecuencia obscrvada según escala-tipo de lesión filtrado
Barras de posición izquierda: Frecuencias observadas según escala- tipo de lesión inóculo

INOCULACION vS TOPICACION

Fig. 5. Correspondencia entre acción del inóculo y del filtrado de los tres cultivares para cada uno de los aislamientos (LHW5, LHW4, LHW3, 38388C D.).
opuestos; en cambio, LHW3 demostró un comportamiento desplazado.

DISCUSION

Las celulasas son muy significativas en enfermedades en que el patógeno se mueve en forma relativamente lenta, a través del tejido hospedante (podredumbres secas, mancha de hoja); hay una lenta pero completa degradación del tejido por el patógeno primario (32). Cordo y Marechal (11) establecieron la responsabilidad de las enzimas celuloliticas en la producción del síntoma de la "mancha de la hoja del trigo". Lo evidenciaron por medio de estudios histológicos y de reacciones comparativas con otras celulasas. Malcom (18) citó por primera vez la actividad de enzimas celuloliticas al describir el sintoma desarrollado, por inyección del filtrado fúngico sobre dos cultivares de trigo de distinta susceptibilidad a S. tritici. El rasgo determinante fue el debilitamiento de la rigidez. estructural con daño y muerte aparente del contenido celular Este carácter también se observó en el estudio histologico de este trabajo La muerte celular, con desaparición de contenido y destrucción de paredes, se visualizó en el corte transversal de hoja de trigo inyectada con filtrado.

Malcom (18) también describió que los dos cultivares inyectados reaccionaron con distinta sintomatología: sólo clorosis, o clorosis y necrosis, según que el cultivar fuese resistente o susceptible, respectivamente. Sin embargo, en este trabajo, los dos cultivares nacionales de distinta susceptibilidad respondieron de forma similar.

El estudio histológico constituyó una herramienta valiosa para interprctar el daño celular producido por un mecanismo que guia la desorganización del mesófilo. El desarrollo intercelular de M. graminicola recuerda al desarrollo de otros patógenos, como Rhizoctonia en hipocótilos de P. vulgaris (4), en que la laminilla media de las células corticales del hipocótile se disuelven y los espacios intercclulares están empaquetados con hifas fúngicas.

El desarrollo intercelular de hifas füngicas de M graminicola implicaria la participación de un complejo enzimático hidrolitico -enzimas pécticas y celulolíticas- donde el principio macerante, representado por poligalacturonasa y polimetilestearasas, seria responsable de la digestión del cementerio intercelular o la laminilla media. Otro rasgo que determina la acción enzimática es el tiempo que transcurre en la aparición de síntomas. El filtrado inyectado produjo su acción en 48 h , y en contacto con cutícula en cuatro dias. Esto fue obscrvado tambićn por Brown (8).

La heterogeneidad entre los tipos de reacción, para un mismo cultivar no está bien entendido aún. La composición polisacarida (celulosas, pectinas) de paredes celulares de plantas maduras, para distintas variedades en una misma especie, es esencialmente idéntica (1), como también lo son los constituyentes de paredes celulares de monocotiledóneas y dicotiledóncas $(2,9)$. Habiendo climinado las posibles causas de variabilidad experimental, sólo resta pensar en factores relacionados con la reacción cnzimática: disponibilidad del substrato, estabilidad de enzima, velocidad de la reacción

Tomiyama (28), Griffey y Leach (15) y Mercer et al. (20) establecieron que el espesor de material de pared celular afecta la habilidad del patógeno y de la cnzima para degradarla. Las paredes gruesas son más duras y requieren más tiempo en ser degradadas. Esto explicaria que, en muchas enfermedades, las partes más viejas de la planta son las más resistentes. No obstante, las celulasas, poligalacturonasas y otras enzimas que degradan paredes celulares varian cualitativamente como isoenzimas Presumiblemente hay una intensa variación isoonzimatica de las enzimas degradantes, pero también hay variación en sus productos, siendo ćsta casi siempre cuantitativa (2). Esta variación de las enzimas y sus productos podrían orientar las causas de heterogeneidad observadas en este trabajo.

La acción enzimática del filtrado observada en hojas de trigo, es localizada. Sólo reacciona la superficie de contacto, tanto al picar como al inyectar. En cambio, es sistémica para otros metabolitos tóxicos producidos por H. sacchari (26), II carbonum (16); H victoriae (19); A kikuchiana (27), Por la investigación bibliográfica $(23,31,33)$ se conoce que una toxina podria emplearse en prucbas de resistencia varietal si está casualmente involucrada en la producción de la enfer-medad-factor de patogenicidad. Otra categoria de toxina, a la que se conferiría un nivel medio de resistencia, es la que está comprometida en el inicio de la enfermedad, pero la reacción del hospedante varia según la concentración que se aplique (factor de virulencia) (29).

Algunos autores consideran a las enzimas extracelulares -enzimas degradantes de la pared celularcomo indirectamente toxinas a las células vegetales, 0 les atribuyen sôlo caracter tóxico a las enzimas pécticas (5). Para este caso, las cnzimas celuloliticas no serían consideradas toxinas. Varios caracteres realirmarian esta observación: acción localizada, efecto no observado a distancia del lugar de producción, reacción producida después de un periodo prolongado de contacto de la mezcla -cuarto día- lo que indica la intervención de una enzima (8). A partir de este análisis, no se pucde emplear una enzima para selec-
cionar fuentes de resistencia, porque como tal no actúa como factor de patogenicidad ni de virulencia.

En los gráficos de interacción//iluado-cultivar y en el análisis de la producción de la enfermedad por cada aislamiento en particular, se observó falta de correspondencia entre el cfecto del inóculo y cfecto del filtrado para los cuatro aislamientos interactuantes. Albersheim, Jones y English (1) formularon una explicación de la causa que distintos aislamientos de un mismo patógeno ataquen diferencialmente cultivares diferentes de una misma especie. El espectro de interacción entre enzimas que degradan los polisacáridos de pared y los carbohidratos de la planta hospedante es muy amplio, y conduce a una variedad de interacciones entre planta y la enfermedad; on cambio, se establece una relación más o menos razonable entre producción de la toxina y producción de la enfermedad por el patógeno (33). Esta parcialización podría apoyar la consideración de metabolito no tóxico -en sentido estricto- para las enzimas celuloliticas tratadas en este trabajo

CONCLUSIONES

Siguiendo las consignas delincadas al señalar el propósito de este trabajo se concluye que no se halló correlación de resultados al comparar el efecto del método de inoculación con el efecto del método de topicación. Con ambos métodos se observa una respuesta definida de cada uno de los cultivares (BN , KT, T708) a los respectivos aistamientos (LHW5, LHW4, LHW3, 38388C D) pero al compararlas no se corresponden. Por tanto, el filtrado de cultivo de M. graminicola de composición enzimática (celulasas) no se puede emplear en la selección para comportamiento varictal.

LITERATURA CITADA

1 ALBERSHIIM. P..; JONES, I : ENGI.1SH, P. 1969 Biochemistry of the cell wall in relation of infective processes Ammal Review of Phytopathology 7:171-195
2. ALBERSIHEIM, P.; ANDIERSON-PROUTY. 1975. Carbohydrates, protein, cell surface, and the biochenistry of pathogenesis Annual Review of Plan Physiology 26:3152
3. BASHIAN. Y; OKON, Y: IH:NIS, Y 1985 Detection of cutinase and peetic enzymes during infection of tomatocs by Pseudemonas syringae Phytopathology 75:940-945

4 BATLMAN, DI. 1963 Pectolitic activities of culture filtrates of Rhyzoctonia wolani and extracts of Rhizoctoniainfected tissues of bean. Phytopathology 53:198-204
5. BATEMAN, DF;BASIANN, Y 1976. Degradation of plant cells and membranes by microbial enzymes. In Physiological plant pathology Encyclopedia of Plant Physiology 4:316-345

6 BOUSQUET, JF; SKAJJENNICOV, MS 1974 Isolation and mode of action of a phytotoxin produced by S nodorum Berk Pliytopathology 80:355-360.

7 BRADIORD, M M. 1976 A rapid and sensitive method for the principle of protein-dye binding Analytical Biochemistry 72:248-254

8 BROWN, W 1915. The action of Botrytis cinerea. Annals of Botany 29:313-348

9 BURQUE, D: KAULMAN. P; McNELL, M: ALBERSHEIM, P 1974. The stucture of plan cell walls. VI A survey of walls of suspension-cultured monocols Plant Physiology 54:109-115.

10 CORDO, C A 1979. Mancha de la hoja del trigo (Septoria tritici) en la Republica Argentina: Método de inoculación en laboratorio. Anates de la Sociedad Científica Argentina 212:41-48

11 CORDOCA: MARECHAL., I. R. 1988 . Acción tóxica del filrado de Septoria tritici. Revista de la Facultad de Agronomia (Arg) 63:25-34
12. DESHPANDE, KB. 1960. Studies on the pectolytic enzymes system of Rhizoctonia solani Kuhn. IV. Vis-cosity-reducing enzymes Enzymology 22(5):295-306
13. EYAI.. \%. AMIRI. 7..; WAllL., I 1973 Physiological specialization of S tritici Phytopathology 63:1087-1091.
14. GAYED, SK. 1961. Production of symptoms of barley leaf-spot diseases by culture filtrate of Helmunthosporium salivain. Nature 12:725-726

15 GRHPEY. R T.; LEACH. IG 1965 The infuence of age of tissue on the development of bean anthracnose lesions. Phytopathology 55:915-918

16 HOMMMAN, SJ: SCIIEILE, J. 1972 leaf bioassay for Helminthosporium carbonum toxin: Search for phytoadexin Plytopathology 63:729-734.

17 LUKE, H; WHEELER, HE 1955. Toxin production by Helminthosporium victoriae. Phytopathology 45:453458

18 MALCOM, 11.1978 A host-specific toxin extracted from Septoriatritici In Proceedings of the Australian Septoria Workshop NSW Wales

19 MEELAAN, Fi; MURPIIY, 11. 1974. Differential phytoxicity of metabolic by-products of Ifelminthosporium victoriae. Science 106:270-271
20) MERCER, PC.; WOOD RKS: GREENWOOD AD. 1974. Resistance to anthracnose of French bean Physiological Plant Pathology 4:291-3(6)
21. NLLSON, N 1944. A photometric-adaptation of the Somoggi method for the determination of glucose Journal of Biological Chemistry 153:375-380.

22 SALEMINK, C.A; REBEL, H. 1965. Phytotoxin isolated from liquid cultures of Ceratocystis ulmi Science 149:202-203

23. SCHEFFER, R P.; PRINGLE, R.B 1961 A selective toxin produced by Periconia circinata Nature 191:912-913
24. SCHEFFER, R P; YODER, O.C. 1972 Host-specific toxins and selective toxicity In Phytotoxins in plant: Disease R.K.S Wood, A. Ballio, A Graniti (Eds). New York, Academic. p 251-272.
25. STEEL, R D Y; IORRIE, JH. 1985 Biocstadistica: Principios y procedimientos. McGraw-Hill 622 p
26. STEINER, G ; BYIHER R 1971. Partial characterization and use of a host specific toxin form H sacchari on sugarcane Phytopathology 61:691-695
27. IANAKA. S 1933 Studies on black spot diseases of the Japanese pear (Pyrus serotina). Memoirs of the College of Agriculture Kyoto University 28:1~31

28 TOMIYAMA, K 1963. Physiology and biochemistry of discase resistance of plants. Annual Review of Phytopathology 1:295-324.
29. VAN DER PL ANK, J. $:$ 1978. Genetics and molecular basis of plant pathology New York, Springer-Verlag 167 p .
30. WEBER G. F 1922. Speckled leaf blotch of wheat. Phylopathology 12:558~585

31 WILLLLER 11 1975. Pant pathogenesis New York, Springer-Verlag $10 \% \mathrm{p}$

32 WOOD R.KS 1960. Pectic and cellulolytic enzymes in plant disease. Annual Review of Plant Physiology 11:229-322.

33 YODER, OC 1981. Assay In Toxins in plant disease. R D. Durbin (Ed). New York, Academic Press p 45-78

RESENA DE LIBROS

FAGERIA, N.K.; BALIGAR, U.C.; JONES, C.A. 1991. Growth and mineral nutrition of field crops. Nueva York, Deckker. 476 p.

En la línea de la serie de libros sobre suelos, plantas y ambiente, este volumen examina, en sus primeros seis capitulos, la nutrición mineral de los cultivos agronómicos; los factores que afectan ese proceso, especialmente ambientales; cl flujo de nutrimentos que permiten identificar los problemas nutricios; las técnicas de simulación de mancjo y crecimiento de cultivos; y, finalmente, las interacciones entre nutrimentos esenciales y enfermedades de las plantas.

En adición a la reciente información en este campo, se amplian las consideraciones sobre cl ambiente tropical, en vista de la amplia experiencia de los dos primeros autores sobre el tema. El énfasis bibliográfíco en los artículos está dado porque constituyen un resumen de la información existente, y que, a pesar de no son los más actualizados, dan una visión amplia de la problemática. La bibliografía del segundo capílulo, concerniente a las influencias ambientales, es particularmente amplia -más de cien referencias

Los once capitulos siguientes están dedicados a los cultivos o a grupos de ellos. Se inicia conel tratamiento de los cereales, trigo y cebada, arroz, maiz y sorgo; luego, se sigue con las leguminosas, soja, frijol y caupi y mani, caña de azúcar, yuca y algodón. En el último capítulo se examina la nutrición de pastos con énfasis especial en las mezclas graminco-leguminosas y en la fijación potencial de nitrógeno por parte de los componentes de leguminosas en pastos Todos los textos son claros y comprehensibles para el profesional o el agricultor, con cducación informal. El inglés es diáfano y permite el estudio del tema con conocimientos moderados

En general es una obra de referencia de considerable utilidad para bibliotecas e investigadores, a quienes se recomienda su lectura.

GLEMER BORNEMISZA
UNIVERSIDAD DE COSTARICA

Effecto del Nitrógeno y de la Presencia de Trébol Blanco sobre Festuca Alta ${ }^{1}$

P. Cruz, H. Sinoquet*, F Gastal, B Moulia*, C. Varlet-Grancher**, G Lemaire**

Abstract

The response of tall fescue (Festuca arundinacea) growth to nitrogen supply and intercropping with white clover (Trifolium repens) was studied using a growth analysis method accounting for light and nitrogen relations in both pure and mixed stands. Pure tall fescue (P) and mixed (A) plots were grown in west central France with (N1) and without (N0) nitrogen supply Leaf area, aerial biomass and nitrogen content were measured once a week during a summer regrowth with irrigation Nitrogen fertilization had a significant effect on the fescue production in pure and mixed stands. The presence of white clover had only a small depressive influence on tall fescue production in fertilized mixture. A model of light interception for each species in the associations showed the light competition induced by white clover on tall fescue. In mixed stands, tall fescue had a lower light interception than in pure stands, but this effect was counterbalanced by a higher light conversion efficiency of intercepted PAR into dry matier. The light-conversion efficiency was strongly related to the foliage nitrogen status, which was improved by the leguminous component presence. This work shows how graminae growth can be analysed in terms of light and nitrogen relations, particularly in case of mixed crops.

Key-words: Light competition, interception efficiency, conversion efficiency, nitrogen nutrition, mixtures.

INTRODUCCION

EI cultivo de dos o más especies anuales o perennes en asociación es una práctica corriente. A Apesar de la amplia difusión de los cultivos mixtos, es siempre dificil manejarlos correctamente a consecuencia del poco conocimiento de las relaciones de competencia entre especies y de las leyes biológicas que las rigen. Este desconocimiento podría explicarse

1 Recibido para publicación el 18 de julio de 1990

* Station Agropédoclimatique de la Zone Caraí; Institut National de la Recherche Agronomique (INRA); Pointre a Pitre, Guadeloupe, Antillas Irancesas
** Station dEcophysiologie des Plantes Fourragères, INRA, Lusignan, Irancia

COMPENDIO

En este trabajo se estudió el efecto de la fertilización nitrogenada y de la presencia de una leguminosa (Trifolium repens) sobre la producción de la festuca alta (Festuca arundinacea). Se utilizó un método de expresión del crecimiento que permite analizar las relaciones de competencia por la luz y por el nitrógeno entre las especies asociadas. Cultivos de festuca pura (P) y asociada (A) fueron estudiados en el centro-oeste de Francia con agregado de nitrógeno mineral (N1) o sin éf (NO). La superficie foliar, la biomasa aérea y el contenido de nitrógeno fueron medidos semanalmente durante un rebrote estival. La festuca alta respondió fuertemente a la fertilización nitrogenada. Sin embargo, en dicha situación, se dio un ligero efecto depresivo provocado por la presencia del trébol. La utilización de un modelo de intercepción de la luz permitió demostrar en las asociaciones la competencia del trébol por este factor. El efecto depresivo es, sin embargo, compensado por una eficiencia de conversión del PAR en materia seca superior en el caso de las festucas asociadas. Las diferentes efficiencias de conversión estuvieron muy relacionadas con el nivel de nutrición nitrogenada de los cultivos de festuca, mejorando este nivel con la presencia del trébol. Este trabajo muestra como analizar el crecimiento de los componentes de una asociación en relación con la luz y el nitrógeno disponibles, particularmente en el caso de unagraminea asociada a una leguminosa.

Palabras claves: Competencia por luz, eficiencia de intercepelón, eficiencia deconversión, nutrición nitrogenada, asociaciones.
en parte por el gran número de combinaciones posibles de especies y por la gran cantidad de situaciones de clima y suelo, en que pueden cultivarse. Esta diversidad hace también que la busqueda del mancjo adecuado de una asociación determinada sea muy laboriosa y que la extrapolación de los resultados obtenidos lleve implicitos altos riesgos

A pesar de las dificultades citadas, la mayor parte de los trabajos en investigación agronómica sobre asociaciones se refieren a situaciones particulares, y en ellos se presentan análisis con métodos estáticos sin ambición explicativa de los fenómenos de competencia. Ejemplos de este tipo de análisis son el uso del Relative Yield Total (RYT) (18) y el Land Equivalent Ratio (LER) (16, 17), citados corrientemente en la bibliografía cientifica, Estos métodos son útiles para describir y comparar situaciones particulares, pero en
ningû́n caso permiten el estudio de la naturaleza de la respuesta de las especies asociadas a los factores de crecimiento (11), pues sólo ponen de manifiesto las consecuencias finales de la competencia (2).

En el caso particular de cultivos forrajeros perennes, las limitaciones de estos análisis son más evidentes, pues no existe un estado único y determinado de cosecha.

En un trabajo anterior (3) se describió un análisis mecanista del crecimiento de un cultivo mixto, que permitió caracterizar la competencia entre las especies asociadas por los recursos del medio (luz, agua, nitrógeno y otros). En dicho análisis, la productividad del cultivo se evaluó por su rendimiento energético, el cual pone en relación la producción de matcria seca y la radiación solar ($\mathrm{PAR}=$ Photosynthetically Active Radiation), interceptada por el canopio (8, 14). En caso decrecimiento potencial, es decir sin limitación de agua ni elementos nutritivos, dicha relación es una recta común a todas las especies de un mismo tipo metabólico (C3 ó C4). Si un factor se vuelve limitante, su efecto se traducirá en una disminución de la cantidad de energia interceptada al momento del muestreo (menor desarrollo del área foliar) o en una disminución de la pendiente de la recta (menor eficiencia de conversión del PAR interceptado), o en ambas simultáncamente.

La identificación del factor implicado se puede realizar al efectuar mediciones del potencial hídrico en el caso del agua, y al analizar el contenido de nitrógeno u otros elementos en la materia seca. Dichos valores de contenido de nitrógeno no deben compararse en una fecha determinada, sino que deben expresarse en función de la cantidad de materia seca acumulada, evitando así el fenómeno de dilución del nitrógeno durante el crecimiento. Esta dilución, aun en condiciones óptimas de nutrición nitrogenada, es función de dos variables: nivel de nutrición del cultivo y tasa de crecimiento. Si el nitrógeno es expresado en función del grado de crecimiento (materia seca acumulada), se hace intervenir solamente la primera variable, la cual puede asi diagnosticarse (1)

En el caso de una asociación, el rendimiento energético de cada una de las especies no puede ser calculado, si no se conoce separadamente la energía interceptada por ellas. Esta pucde estimarse mediante la utilización de un modelo de intercepción descrito y validado experimentalmente sobre un cultivo mixto (10). Este modelo calcula todos los términos del balance radiactivo del PAR (radiación reflejada, transmitida al suelo, absorbida por cada especie) a partir de los datos de la estructura geométrica del cultivo, de las propicdades ópticas de las hojas y del suelo, y de las
caracteristicas de la radiación incidente-altura del sol, relación entre radiación difusa y directa.

El objeto del presente trabajo cs aplicar la metodologia propuesta sobre una asociación de tróbol blanco y festuca alta. Por tratarse de una asociación entre una leguminosa y una gramínca, se analiza particularmente el factor nitrógeno, evitando interacciones con otros elementos nutritivos y con el agua.

MATERIALES Y METODOS

Los cultivares del ensayo se sembraron en abril de 1985 en Lusignan, centro-ocste de Francia ($0.07^{\circ} \mathrm{E}$, $46.26^{\circ} \mathrm{N}$, altud 150 metros). El dispositivo experimental consistió en parcelas puras de F. arundinacea Schreb. cv. Clarine y parcelas de festuca asociada a I repens L. cv. Huia, siendo la superficie de cada parcela de 10 metros cuadrados. La siembra de la gramínca se realizó en líncas a 20 cm y la leguminosa al voleo. La densidad de siembra de la festuca fue la misma en cultivo puro o asociado, lo que permitió limitar la variación del valor de la competencia intraespecifica, al comparar ambos cultivos.

En cada uno de los cultivos se estudiaron dos niveles de nutrición nitrogenada. Los niveles de nitrógeno correspondicron a 0 (N0) y 90 (N1) unidades/hectárea/rebrote, utilizảndose como fertilizante el amonitrato. Al inicio del ciclo de crecimiento se aplicó a todos los tratamientos una fertilización basada en fósforo y potasio. Los cuatro tratamientos -dos cultivos por dos niveles de nitrógeno- se repartieron al azar en dos bloques, con tres repeticiones por bloque.

Todos los cultivos del ensayo fucron regados por aspersión cuando fue necesario, para mantencrlos al 100% de la evapotranspiración máxima y cvitar, así, un posible déficit hídrico. El estudio se realizó durante un ciclo de rebrote de 36 días, entre el 17 de junio y el 22 de julio de 1986.

Mediciones sobre el material vegetal

La biomasa acrea fue medida semanalmente mediante el muestreo de $1.5 \mathrm{~m}^{2}$ por parcela, cl cual se realizó con una máquina cortadora automotriz. La materia seca remanente, luego del paso de la barra de corte, fue medida con muestreos manuales a ras del suclo de $500 \mathrm{~cm}^{2}$ por parcela y adicionada a la anterior para obtener la biomasa total. De esta manera sólo se operó en las cuatro úlumas fechas, puesto que al principio del rebrote, y como consecuencia de la baja altura del tapiz, sólo se hicicron muestras con la cortadora manual.

Para determinar el indice de area foliar (IAF), parámetro utilizado para el cálculo de la energia solar interceptada, fue necesario separar la biomasa foliar de ambas especies y el calculo del peso especifico foliar (PEF) de cada una de ellas. Para obtener el PEF, una submuestra por tratamionto fuc planimetrada (planimetro óptico Delta T Devices) y su materia seca fue determinada. Todas las determinaciones de materia seca fueron realizadas por secado de la muestra, a $80^{\circ} \mathrm{C}$ durante 24 h , en estufas con circulación de aire forzada.

La matcria seca obtenida por encima de la barra de corte de la cortadora automotriz -ultimos cuatro muestreos-- se molió hasta un tamaño de partículas de 0.5 mm y el contenido de nitrógeno total (método Kjeldahl) fue determinado. Se operó de esta manera para poder interpretar la dilución del nitrógeno solamente en la materia seca acumulada durante el rebrote estudiado. Se evita de esta mancra una interferencia del material vegetal residual (principalmente estolones), no recolectado en el corte preliminar.

Balance radiactivo

Para calcular el balance radiactivo mediante el modelocitado anteriormente, deben explicitarse ciertas consideraciones. En primer lugar, los cultivos analizados fueron considerados como homogéncos en el plano horizontal. Esto significa que se considera despreciable un posible efecto de la siembra en líneas de la gramínea, el cual, en una pradera en su segundo año de crecimiento como la estudiada, puede intervenir sólo durante unos pocos días lucgo del corte.

Para simplificar la utilizaciôn del modelo, los parámetros de la estructura se limitaron a dos: el IAF de cada especie y la inclinación media con respecto al plano horizontal de las hojas de cada una de ellas. Como valores de inclinación media de las hojas de las dos especies utilizadas, se tomaron datos citados en la bibliografía: 25° para el trébol blanco (9) y 65° para las gramincas de hojas crectas (19). En cuanto a las propiedades ópticas de las hojas de ambas especies se tomaron valores de coeficientes de reflexión y transmisión del PAR de 0.10 y el mismo valor para el albedo del suclo.

Para los coeficientes de reflexión y para la inclinación media de las hojas de ambas especies, se estableció como hipótesis la inexistencia de un efecto "asociación" o "nivel de fertilización" sobre dichos parámetros. De todas maneras el modelo es poco sensible a ligeras modilicaciones de estos parámetros (10) La radiación global (RG) incidente fue medida con un piranómetro LI-COR 2005 y seasumió la relación PAR $=0.48 * R G(15)$.

RESLLTADOS Y DISCUSION

Crecimiento

En la Fig. I se muestra la acumulación de materia seca en función del liempo de rebrote para festuca pura, festuca asociada y asociación festuca más trébol El efecto del nitrógeno mineral y de la presencia del trébol sobre la festuca puede analizarse, estableciendo diversas comparaciones. En primer lugar, la fertilización incrementa notablemente el crecimiento de la festuca ya sea pura o asociada. La diferencia entre esos dos tratamientos fertilizados (NI) hace suponer un efecto competitivo del trébol, el cual no se manifiesta en el caso de que haya ausencia de nitrógeno.

Leyenda:
A: 「estuca asociada
P: festuca pura
$\mathrm{F}+\mathrm{T}:$ festuca + recton
No: no fertilizado
N 1 : fertilizado (90 a de N / ha)
Fig 1 Acumulación de la biomasa actra en funciòn del tiempo de rebrote

Sobre la producción total de la asociación (festuca más trébol) existe igualmente un efecto de la fertilización, pero al observar la baja producción de la festuca asociada NO, se puede deducir que la contribución del trebol ha sido más importante en la asociación NO que en la N1.

El crecimiento, asî expresado, da resultados considerados clásicos como la mayor contribución del trébol cuando no se fertiliza con nitrógeno (4), o resultados más originales como el efecto competitivo de la leguminosa hacia la gramínea (12). Sin embargo, es evidente que todo resultado observado sobre las curvas
de crecimiento es consecuencia de las relaciones de competencia entre la graminea y la leguminosa, y que ninguna conclusión puede sacarse sobre el sentido ni sobre la amplitud de dichas relaciones. Para ello es necesario analizar más profundamente la competencia por luz y nitrógeno, dos factores fundamentales en esta experimentación

Eficiencia de intercepción de la radiación solar

El modelo utilizado permite calcular la evolución a lo largo del ciclo de rebrote de la eficiencia de la intercepción de la radiación para la festuca pura y asociada en los dos niveles de nitrógeno. Para este calculo el modelo utiliza las mediciones semanales del IAF de cada especie de la asociación, interpolándolas en forma linear para obtener datos diarios Las curvas obtenidas están representadas en la Fig. 2. Puede observarse el efecto de competencia del trébol por sombreado puesto que, aunque el IAF es superior o igual en las gramincas asociadas (Fig. 2a), la cantidad de energíaque interceptanes inferior a la calculada para los cultivos puros (Fig. 2b)

Una sintesis de estas relaciones esta dada por la Fig. 3. la cual expresa la eficiencia de intercepción en función del IAF. Ella muestra que, inde-
pendientemente del nivel de fertilización considerado, la intercepciôn de la lux para un mismo IAF es siempre superior en la graminea pura que en la asociada al trébol.

Eficiencia de conversión

La relación obtenida para cada cultivo de festuca en la Fig. 3 permite calcular la eficiencia de conversión en materia seca de la energía útil para la fotosintesis (PAR) absorbida por cada uno de cllos (Fig. 4), utilizando los datos de radiación global (RG)

Las pendientes de las rectas muestran que la eficiencia de conversión es superior en la gramínca asociada, to que le permite compensar la gran diferencia de eficiencia de intercepción para un mismo IAF. Dicha compensación se raduce en una producción equivalente de la gramínea en los dos tratamientos NO . En el caso del nivel N1 la competencia del trébol, manifestada en las curvas de eficiencia de intercepción (Fig. 3), no permite a la festuca asociada producir tanta materia seca como la festuca pura, a pesar de que la presencia de la leguminosa mejora su effeiencia de conversión (Fig. 4)

Entre parentesis aparece el valor de la pendiente de la recta (eficiencia de conversión en g / MJ del PAR absorbido) para cada tratamiento.

Leyenda:

A: festuca asociada
P: festuca pura
No: no fertilizado
N 1 : fertilizado (90 ude N / ha)
Fig. 2 a) Cinćtica de expansión del IAF (hdice de Area Foliar) de los cultivos de festuca en función del tiempo de rebrote; b) Evolución de la cficiencia de intercepción del PAR (Photosynthetically Active Radiation) en función del tempo para les cultivos de festuca

Leyenda:
A: festuca asociada
p: festuca pura
NO: no ferilizado
N1 : fertilizado (90 u de N / ha)
Fig 3. Evolución de la cliciencia de intercepción del PAR (Photosynthetically Active Radiation) en función del IAF (Indice de Area Foliar) de los cullivos de festuca.

La diferencia de pendiente entre las rectas calculadas para la graminca asociada y la gramínca pura no es significativa ($a=5 \%$) en ninguna de las dosis de nitrógeno. El bajo número de datos con los cuales las rectas están trazadas conficre a la prucbacstadística una baja potencia para detectar una diferencia entre los valores de las pendientes, aunque ella exista realmente (alto riesgo de crror de segundo tipo). El valor de la pendiente de la festuca asociada Nl es próximo al citado en la bibliograffa como la eficiencia potencial de las especies de tipo C3 en condiciones de crecimiento no limitantes (5), lo que podría indicar que su nivel de nutrición nitrogenada es óptimo.

Para confirmar un eventual efecto del nitrógeno sobre la cficiencia de conversión de las gramíncas asociadas (N0 y N1), puede realizarse un diagnóstico comparativo del nivel de nutrición de los distintos cultivos.

Nivel de nutrición nitrogenada

El diagnóstico del nivel de la nutrición nitrogenada se realiza seguin el método de curva: de dilución (7). Las curvas obtenidas están representidas en la Fig. 5. Se observa que efectivamente la presencia del trébol mejora el estado de nutrición de la festuca en los dos

Leyenda:
A: festuca asociada
P : festuca pura
NO : no ferilizado
N 1 : fertilizado (90 u de N / ha)
Hig 4 Acumulación de la biomasa acrea en función de la suma del PAR (Photosyntetically Active Reaction) absorbido por los cultivos de festuca
niveles de fertilización, NO y N1, pues para una misma cantidad de materia seca producida, el contenido de nitrógeno es más alto en la gramínca asociada que en la pura, aunque el efecto es menos evidente en el nivel N1. El orden decreciente de la nutrición nitrogenada en los cuatro tratamientos es el mismo que el observado sobre las rectas de eficiencia de conversión (Fig. 4), lo que ilustra claramente la correspondencia entre ambas expresiones.

Curva potencial: curva de referencia para cultivos de especies C3 en condiciones de nutrición nitrogenada no limitante (7)

Es importante recordar que solamente la expresión del contenido de nitrógeno en función del grado de crecimiento, permite distinguir entre un aparente efecto benéfico de la leguminosa y una verdadera mejora del nivel de nutrición de la gramínea. Dicho efecto aparente se explica frecuentemente por una disminución del crecimiento, y todo error de interpretación se evita incluyendo en la expresión del contenido de nitrógeno la materia seca producida por el cultivo considerado. La viabilidad de este método de diagnóstico está demostrada por la evidencia de resultados opuestos a los aquí presentados, obtenidos con otro tipo de asociación en que la leguminosa fue la alfalfa (1) Esto podria explicarse por un "turn over"

Leyenda:

A : festuca asociada
P: festuca pura
NO: no fertilizado
N 1 : fertilizado (90 u de N / ha)
Fig. 5. Curvas de dilución del nitrógeno en la biomasa acrea acumulada por los cultivos de festuca.
de tejidos y órganos mas rápido en el trébol, principalmente los nódulos, órganos que en el caso de la alfalfa mueren en baja proporción luego del corte (13).

En el presente experimento los valores correspondientes a la festuca asociada NI son muy proximos a la curva de referencia citada para gramineas de tipo C3 (6), es decir:

$$
\text { Porcentaje de } \mathrm{N}=4.8(\mathrm{MS} / 100)^{-32}
$$

donde la materia seca (MS) se expresa en gramos por metro cuadrado y corresponde a valores a 100 . Ello indica un nivel de nutrición de dicho tratamiento muy cercano al potencial, lo que explica la alta eficiencia de conversión señalada anteriormente

CONCLLSION

El estudio de una asociación utilizando un modelo de intercepción de la radiación solar y un método de diagnóstico de la nutrición nitrogenada, permite aclarar ciertos aspectos de la competencia, entre las especies, por los recursos del medio. Se evidenció la importante reducción de la eficiencia de intercepción de la graminea debido a la competencia del trébol. Sin embargo, su producción no se redujo en la misma proporción, pues la presencia de la leguminosa mejora la eficiencia de conversión. Esto se pone particularmente de manifiesto en ausencia de fertilización,
condición en la cual la materia seca, producida por la festuca, es equivalente en cultivo puro y asociado. El análisis del nivel de nutrición confirma el mayor efecto benéfico del trébol en el tratamiento no fertilizado. Queda demostrado que en las condiciones de este experimento, el agregado de nitrógeno mineral es contrario al efecto benéfico producido por la presencia del trébol. Este efecto seria mayor en el caso de un cultivo destinado a una producción con bajos insumos.

Es importante señalar que un análisis idéntico puede realizarse sobre los efectos competitivos de la graminea sobre la leguminosa. En el caso del trébol blanco, el problema metodológico que debe resolverse es el de poder cuantificar de manera fiable la acumulación de la materia seca producida durante el rebrote. La importancia de la senescencia en las especies que, como ol trébol, tienen un "turn over" rápido de tejidos, interfiere en la expresión de la eficiencia de conversión y de la dilución del nitrógeno (3).

El experimento puso de manifiesto el tipo de aporte que este método de análisis puede brindar al estudio de la competencia entre especies. Su utilización en estudios sobre asociaciones de leguminosas y gramineas en condiciones tropicales presenta perspectivas interesantes. Por un lado, las asociaciones entre leguminosas C3 y gramineas C4, tipicas de dichas latitudes, presentan la originalidad de combinar tasas de crecimiento muy diferentes, condiciones en que un buen mancjo requicre también un buen conocimiento de las relaciones de competencia. Por otra parte, la utilización de cultivos que necesiten bajos insumos, principalmente nitrógeno, es muy necesaria en dichas condiciones y el efecto benéfico de las leguminosas debería ser más claramente demostrado. Finalmente, la diversidad de especies que alli pueden cultivarse hace improbable la cvaluación de todas las combinaciones posibles, y la formulación de leyes de comportamiento o de acción de dicha competencia se vuelve necesaria para predecir el comportamiento de una asociación

LIIERATLRACMADA

1. CRUZ, P.: LEMARE, G. 1986 Analyse des relations de compestition dans une association de luzerne (Medicago sativa I.) et de dactyle (Dactylis glomerata L.). II Effets sur la nurition azote des deux espèces Agronomie $6(8): 727-734$

2 CRUZ, P 1987. Les associations graminées-legumineuses en climat tropical: Remarques sur les méthodologies d ctude. In Paturages et alimentation des ruminants en zone tropicale humide INRA p. 299-309
3. CRUZ. P: MOULIA, B ; SINOQUET. H 1989. Extension d'une methode d'analyse de la croissance d'un couvert végétal aux cultures associés: Bases théoriques In Annual Meeting Caribbean Food Crops Society (25. Guadeloupe) (In press)
4. GARDNER, EII: JACKSON. TI.: WEBSIIER. GR ; TURLEY. R.II 1960 Some effects of fertilization on the yield: Bolanical and chemical competilion of irrigated grass-clover pasture Canadian Journal Plant of Science 40:546-562
5. GOSSE, G; VARIIET-GRANCHER.C. BONHOMMIER.; CHARTIER, M: ALIIRAND, JM: LEMAIRE. G 1986. Production maximale de matière seche el rayonnement solaire intercepté par un couvert végétal Agronomic 6(1):47-56.

6 LEMAIRE, G; SALEME, J 1984 Relations entre dynamique de croissance et dynamique de prélevement d'azote pour un peuplement de graminées fourragères 1 Biude de leffet du milieu. Agronomic 4:423-430
7. LEMAIRL: G; GASIAL., F: SALETME. J 1989 Analysis of the effect of N nutrition on dry matter yield of sward by reference of pofential yield and optimum N content In International Grass Congress (16., Nice). Proceedings op 179-180
8. MONIEITl. JI 1977 Climate and the efficiency of crop production ir Britain. Philosophical Transactions of the Royal Society of I ondon Serie B $281: 277-294$
9. NICIIP(OROVIIClI. A A 1961. Properties of plant crops as an optical system Soviet Plant Physiology 8:25-38
10. SINOQUE1. II : MOULIA. B: GASIAI, I:BON. HOMMER ; VARLEI-GRANCIER, C 1990 Modeling the radiative balance of the components of a binary
mixed canopy: Application to a white clover-tall fescue mixture Acta Oecologica 11:469-486.

11 TURKINGION. R 1983 Leaf and flower demography of Trifolium repens L I Growth in mixture with grasses New Phytologist 93:599-616.

12 VALIIS, 1. 1978. Nitrogen relationships in grass/legume mixtures In Pant relations in pastures JR Wilson (Ed) Canberra. Australia 439 p
13. VANCE, $C_{\text {, }}$ HEICHEL. G; BARNES, D: BRYAN, J: JOIINSON, L.. 1979. Nitrogen fixation, nodule development and vegetative regrowth of alfalfa (M sativa L) following harvest. Plant Pbysiology 64:1-8.

14 VARLEI-GRANCIHRR.C. 1982 Analyse du rendement de la conversion de l'énergie solaire par un couvert végétal Thèse d'Elat Université du Paris Sud 144 p.

15 VARIET-GRANCIER, C ; GOSSE, G; CHARTIER. M.; SINOQUIET. H: BONIOMME, R; AILIRAND, JM 1989. Mise au point: Rayonnement solare absorbe ou intercepté par un couvert végétal Agromomie 9:419-439

16 WIL.LI:Y. R W 1979a Intereropping: Its importance and research needs 1 Competition and yield advantages Field Crop A bstracts $32: 1.10$
17. WILLEY, R.W 1979b. Intercropping: Its importance and research meeds II Agronomy and research approaches Feld Crop Abstracts 32:73-85
$18 \mathrm{WHI}, \mathrm{C} \mid \mathrm{DI}$ 1960. On competition Versh Landlouwk Onder\% 66(8):1.82

19 WII, CT. DI: 1965. Photosynthesis of leaf canopies Wageningen, Center for Agric Publ Agric Rescarch Report no. $663 \quad 57 \mathrm{p}$.

Efectos del Fosetil-Al en Cítricos
 I. Gomosis y Posibilidades de Control ${ }^{1}$

M. Suárez* , Delgado*, D. Martínez*, L Suárez**

Abstract

Phytophthora gummosis performance in three citrus varieties grafted onto sour orange (Citrus aurantium L.") was studied. "Marsh" grapefruit (C. paradisi Macf.) on sour orange was the most sensitive combination, followed by "Ortanique" tangor (C, reticulata Blanco x C sinensis (L^{\prime}) Osbeck); less affected was "Valencia" orange. Different gummosis control methods were also tested to evaluate the possibilities of using Fosetil-Al (Aliette) as compared to the current thermal method and traditional trunk surgery, Good results were attained with the application of Fosetil-Al at the rate of $60 \mathrm{~g} / 1$ after surgery and at $100 \mathrm{~g} / 1$ smeared on after a simple surface scratching in the affected area. Foliar-applied Fosetil-Al at the rate of $2.5 \mathrm{~g} / \mathrm{l}$, was able to protect trees from further Phytophthora spp. attacks, and provided acceptable lesion control.

Key words: Phytophthora, citrus fruits, Fosetil-Al.

INTRODUCCION

En la Empresa de Citricos Victoria de Girón, en Cuba, la gomosis está ampliamente diseminada (4), aun cuando el patrón más utilizado es el naranjo agrio (C aurantium L.) que muestra resistencia a patógenos del género Phytophthora tal como P parasitica Dastur, que ha sido aislado de la corteza de plantas enfermas en áreas de producción (5)

Con el envejecimiento de las plantaciones y la tendencia a la diversificación con nuevos patrones y varicdades, esta problemática cobrará más importancia, por lo que se necesitan medidas preventivas y curativas más eficientes. El objeto de este trabajo es evaluar las posibilidades de empleo del fungicida sistémico Fosetil-Al (Alicttc), para controlar Phytophthora spp. $(3,9)$.

1 Recibido para publicación el 9 de julio de 1991

* Estación Experimental de Cítricos. Jagaey Grande, Matanzas, Cuba
** Empresa de Citricos Victoria de Girón, Jagiey Grande, Matanaas, Cuba

COMPENDIO

Se realizaron estudios sobre el comportamiento de la gomosis debida a Phytophthora spp., en tres variedades de cítricos injertadas sobre naranjo agrio (Citrus aurantium L). Los resultados demuestran que la combinación más sensible es el pomelo "Marsh" (C. paradisi Macf.), seguida por tangerina "Ortanique" (C. reticulata Blanco \times C, sintensis (L.) Osbeck) y, finalmente, con menores afecciones por naranjo "Valencia" (C. sinensis (L.) Osbeck). También se evaluaron diferentes métodos de control de la gomosis con el objeto de conocer las posibilidades de empleo del Fosetil-Al (Aliette), en comparación con el actual método térmico y la tradicional cirugha vegetal. Se obtuvieron resultados satisfactorios con la aplicación de Fosetil-Al a $60 \mathrm{~g} / \mathrm{l}$, posterior a la cirugia, y a 100 g/l aplicado por embadurnamiento después de un simple raspado superficial en la zona dañada. El Fosetil-Al en aspersión foliar en una dosis de $25 \mathrm{~g} / \mathrm{l}$, además de proveer un aceptable control de los chancros, fue capaz de proteger a los arboles de ataques ulteriores de Phytophthora Spp.

Palabras claves: Phytophthora, citricos, Fosetil-Al.

Laville y Chalandon (8) plantcaron que, con aspersiones foliares de Fosetil-Al en zonas geográlicas muy diferentes y en condiciones de suelos y climas muy variados y en citricos de distintos tipos, se han obtenido excelentes controles, una cicatrización completa de los chancros inducidos en los troncos y ramas principales con P parasitica y P citrophthora, especies que causan la gomosis en Cuba (12).

Las plantas estudiadas estaban injertadas a una altura de 40 cm y los chancros se presentaron por encima de la unión patrón-injerto.

MATERIALES Y METODOS

El trabajo se desarrolló en la Empresa de Cíticos Victoria de Girón, en un lote típico (400 ha) plantado con pomelo "Marsh" (C. paradisi Macf.) de 12 años de edad, tangcrina "Ortanique" (C reticulata Blanco x C sinensis (L.) Osbeck) y naranjo "Valencia" (C sinensis (L.) Osbeck), ambos con 14 años de edad e injertados sobre naranjo agrio, con un marco de plantación de 5 $\mathrm{m} \times 10 \mathrm{~m}$ para cl primero y de $4 \mathrm{~m} \times 8 \mathrm{men}$ los restantes.

El suclo es ferralítico rojo úpico y el ricgo es por aspersión

En cada varicdad se tomó el 50% del área plantada en el lote, se mucstrearon todos los campos pares y las hileras 6 y 12 en cada uno de cllos, evaluando las plantas de acuerdo con la siguiente metodología:

Grado Descripción
$0 \quad$ Plantas sanas
1 Menos del 25% del area del tronco afectada, sin sintomas foliares.

2 Entre el 25% y cl 50% del área del tronco afectada, amarillamiento en una o dos ramas principales.

3 Más del 50\% del área del tronco afectada, defoliación generalizada, con amarillamiento marcado.

4 Plantas próximas a morir
Los índices de afección por gomosis se determinaron mediante las fórmulas:

Donde:
NO ... N4 - Numero de plantas en cada grado. N - Número total de plantas.

Diferentes tratamientos en el control de la gomosis

Se evaluaron distintos métodos para el control de la gomosis, los que se describen a continuación:

Térmico: Aplicacion de calor directamente sobre la zona dañada por medio de la llan a de un soplete.

Cirugia vegetal: Descortczamiento del area afectada, hasta delimitar bien los márgenes entre la lesión y los tejidos sanos.

Ventana: Sólo se realizó cl descortezamiento en un área de $100 \mathrm{~cm}^{2}$ aproximadamente, ubicada en forma de ventana en la zona central de la lesión

Respaldo superficial: Se raspó la superficic visiblemente dañada sin llegar a profundizar en la cortera.

Sin raspar: Se mantuvo intacta la lesión
Foliar: Aspersión del follaje con el fungicida, empleando una motomochila manual

Como se refleja en el Cuadro 1, se estudiaron comparativamente el método térmico, aplicando la llama de un soplete durante cuatro o cinco segundos sobre la zona afectada, la cirugía vegetal con los tratamientos de los fungicidas sulfato u oxicloruro de cobre más cal o Fosetil-Al en diferentes dosis, y los métodos de la ventana, del raspado o sin raspar, con aplicaciones de Foscul-Al a las dosis referidas.

Otras variantes de utilización del Fosetil-Al fueron: dos aspersiones foliares a razón de 5 I por árbol al inicio y final del período lluvioso (mayo y octubre) y una sola aplicación al inicio de las lluvias

En funcion del numero de variantes utilizadas para cada método de control de la gomosis en estudio, correspondicron entre 10 y 20 árboles escogidos al azar dentro de un campo Lípico de pomelo "Marsh" y, como se observa en el Cuadro 1 , inicialmente se midieron los chancros y, despućs de observaciones periódicas, se tomó como cvaluación linal la realizada a los 30 meses de efectuados los tratamientos. Para conocer la intensidad de la afeceión se utilizó el procedimiento descrito anteriormente, pero empleando la siguiente escala:

Grado Descripción

0 Plantas cicatrizadas, \sin exudaciones.
1 Plantas cicatrizadas, con exudaciones.
2 Plantas no cicatrizadas.

La efectividad de cada uno de los tratamientos se determinó mediante la formula:

$$
\text { Porcentaje de efectividad }=\frac{1-\text { IA tratamiento }}{\text { IA testigo }} \times 100
$$

Cuadro 1. Dimensiones de los chancros y comportamiento de la gomosis con diferentes tratamientos y métodos de control.

Métodos de control	Tratamientos (concentración)	Lesión (cm x)		Intensidad de la afección después de 30 meses (\%)
		largo	ancho	
Térmico	Calor	54.6	10.7	10
	Sulfato de cobre + cal ($100-150 \mathrm{~g} /$)	55.1	6.5	0
Cirugía	Oxido de Cobre +			
vegetal	cal ($100-150 \mathrm{~g} / \mathrm{l}$)	46.9	6.2	10
	Fosetil-Al ($50 \mathrm{~g} / \mathrm{l}$)	53.2	6.4	20
	Fosetil-Al ($60 \mathrm{~g} / \mathrm{l}$)	57.2	6.8	10
"Ventana"	Fosetil-Al ($50 \mathrm{~g} / \mathrm{l})$	60.3	13.3	80
	Fosetil-Al (60 gl)	56.3	13.1	60
"Raspado"	Fosctil-Al ($50 \mathrm{~g} / \mathrm{l}$)	47.6	7.1	40
superficial	Fosetil-Al (60 g/l)	51.4	83	20
	Fosetil-Al (100gh)	55.9	7.4	0
Sin raspar	Fosetil-Al ($60 \mathrm{~g} / \mathrm{l}$)	53.8	7.8	60
	Foseti-Al ($100 \mathrm{~g} /)$	60.9	110	40
Foliar	Fosetil-Al 1 aplicación			
	(2.5 gl) Fosetil-Al 1 aplicación	59.6	12.4	20
	$(25 \mathrm{gl})$	49.7	90	20
Testigo	-	60.7	13.2	90

RESCLLADOS Y DISCUSION

Distribución e intensidad de afección de la gomosis

La gomosis se encontró en todos los campos muestreados (Cuadro 2) con la tendencia a un elevado porcentaje de plantas con daños menores al 25% del área y \sin sintomas foliares (grado 1), aunque un reducido porcentaje en pomelo "Marsh" y tangerina "Ortanique" manifestó sintomas foliares, debido a que las afecciones llegaron a alcanzar entre el 25% y el 50% del perimetro del tronco (grado 2).

Si no se toman las medidas de control oportunas, al transcurrir el tiempo, se incrementará el número de plantas afectadas y se agudizarán las consecuencias de los daños producidos fundamentalmente en pomelos. En éstos aparecicron unas pocas plantas con defoliación generalizada, debido a las lesiones en el
tronco, que sobrepasaronel 50% de su superficie (grado 3); en esta fase ya no es posible recuperar las plantas afectadas y, al pasar más liempo, un mayor número de ellas alcanzarán este grado.

Es necesario aplicar medidas de control, además, por las mermas considerables en la producción de los árboles enfermos, los que pueden llegar a morir (2). Scgún Klotz y Childs (6) la enfermedad causa daños significativos en las raices y en la zona basal de la planta hasta ocasionar severas lesiones que pueden ser graves y permanentes, debido a que los azúcares y otras sustancias, producidas en las hojas, no pueden translocarse hasta el sistema radical y alimentarlo.

En las plantaciones estudiadas, aunque el sintoma no se presenta en la zona basal por la resistencia del patrón naranjo agrio (2) a Phytophthora, las lesiones en troncos y ramas principales también obstaculizan la circulación de sustancias claboradas.

Cuadro 2. Porcentaje de plantas afectadas por gomosis en cada grado.

		Afección (\%)				
Variedad	Total de plantas	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
"Marsh"	1342	83.8	15.1	1.1	0.1	0.0
"Ortanique"	1824	91.6	8.0	0.4	0.0	0.0
"Valencia"	1824	96.9	3.1	0.0	0.0	0.0

Cuadro 3. Distribución e intensidad de afección de la gomosis en el lote.

		Variedades	
Indices (\%)	${ }^{n}$ Marsh n	${ }^{\text {"Ortanique }}$	
Distribución	11.4	8.9	3.1
Indice de afección	4.3	2.2	0.8

En el Cuadro 3 se observa que los mayores problemas se encontraron en pomelo "Marsh", con valores del 11.4% y 4.3% de distribución e intensidad respectivamentc, conclusiones a las que llegaron también García et al. (4) en estudios realizados por la empresa. En "Ortanique" la distribución refleja valores no menos importantes al alcanzar el 8.9% de los árboles, mientras que en naranjo "Valencia" sólo el 3.1% de las plantas presentó chancros producidos por Phytophthora.

Acción de diferentes tratamientos en el control de la gomosis

Los resultados demuestran (Fig. 1) que el control de la gomosis mediante el método térmico es efectivo; y la tradicional cirugía vegetal, también, mostró un buen control con la aplicación de sulfato u oxicloruro de cobre más cal, ambos en dosis de $100 \mathrm{~g} / \mathrm{l}$ y con FosetilAl a $60 \mathrm{~g} / \mathrm{l}$ como "protectantes" en el área descortezada.

ElFosetil-Al aplicado a $50 \mathrm{~g} / \mathrm{l}$ y $60 \mathrm{~g} / \mathrm{l}$, con el método de la "ventana", refleja resultados no satisfactorios, ya que el contacto del producto en la parte central de la lesión estimula la cicatrización fundamentalmente en la zona donde se practicó la ventana.

Fig. 1. Efectividad de los diferentes tratamientos y métodos en el control de la gomosis.

Por lo tanto es difícil eliminar la presencia del chancro por este método; sin embargo, el Fosetil-Al aplicado sobre superficics dañadas raspadas superficialmente ofrece una mejor actividad de control, sobre todo con dosis de $100 \mathrm{~g} / \mathrm{l}$, mediante las cuales las plantas se recuperaron. Pero el valor de este método no radica solamente en el porcentaje de plantas que se pueden curar, sino también en la capacidad de recuperación de los chancros. Es así que los tejidos enfermos no muy afectados pueden recuperarse totalmente; en chancros, donde el hongo solo haya
provocado la muerte parcial de los tejidos en lesiones aun bien expandidas, se puede observar que el tejido enfermo se desprende en forma de escamas al ser sustituido por otro nuevo de apariencia completamente sana; y en chancros más avanzados se desprende la corteza sin ser renovada sólo en la parte más afectada por el patógeno. De ahí que este método permite una recuperación más rápida en los árboles, logrando la desaparición de los chancros en un tiempo más breve; cuando la cicatrización no es completa porque la zona afectada es muy grande, la permanencia de las lesiones cicatrizadas siempre tiene un diámetro inferior que con los métodos empleados hasta el momento (Fig. 2).

Fig 2. Control de la gomosis con el método del "raspado" superficial y la aplicaciôn de Fosetil-Al en lesiones muy desarrolladas.

Las concentraciones más altas de Fosetil A-1 ($60 \mathrm{~g} / \mathrm{l}$ y $100 \mathrm{~g} / \mathrm{l}$), aplicadas directamente sobre la superficie afectada, fueron poco efectivas, debido probablemente a la disminución del contacto del producto con los tejidos activos de la planta; lo mismo pudo haber ocurrido con el método de la "ventana", donde la translocación del Fosetil-Al, a través de los haces conductores, parece estar limitada, como consecuencia de los daños producidos por Phytophthora spp.

Se conoce que el Fosetil-Al actúa estimulando los mecantsmos de autodefensa de la planta y no por con-
tacto directo con el patógeno (11), por lo que para un buen control de la gomosis, además de la dosis adecuada de Fosecil, éste necesita ser absorbido y translocado con eficiencia.

Al valorar el estado sanitario general de las plantas tratadas mediante los métodos "térmico", de cirugia vegetal con aplicación de cobre más cal y "raspado" superficial con aplicación de Fosetil-Al a $100 \mathrm{~g} / \mathrm{l}$, se observó la presencia de exudaciones de goma en un $80 \%, 60 \%$ y 40% respectivamente, como consccuencia de los chancros producidos por Phytophthora spp. en otras partes del tronco y las ramas principales. Esto indica que dichos métodos no eliminan otros chancros, ya establecidos, ni evitan la aparición de otros puntos de infección, mientras que el Fosetil-Al, aplicado al follaje, es capaz de suprimir el desarrollo de Phytophthora spp. y posibilita que las plantas se mantengan libres de infecciones durante un periodo de tiempo prolongado, debido al efecto sistecmico de este fungicida y a su capacidad de moverse en forma ascendente y descendente en la planta (10). Es el sistema descendente el que le permite que, una vez aplicado al follaje, pueda controlar a Phytophthora spp en las partes bajas de la planta, no sólo cuando mucstra los síntomas visibles (Fig. 3) sino tambićn en las infecciones incipientes, ya que la gomosis no es más que la manifestación externa de afecciones severas.

Fig. 3 Control delagomosisenlesiones pocodesarrolladas con aplicación foliar de Fosetil-Al

En sentido general, los resultados obtenidos en el control de loa gomosis, coinciden con los estudios de Laville y Chalandon (8) en tratamientos directos sobre chancros de Phytophthora spp. inducidos o por infecciones naturales, donde soluciones de Fosetil-Al, en comparación con las técnicas clásicas de embadurnamiento mediante caldos cupricos o captafol, lograron un cese inmediato del desarrollo de los chancros, acompañado de un cese de la exudación de goma, independientemente, del tamaño de los mismos Además, con aplicaciones foliares de Fosetil-Al, se obtuvo un control completo y a largo plazo de los chancros producidos por Phytophthora spp .

CONCLUSIONES

La encuesta realizada en el área escogida demuestra que la gomosis causada por Phytophthora spp. se encuentra ampliamente distribuida. Son más importantes los daños en pomelos por su marcada susceptibilidad, a pesar de estar injertados sobre naranjo agrio.

Para controlar esta enfermedad los resultados confirman que en el tratamiento directo de los chancros en los troncos o ramas principales, se pueden utilizar diferentes métodos tales como:

- Térmico: Aplicación de calor con la llama de un soplete.
- Cirugía vegetal: Como "protectantes" en la zona descortc\%ada
a) Sulfato de cobre más cal ($100 \mathrm{~g} / \mathrm{l}-150 \mathrm{~g} / \mathrm{l})$.
b) Oxicloruro de cobre más cal ($100 \mathrm{~g} / 1-150 \mathrm{~g} / \mathrm{l})$
c) Fosctil-AI $(60 \mathrm{~g} / \mathrm{I})$
- Raspado superficial y aplicación de Fosetil-Al ($100 \mathrm{~g} / \mathrm{l}$).

Estos métodos son efectivos, pero resultan poco prácticos por su laboriosidad, fundamentalmente la cirugía vegetal; y no es raro observar un alto porcentaje de plantas con nueva actividad de chancros que hace necesarios nuevos tratamientos. Este aspecto cobra mayor importancia en las condiciones de la citricultura extensiva que se desarrolla actualmente en Cuba.

El Fosetil-Al puede utilizarse con éxito por cmbadurnamiento de los chancros después de un simple raspado superficial de la zona afectada, lo cual hace más práctico el mćtodo ya que no es necesario eliminar la corteza afectada ni delimitar los tejidos sanos y enfermos, como exigen los preparados cupricos. Pero evidentemente, este tipo de tratamiento se hace más
necesario cuando se produce un descubrimiento tardío de la gomosis; por consiguiente, el Fosetil-Al debe aplicarse preferiblemente por vía foliar como tratamiento preventivo-curativo en las plantaciones, a partir de un determinado porcentaje de plantas con síntomas visibles de la enfermedad, cuando se garanticen resultados económicos positivos.

LITERATURA CITADA

1 DAVIS, R.M. 1982. Control of Phytophthora root and foot rot of citrus with systemic fungicides metalaxyl and phosethyl aluminum Plant Discase 66(3):218-220.

2 FAWCETT, H.S. 1936. Citrus diseases and their control New York, McGraw. 656 p.
3. FEICHIENBERGER, E. 1982 Research work on the control of Phytophthora gummosis of citrus with systemic fungicides in Brazil. Marrakeck, Journées Alictte 274:11.

4 GARCIA, R ; AGULAR, H: TOLEDO. JL. 1983. La pudrición del pie de los cítricos en la Empresa de Cítricos "Victoria de Girón" Centro Agricola 10(3):93-104

5 HERRERA, L. RIVERO, L. DEL; GARCIA, R 1980 Resistencia varietal de especies y variedades de cítricos a Phytophthora parasitica Dastur Centro Agrícola 7(1):141-151

6 KL.OMZ. 1.J; CIII.DS, JFI. 1963. La podredumbre del pic de los citricus. Irad. por J. Mesa. In USDA:Enfermedades de las plantas Méx. p 855-859

7 LAVILLE, E 1979. Utilisation d'un nouveau fongicide systemique: L.Aliette, dans la lutte contre la gormose à Phytophthora des agrumes. Fruits 34(1):35-41

8 LAVHLLE, E; CHAI ANDON, A 1982 Sintesis de los resultados obtenidos con el Fosetil-Al en la lucha contra las enfermedades de los agrios debidas a Phytophthora Fruits 37(1):11-17
9. MATIEUS, JD ; NISHIDA, T.; 1984. Timing foliar sprays of phosethyl-Al to control Phytophthora gummosis in lemon trees. In International Citrus Congress (So Paulo) Abstracts 461.

10 PAVIOT. J; MANIORIE.JIE 1986 Utilización de Aliete contra las enfermedades de los citricos In Simposio Internacional sobre Citricultura Tropical (La Habana, Cuba) Abstracts 447

11 RAINAL., G; RAVISE, A; BOMPEIX, G. 1980. Action dutris-o-ethyl-phosphonate d'aluminium sur la pathogenic de Plasmopara viticola et sur la stimulation des reactions de défense de la vigne Annales de Phytopathologie 12(3): 163-175.
12.ZAMORA. V ; CASIN, J. 1986. El género Phytophthora como causante de enfermedades en los citricos. Boletin de Reseñas. Cítricos y Otros Frutales 24:56.

Efectos del Fosetil-Al en Cítricos II. Influencia sobre Rendimientos ${ }^{1}$

R. Delgado*, M. Suárez*, R Casamayor*

Abstract

Fosctil-Al effects on mature grapefruit (Citrus paradisi Macf.) trees grafted to sour orange (C. aurantium L.) treated over two consecutive years (four applications per year) are evahuated. This systemic fungicide was able to increase yields significatively by increasing the number of fruits per tree the first year and by enhancing fruit size in both years. Quality analysis showed increased physical characters with nochange in the chemical ones. Of the three rates evaluated (2.5, 5 and $20 \mathrm{~g} / 1-51$ of solution per tree), the $5 \mathrm{~g} / \mathrm{l}$ rate showed the best results.

Key words: Phytophthora, Fosetil-Al.

COMPENDIO

Seevaluaron los efectos del losetil-Al durante dos años de aplicación consecutiva (cuatroaplicaciones al año), en árboles adultos de pomelo "Marsh" (Citrusparadisi Macf.) injertados sobre naranjo agrio (C. aurantium L.) Este fungicida sistémico logró elevar significativamente los rendimientos, pues en el primer año se incrementó el número de frutos por planta y en dos años aumentó el tamaño de las frutas. El análisis de calidad denota incrementos en los caracteres físicos de los frutos, sin alteractones en los caracteres quimicos. De las tres dosis evaluadas ($25 \mathrm{~g} / \mathrm{l}, 5 \mathrm{~g} / 1$ y $10 \mathrm{~g} / \mathrm{l}$, a razón de 51 de solución por planta), se obtuvieron los mejores resultados al emplear 5 g por litro.

Palabras claves: Phytophthora, Fosetil-Al.

INTRODCCCION

Durante los últimos años se han estudiado diferentes productos quimicos, destinados al control de Phytophthora spp en citricos. Entre éstos, el Alictic o Fosetil-Al (Tris-o-etil fosfonato de aluminio) se ha utilizado comerciaimente en varias regiones citricolas del mundo.

Se le ha empleado en viveros y plantaciones jóvenes y adultas de diferentes combinaciones patrón-injerto. En plantaciones adultas se han logrado aumentos significativos en los rendimientos $(6,7,8)$, aunque la respuesta es variable, al parccer relacionada con el nivel de infección de Phytophthora spp.

Se ha demostrado que, con Fosetil-Al, la longitud de las raíces puede aumentar hasta en un 300% (4). De esta forma, en las regiones más afectadas y donde hay una mayor cantidad de propágulos por gramos de suelo en la rizosfera, se puede esperar una mejor respuesta. Habrá una mayor recuperación con respecto a los árboles no tratados y, por tanto, una mejor absorción de agua y nutrimentos en los árboles tratados con dicho producto.

[^5]La Empresa de Cítricos de Jagücy Grande, si bien no presenta una de las árcas citricolas con más gomosis en el pais, tiene la enfermedad ampliamente distribuida fundamentalmente en pomelos, con una distribución de un 114% en un lote estudiado como se refleja en la primera parte de este trabajo. Ello presupone un nivel de infección alto en las raíces (no visible) en nuestras plantaciones.

La mayor parte de los estudios con Fosetil-al en citricos sc ha encaminado hacia el control de Phytophihora spp., tanto de forma preventiva como curativa, bondades que se han demostrado convincentemente en diferentes regiones del mundo (1, 2, 4, 9).

Elobjetivodel presente trabajoesevaluar los efectos del Fosetil-Al en pomelos adultos y definir la dosificación óptima con el propósito de mejorar los rendimientos

MATERIALES Y METODOS

Se emplearon plantas aparentemente sanas de pomelo "Marsh" (C paradisi Macf.), injertadas sobre naranjo agrio (C aur antium L), plantadas en 1975 a $5 \mathrm{~m} \times 10 \mathrm{~m}$, en un suclo ferralitico rojo lípico y con un sistema de riego por aspersión bajo pronóstico.

El Fosetil-Al se aplicó al asperjar el follaje con una motomochila manual durante cuatro veces al año (enero, abril, julio y octubre), coincidiendo con los períodos de actividad vegetativa.

Se usaron 51 de solución final y los tratamientos fucron:

- Solución de $2.5 \mathrm{~g} / \mathrm{l}$ ($12.5 \mathrm{~g} /$ plantas $)$
- Solución de $5 \mathrm{~g} / 1(25 \mathrm{~g} /$ planta $)$
- Solución de $10 \mathrm{~g} / \mathrm{l}$ ($50 \mathrm{~g} /$ planta)
- Testigo (sin aplicación).

En cada ratamiento se utilizaron cinco réplicas de tres árboles, dispuestos en un diseño de bloques al azar.

Se estudiaron los efectos durante dos años de aplicación consecutiva (1987 y 1988), evaluando el número de frutos por planta y su peso. Además, se efectuó un análisis de calidad cada año para lo cual se tomaron cinco réplicas de 12 frutas por tratamiento (4 por árbol), analizando los siguientes caracteres: diámetro, altura, peso y grosor de la conteza, así como el porcentaje de sólidos solubles totales (SST), por refractometría, el de acide\% por titulación con NaOHO , 1 N , en presencia de fenolftaléna como indicador, el indice de madurez (SST/acidez) y el contenido de vitamina C con 2 -6-diclorofenol indofenol.

Los procedimientos agrotécnicos se efectuaron siguiendo los instructivos técnicos que se aplican en la producción.

Los resultados fueron procesados estadísticamente por medio de análisis de variancia y la prucba de rangos múliples de Duncan, ($\mathrm{P}=0.05$). Los datos expresados en porcentaje se transformaron para el análisis mediante la fórmula, 2 arcsen V x

RLSLLTADOS Y DISCLSION

Como se observa en la Fig. 1, el Fosetil-Al mejoró signilicativamente los rendimientos en el primer año de aplicaciones, fundamentalmente debido al incremento en el nümero de frutos y a un ligero aumento en el peso.

Se ha postulado (5) que el mecanismo de acción del Fosetil-Al se basa en la clevación de la capacidad defensiva de la planta, contra diferentes especies patógenas del género Phytophthora.

Para esto, su doble sistema ascendente y descendente permite este control en la zona radical, donde la incidencia de Phytophthora spp y sus efectos negativos sobre los rendimientos están aun poco estudiados en nucstras condiciones.

Al parecer estas plantas aparentemente sanas, respondieron a las aplicaciones de Fosetil-Al, ya que aunque el patrón de naranjo agrio es bastante resistente a Phytophthora spp (9), debe existir un cierto grado de afección en las raíces controlable por este fungicida sistémico.

El segundo año de aplicaciones consecutivas (1988) no muestra incrementos significativos en los rendimientos, aunque el peso de los frutos si aumentó significativamente. Esto puede deberse al efecto alternante del primer año de aplicaciones sobre el segundo; no obstante, ain en las variantes de mayor incremento en el primer año, no hubo caídas en los rendimientos en el segundo, lo cual indica que las plantas tratadas con Fosetil-Al mantienen la ventaja sobre las no tratadas.

El hecho de que en el primer año mejore el numero de frutos por plantay que en el segundo sucalibre pucde explicarse, a través de la hipótesis de que la clevación en la capacidad de absorber agua y nutrimentos y en el estado general de los árboles del primer año repercutió desde los primeros componentes del rendimiento (floración, cuaje). Ello clevó el número de frutos y su aumento en tamaño no fue tan marcado, por la multiplicación de los consumidores de reservas al aplicar Fosetil-Al y la lógica competencia que se establece entre las estructuras reproductoras; no obstante, a pesar de aumentar significativamente el numero de frutos, su tamaño no fue menor, únicamente explicable sobre la base de que estas plantas suministraron mas nutrimentos hacia sus frutos.

En el scgundo año, la fructificación pudo cstar limitada por los incrementos en el año anterior, como se ha sugerido, sin embargo, en árboles con cantidades aproximadamente iguales de frutos, su crecimiento fue mayor, evidenciando la capacidad del Fosetil-Al en ese año de aumentar el calibre, efecto logrado con la mejoría en el estado general de los árboles.

Hubo inerementos en los rendimientos hasta de $5.5 \mathrm{t} / \mathrm{ha}$ con $5 \mathrm{~g} / \mathrm{l}$ de Fosetil-Al, mientras que con $10 \mathrm{~g} / \mathrm{l}$ los efectos fucron más pobres.

El análisis de calidad (Cuadro 1) mostró que no hubo diferencias en los caracteres químicos en ambos años, mientras que los caracteres físicos (peso, diámetro, alura y espesor de contera) aumentaron significativamente en el segundo. El porcentaje de jugo se elevó con dosis intermedias en 1987.

Como se observa en el Cuadro 2, en todos los casos hubo inerementos en los rendimientos, y la respuesta más consistente se obtuvo con la dosis intermedia ($5 \mathrm{~g} / \mathrm{l}$). Aquí debe considerarse que el análisis se hace sobre la base de los efectos en plantas aparentemente

Leyenda: Letras iguales no difieren según la prueba de tangos múltiples de Duncan en cada carácter y año, $\mathrm{P}=0.05$
Fig. 1. Efectos del Fosetil-Al sobre los rendimientos (tha), la fructificación (número de frutos por planta) y el peso de los frutos (g) durante 1987, 1988, y el promedio.

Cuadro 1. Análisis de calidad en frutos de árboles de pomelo "Marsh" tratados con Fosetil-Al y sin tratar.

$\begin{aligned} & \text { Dosis } \\ & (\mathrm{g} / \mathrm{l}) \end{aligned}$	Peso (g)	$\begin{aligned} & \text { Diámetro } \\ & \text { (mm) } \end{aligned}$	Altura (mm)	Espesor corteza (mm)	Jugo (\%)	SST (\%)	Acidez	SST/ Acidez (\%)	$\begin{gathered} \text { Vitamina C } \\ \text { (mg/100 ml } \\ \text { jugo }) \end{gathered}$
COSECHA 1987									
0	362	90.0	84.1	6.6	26.8 b	9.0	1390	6.5	443
2.5	398	90.5	86.0	6.5	30.6 a	9.4	1339	7.0	44.3
5	388	90.1	84.1	6.0	27.8 ab	90	1359	6.7	43.0
10	372	90.6	85.0	6.5	26.5 b	9.0	1378	6.6	44.4
sig.	n S	ns	ns	ns	*	ns	ns	ns	ns
COSECHA 1988									
0	352 b	87.0 b	84.0 b	3.9 b	44.4	8.9	1114	8.0	37.8
25	376 b	90.0 a	90.0 a	5.6 a	43.7	90	1083	8.4	36.1
5	418 a	92.0 a	90.0 a	42 b	45.2	8.9	1127	7.9	37.0
10	380 b	92.0 a	900 a	4.2 b	436	9.0	1039	8.7	36.8
sig.	*	*	*	*	n.	ns	ns	ns	ns

Nota: Valores con letras iguales no difieren según la muestra de rangos múltiples de Duncan, $\mathrm{P}=0.05$
Cuadro 2. Readimientos obtenidos con cuatro aplicaciones anuales de Fosetil-Al en pomelo "Marsh".

| Tratamientos
 odosis
 g/l tha incremento | Cosecha 1987
 Rendimiento
 (t/ha) | Incremento | Cosecha 1998
 Igual que 1987
 Rend.
 Inc. | X Para los
 2 años
 Rend. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Inc. | | | | |

Sanas, dentro de un campo con plantas afectadas por gomosis en el tronco y las ramas. Estas últimas deben dar una mayor respucsta y a más largo plazo; los efectos económicos serán más positivos por el saneamiento en las plantaciones que se logra al recuperar las plantas declinantes, aspecto considerado en el articulo anterior.

Resumiendo se puede concluir que el Fosetil-Al inerementa los rendimientos de los pomelos adultos injertados sobre naranjo agrio, para lo cual $5 \mathrm{~g} / \mathrm{l}$ fue la dosis más efectiva.

Que la mejora en los rendimientos se debe a una mejor fructificación y a un aumento en el peso de los frutos, incrementando los caracteres físicos de los mismos sin alterar los caracteres químicos.

IITERATLRA CIMADA

1 FARIH, A; MENGLE, JA;TSAO, P.H: OHR, HD. 1981. Metalaxil and efosite aluminum for control of Phytophthoragummosis and root rot on citrus Plant Discase 65(8):654-657

2 FROSSARD, P:HAURY, A:LAVILIE, F 1977. Resultants préliminaires concernant lactivité de Tethyphosphite daluminium (LS 74-783) sur les madades a Phytuphthora des agrumes, I avocatier et de I'ananas Phytiatr-Phytopharm. 26:55-61.
3. HERRERA, L... DEL RIVERO, L. GARCIA, R 1980 Resistencia varietal de especies y variedades de cítricos a Phytophthora parasitica Dastur Centro Agrícola 7(1):141-151.
4. LAVIILE, E. 1979. Utilisation dun nouveau fongicide systémique: l'Alictte, dans la lutte contre la gommose à Phytophihora des agrumes. Fruits 34(1):35-41
5. MENGE, J.A. 1986 Use of new systemic fungicides on citrus Citrograph 71(12):245-250.
6. PAVITO, J; MONFORIE, JE 1986 Utilización de "aliette" contra las enfermedades de los citricos In SimposioIntemacional sobre Citriculura Tropical Abstracts 447.
7. PINTO, W.BS: PRAIES HS; MLLAN, JEE 1987 A valiação da produtividadecmtalhões de pomelotratados
com o fungicida sistêmico fosetil-al, devido à incidencia de Phytophthora parasitica. In Congreso Brasileiro sobre Fruticultura (9) Abstracts 37:20.

8 PRATES, HS : MLAN, JEE 1987. Efeito do fosetilal na melhoria de productividade de talhoes cítricos, como incidencia da gomose de Phytophthora. In Congreso Brasileiro sobre Fruticultura (9.). Abstracs 57:30

9 TIMMER, L W, 1979 Preventive and systemic activity of experimental fungicides against P. parasitica on citrus Plan Disease Reporter 63:324-372.

Efecto de las Propiedades Mecánicas sobre Suelos Rojo-Arcillosos del Centro-Sur de Chile ${ }^{1}$

A Ellies*, R. Mac Donald*, C.Ramírez*

Abstract

Inadequate use has caused degradation of red clay soils of southern Chile resulting in alteration of their physical/mechanical properties. This study determined the normal variation of these properties in three different red elay soils of the IX and X Regions. Characteristics of the principal soil series of the area were obtained, selecting those with the most significant agriculfural activity. Penetration resistance and torsion shear of 30 sites of each soil series was measured In winter every 10 cm , up to a depth of 40 cm . In addition, undisturbed soil samples were taken to determine pore space. Information obtained was subjected to cluster analysis, selecting three sites of each soil series that represented different compaction groups (high, medium and low). In the same sites, a vegetation census was carried out to determine plant coverage and soil samples were taken to separate roots by the floatation method. The number of plant species diminished as compaction increased in the soils, and those with thick roots dominated. Total root biomass decreased in the same way, being more strongly expressed in those soils under marked seasonal precipitation. Biomass variation mainly affected fine roots.

INTRODUCCION

La maquinaria agricola, actualmente en uso, ha incrementado notablemente su potencia y peso. Ello en muchas ocasiones provoca una disminución en el rendimiento por compactación del suclo. En la mayoría de los casos, el efecto compactante es negativo para el desarrollo vegetal, y en especial, cuando el subsuclo es muy denso (2,9), Las interrogantes sobre las presiones aceptables que se pueden ejercer sobre el suclo son frecuentes. La aparente ventaja en la utilización de equipos pesados

[^6]
COMPLEDIO

El uso inadecuado de los suelos rojo-arcillosos de la zona sur de Chile ha provocado su degradación, alterando sus propiedades fisico-mecánicas. En este estudio se determinan los rangos más comunes de estas propiedades en tres tipos de suelos rojo-arcillosos de las regiones IX y X. Se procedió a fijar los parámetros físico-mecínicos de las principates series delazona, seleccionando aquellas con las áreas agropecuarias más significativas. Durante el periodo invernal, en 30 lugares de cada serie de suelo, se precisóla resistencia a la penetración y a la torsión, por estrato de 10 cm , hasta una profundidad de 40 centimetros. Paralefamente, se recolectaron muestras de suefo sin revolver para determinar la magnitud del espacio poroso. Los antecedentes fueron sometidos a un análisis de conglomerados, para lo cual se seleccionaron tres lugares por serie, que difirieron en el grado de compactación (alto, intermedio y suclto). En los lugares seleccionados se levantaron censos de vegetación para establecer el grado de cobertura y se tomaron muestras del suclo para separar raices mediante flotación. El número de especies disminuyó al aumentar el grado de compactación en los suelos, dominando aquéllas con raíces gruesas. La biomasa radicular disminuyó en el mismo sentido, acentuándose en los suclos sujetos a una distribución más estacional de las precipitaciones. La variación en la biomasa afectó principalmente las raices finas. Igual efecto se observó con un aumento en la resistencia a la penetración y, en menor grado, con el incremento de la resistencia a la torsión.
reside en que las labores de preparación del suclo se pueden efectuar más rápido y fácilmente. Pero dicha utilización puede proveer una compactación en la profundidad del suclo, especialmente cuando el laboreo se cjecuta en condiciones de humedad inadecuada (10).

Sobre la compactación del suclo inciden factores internos y externos En los primeros, se incluyen la composición mecánica, la cstructura, la estabilidad, la densidad aparente, la distribución de poros por tamaño y el contenido de carbono. Los factores externos son la magnitud de la carga, lipo de presión y sistema de tiro. Todos estos factores inciden, en uno u otro grado, sobre la compactación del suclo y alteran las condiciones de crecimiento vegetal $(3,7)$.

La cvaluación de la compactación es dificil ante la gran variedad de condiciones en que es posible un desarrollo vegetal. Con la compactación disminuyen
los poros gruesos en magnitudes que dependen de las condiciones de humedad y textura del suclo. El factor que más frecuentemente afecta el crecimicnto vegetal es el balance del agua (5). Para determinar la capacidad de arraigamiento en un suclo existen varios métodos, ninguno exacto en términos absolutos, por lo que es mejor elcgir una combinación de cllos (6).

Existen variables que permiten inferir la capacidad de arraigamiento de las plantas: densidad aparente, resistencia a la penctración, resistencia cortante y capacidad de aire de un suclo. Al degradarse un suclo por un manejo compactante, estos factores sufren una alteración. Por cjemplo, la resistencia a la penetración es una medida usada para diagnosticar el estado estructural del suelo, desde el punto de vista del desarrollo radicular Las principales propiedades que interactuan sobre la resistencia a la penetración son: contenido de humedad, velocidad de secado, mancjo agricola y propiedades a las penetraciones; por lo tanto, constituye un elemento útil para diagnosticar el suclo en cuanto a su susceptibilidad de arraigamiento. Pero esta medida no indica las causas que dificultan la exploración del suelo por parte de las raices, lo que se debe evaluar a partir de otros antecedentes (1). La intensidad del arraigamiento de los vegetales depende del sistema poroso del suclo, destacándose la magnitud del espacio, el tamaño de los poros y la continuidad y sentido de éstos. La penetración, desarrollo y ramificación del sistema radicular en la masa del suelo dependen, finalmente, de sus propicdades fisico-mecánicas.

La variación de las propiedades físico-mecánicas de los suelos del sur de Chile se debe a los procesos pedogenéticos y a las medidas de mancjo. Las praderas permanentes que se desarrollan sobre los suclos rojoarcillosos están formadas por hierbas de origen europeo. Como su composición floristica refleja las condiciones cdaficas, la proporción de especies permitirá deducir las características del suclo (4). La proporción entre biomasa aćrea y subterránca, tambićn, refleja las condiciones en que prospera la planta (8).

En este trabajo se determinarán los rangos fisicomecánicos más comunes en tres series de suclos rojoarcillosos de las regiones IX y X de Chile, y se evaluará el efecto sobre el desarrollo radicular. Estos antecedentes son una base necesaria en el diseño de normas para un mejor uso de los suclos rojo-arcillosos, cvitando su crosión y, con ello, los problemas sociales.

materiales y metodos

Como matcrial edáfico se seleccionaron suclos rojoarcillosos ubicados en las regiones IX y X de Chile, los cuales corresponden a las series Metrenco, Cúdico y Fresia. Se eligieron estas series porque tienen gran
extensión y muchas áreas con cultivos, incluidas en las distintas zonas agroclimáticas. Durante los meses de junio a julio de 1988 se recolectó material edáfico en 30 lugares cubiertos con pradera natural. Su selección abarcó toda la distribución cspacial y, por lo tanto, la variabilidad que espera de los suclos, cuidando además que todos los lugares tuvicran una posición topográfica y pendiente similar. En cada lugar se determinó la resistencia a la penetración y a la torsión y la densidad aparente por estrato de 10 cm , desde la superficie hasta una profundidad de 40 centimetros. La resistencia a la penctración y al corte por torsión se midió siete veces. Para determinar la densidad aparente y porosidad, las muestras de suelo se tomaron con cilindros de 369 centímetros cúbicos.

En laboratorio se determinaron la densidad real y la aparente a humedad de campo, con muestras secadas a $105^{\circ} \mathrm{C}$, calculándose la porosidad total.

Los valores individuales para estrato de cada lugar y por scrie de suclo fueron sometidos a un análisis de conglomerados por variable, para seleccionar sitios de cada seric de suelo que representaran poblaciones con distintas propiedades fisicas. De cada seric de suelo se escogicron tres sitios, usando como criterios de selección la porosidad total del suclo seco y la resistencia a la torsión.

Los sitios seleccionados por porosidad, resistenciaa la penetración y resistencia al corte por torsión de la serie Fresia quedaron muy próximos entre sí, mientras en los de las series de Cúdico y Metrenco estaban ligeramente más separados.

En cada lugar seleccionado se levantó un censo vegetativo y se extrajeron mucstras no removidas de suclo para determinar la cantidad de raices: las más grandes fueron separadas manualmente y las más finas mediante flotación.

RESCLTADOS Y DISCUSION

En el Cuadro 1 se presentan las variaciones de las propicdades físico-mecánicas considerando la totalidad del perfil de las tres series de suelos analizadas. De Norte a Sur existe un orden de mayor a menor en las tres series de suclo analizadas, en la densidad aparente y en la resistencia a la torsión y, por lo tanto, una relación inversa para la porosidad total. Para la resistencia a la penetración no se observa una ordenación geográfica. Los suclos con menor porosidad presentan mayor resistencia a la torsión y están ubicados en áreas con una estacionalidad en las precipitaciones más marcada.

Cuadro 1. Variabilidad de las propiedades físico-mecánicas de los suelos Metrenco, Cúdico y Fresia.

Suelos	Metrenco				Cúdico				Fresia			
	media	de	máx.	mín.	media	de	máx.	min.	media	de	máx	mín.
R P.	9.6	22	17.2	2.7	102	2.0	16.0	4.8	10.0	2.4	18.5	2.8
R T	10.8	43	24.0	1.6	8.3	2.4	21.6	1.0	7.3	2.1	16.4	1.6
Da. C	1.17	0.11	139	0.74	1.03	0.14	129	0.64	0.84	0.13	1.04	0.45
Da. S	132	0.14	1.62	0.84	1.20	0.16	1.52	0.74	1.02	014	1.24	0.61
Ep. C	54.2	4.0	69.9	47.1	58.1	5.1	723	48.2	64.5	5.1	79.8	52.4
Ep. S	48.5	52	65.9	37.1	51.0	5.7	67.3	37.6	56.5	5.4	71.2	42.5

Notas:

R. P. $=$ Resistencia a la penetración $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$
R. $\mathrm{T}=$ Resistencia a la torsion ($\mathrm{kg} / \mathrm{cm}^{2}$)

Da. $\mathrm{C}=$ Densidad aparente de campo $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Da. $S=$ Densidad aparente suclo seco $\left(g / \mathrm{cm}^{3}\right)$
Ep. $\mathrm{C}=$ Espacio poroso campo (\%)
Ep. $S=$ Espacio poroso suelo seco (\%)
de $=$ desviación estándar

Los valores de densidad aparente y porosidad total difieren en las condiciones de campo y en las muestras secadas. Ello se debe a que este tipo de suelo tiene mucho material coloidal inórganico, que afecta su capacidad de hinchamiento. En el período estival estos suelos se secan completamente en la superficie, de manera que alcanzan una porosidad similar a la mínima La distribución por tamaño del espacio poroso también debería variar en el transcurso del año al cambiar la porosidad de condiciones humedas a secas.

La resistencia a la penetración y a la torsión se midió en condiciones invernales y, por lo tanto, representan valores mínimos. En condiciones secas estas resistencias serán mayores por la cohesión de la textura del suelo. En el periodo estival cxiste por ello una mayor resistencia al arraigamiento de las plantas.

En el Cuadro 2 se detallan las propicdades físicomecánicas de los puntos con distintos grados de compactación de los suclos seleccionados, mediante el análisis de conglomerados. Estos puntos representan las distintas poblaciones de alta, media y baja porosidad total.

En las series Metrenco y Fresia, los suelos representantes de los tipos de compactación difieren considerablemente entre sí en su porosidad, mientras que en el suclo Cúdico los dos primeros grupos se asemejan. El grupo más compactado del suelo Fresiaes más suclto que el más suclto del suclo Metrenco y, tambićn, más suelto que el grupo de compactación intermedia del suelo Cúdico.

La resistencia a la torsión media por perfil se incrementa con el aumento de la densidad aparente, pero en los estratos superiores no siempre se encuentra esta relación. Similar es la tendencia entre resistencia a la penetración y densidad aparente.

En el Cuadro 3 se presentan la cantidad y distribución por tamaño de las raíces en los tres suclos para las distintas condiciones de compactación. La cantidad de raíces por volumen del suclo Metrenco, aumenta fuertemente, junto con el incremento del espacio poroso, en especial para las raíces más finas. El incremento del arraigamiento en la condición más sucla de este suelo, puede deberse a un mayor espacio poroso, comotambién a la menor resistencia a la torsión y penctración en estas condiciones.

En el suclo Cúdico también aumentan las raíces, en especial las finas en condiciones de alta porosidad. La cantidad de raíces para cl rango de compactación alta e intermedia es similar, ya que en las dos condiciones no difiere significativamente el monto del espacio poroso. En un suelo con porosidad intermedia existe incluso una disminución en la cantidad de raíces, lo cual se puede explicar por la alta resistencia a la penetración medida en este caso. En el suclo Cudico se esperaba un incremento auin mayor en la cantidad de raices para la condición menos compactada, pero esto probablemente fue impedido por la alta resistencia a la penetración observada en el primer estrato. Algo similar ocurre con la resistencia a la torsión.

Cuadro 2. Propiedades físico-mecánicas de los grupos poblacionales de las tres series de suelos analizados.

Cuadro 3. Monto y distribución por tamaño de las raíces en los suelos analizados para tres condiciones de compactación.

Suelo	Profundidad	Tamaño	Raíces	Monto total	
Grado de compactación	(cra)	$>0.2 \mathrm{~mm}$	$\text { (g/l) }<0.2 \mathrm{~mm}$	Estrato (g/l)	Perlil acumulado (gl)
Metreaco					
Compactado	0-10	1.22	6.71	7.93	7.93
	10-20	0.67	0.69	0.76	8.69
	20-30	0.05	0.43	0.48	9.17
	30-40	0.05	0.24	0.29	9.46
Intermedio	0-10	5.91	8.65	14.56	14.56
	10-20	2.12	1.70	3.82	18.38
	20.30	0.99	0.66	1.65	20.03
	30-40	0.61	0.39	100	21.03
Suelto	0-10	4.52	30.62	35.14	35.14
	10-20	082	9.57	10.39	45.53
	20-30	0.14	1.07	1.21	46.74
	30-40	0.18	0.77	0.95	47.69

Cúdico					
Compactado	0-10	5.36	11.96	17.32	17.32
	10-20	0.65	1.50	2.15	19.47
	20-30	0.41	0.96	1.37	20.87
	30-40	0.20	0.50	0.70	21.57
Intermedio	$0-10$	2.75	10.60	1335	13.35
	10-20	0.42	3.90	4.32	17.57
	20-30	0.46	0.57	1.03	18.60
	30-40	0.14	0.28	0.42	19.02
Suelto	0-10	4.56	20.24	24.80	24.80
	10-20	1.15	6.62	7.77	32.65
	20-30	0.35	1.22	1.57	34.22
	30-40	015	1.12	1.27	35.49
Fresia					
Compactado	0-10	3.33	15.08	18.41	18.41
	10-20	1.28	5.82	7.10	25.51
	20-30	0.57	2.12	2.69	28.20
	30-40	0.22	1.40	1.62	29.82
Intermedio	0-10	2.11	1451	16.62	16.62
	10-20	0.70	8.61	9.31	25.93
	20-30	0.51	8.34	8.85	34.78
	30-40	0.35	0.82	1.17	35.95
Suelto	0.10	1.70	799	969	9.69
	10-20	032	3.47	3.79	13.48
	20-30	0.49	3.04	3.53	17.01
	30-40	0.27	1.16	1.43	18.44

La relación observada entre porosidad total, resistencia a la penetración con la cantidad y distribución por tamaño de raices en los suelos Cúdico y Metrenco, es similar. Esto se explica porque tienen un rango semejante de propiedades fisico-mecánicas También las condiciones climáticas para estos suelos se asemejan. Distinta es la situación para el suelo Fresia que mantiene una alta porosidad en los tres rangos de compactación. Sólo se abserva un leve aumento en la cantidad de raíces en los dos primeros rangos de compactación. En la condición más suclta hay una disminución en la cantidad de raices. Por ser más poroso, este suclo debe presentar un mayor grado de macroporosidad, lo que constituye una ventaja para climas muy lluviosos Sin embargo, con una precipitación estacional, como ocurre en este caso, una porosidad gruesa abundante no presenta ventajas, debido a la menor capacidad de acumulación de agua en el suelo.

En el suclo Fresia no se encontró una asociación entre resistencia a la penctración y desarrollo radicular Esta resistencia parece ser una limitación para el arraigamiento sólo cuando se presenta junto con una alta densidad aparente o baja porosidad. Con una alta porosidad, una mayor resistencia a la penctración no afecta el desarrollo vegetal, sino más bien la mayor o menor cantidad de agua que se almacena en el suclo.

La composición floristica de los suclos Metrenco y Cúdico presentó una gran variación entre los difercntes niveles de compactación, dominando especies diferentes en cada situación. Los cambios más extremos los presentó el suclo Mctrenco, en el cual para la situación menos suclta dominaron chépica (Agrostis capillaris) y cola de zorro (Cynosurus echinatus); con compactación intermedia: paja ratoncra (Anthoxanthum utriculatum) y pasto cebolla (Arrhenatherum bulbosum); y con compactación alta, trćbol (Trifolium cf arvense) y zanahoria silvestre (Daucus carota). En cl suclo Cúdico con la compactación intermedia aumenta la cobertura de porotillo (Lotus subpinnalus) y un incremento a niveles altos, se reflejó en una abundancia de aquilea o mil en ramas (Achillea millefolium). En cl suclo Fresia, la flora fue más uniforme y sólo destacó un aumento en la cobertura de la hicrba del chancho (Hypochaeris radicata), en los niveles medios de compactación.

En el suclo Metrenco compactado se presentaron especies vegetales con raices pivotantes, grandes y gruesas, mientras que en los más sucltos dominaron hierbas con raices finas superficiales. En el suclo Cúdico estas difcrencias no existen. En el suclo Fresia se encontró cierta disminución del tamaño de las raíces de algunas especies hacia los niveles de mayor compactación.

En el Cuadro 4 se presentan las especies vegetales que dominan en los suclos analizados para los distintos grados de compactación. En los suclos Mctrenco y Cúdico aumentan las cspecics terófitas o anuales para las condiciones más compactadas, micntras en el suclo Fresia éstas sólo están presentes en las más sueltas. Aparentemente, su presencia responde a la falta de agua, común denominador para las situaciones descritas. En efecto, esta forma de vida es propia de climas secos.

Cuadro 4. Composición floristica estival para los suelos Metrenco, Cúdico y Fresia, con distinto grado de compactación.

Formas de vida	Hemicriptófitos		Terófitos	Otras especies
	En roseta	Cespitosos		
Metrenco				
Compactado	2	4	7	4
Intermedio	3	6	3	0
Suelto	4	7	2	1
Cúdico				
Compactado	4	4	6	1
Intermedio	5	4	7	1
Suelto	3	10	2	2
Fresia				
Compactado	4	9	0	2
Intermedio	2	6	3	3
Suelto	4	11	2	2

A medida que aumenta la porosidad en los suclos, también aumentan las especies hemicriptofiticas, es decir hierbas perennes con yemas a nivel del suclo. Dentro de este grupo de vegetales incrementan preferentemente las especies cespitosas. Estas últimas se caracterizan por tener raices menos gruesas y una distribución radicular más profusa

La supervivencia de la parte aćrea verde de este grupo de plantas depende de la permanente disponibilidad de agua; en caso contrario, y con breves periodos de sequia, dichos órganos mueren rápidamente. Los hemicrotófitos cespitosos presentan grandes cambios estacionales de su biomasa en condiciones poco favorables de humedad. En caso de sequía prolongada, ellos reducen su biomasa y, entonces, son fácilmente superados por especies más resistentes, como los hemicriptófitos en roseta.

CONCLLSIONES

Existe un orden Norte-Sur, de mayor a menor, en el grado de compactación de los suclos analizados. Los
suclos más compactados presentan tambićn una mayor resistencia a la torsión y en un menor grado para la resistencia a la torsión.

Los suelos más compactados en relación con los sueltos tienen menos raíces por unidad de volumen. Al aumentar el grado de porosidad aumentan principalmente las raices finas.

En los suelos compactados se incrementa el numero de especies terófitas, mientras que en los suclos más sueltos el de las hemicriptofíticas, destacándose entre éstas las cespitosas.

LITERATURA CITADA

1. BARLEY, KP; FARELL, D.A; GREACEN, EI 1965 The influence of soil strength on the penetration of a loam by plant roots. Australian Journal of Soil Rescarch 3:69. 73.
2. BLACK, GR. 1964. Soil compaction: Is it critical? Crops and Soils 16:9-12.

3 COLEMAN, G.E; PERUMPAL, JV. 1974 The infinite element analysis of soil compaction. Transactions of ASAE 17(5):856-860.
4. ELLENBERG. H. 1974. Zeigerwerte mitteleuropacischer Gefaesspflanzen Scripta Geobotanica (Goettingen) 9:197.

5 HARTGE, K.H: EHLERS. W 1985 Zür Wirkung Physikalischer Bodeneigenschatten auf en Ertrag von Kulturpflanzen. Kali-Briefe 16(6):477-488
6. HARRACH, T 1978 Die Durchwurzelbarkeit von Boeden als wichtiges Kriterium des Etragspotenciales. KaliBriefe 14(2):115-122

7 HORN, R 1986 Compressibility of arable land In Impact of water and extemal forces on soil structure Catena Supplement 11:53-72
8. KAUSCH, W: HEINRICH, E. 1959. Beriehungen zwischen Transpiration und Wurzelwerk. Planta 53:434-448
9. SOMMER, H., STEINKAMPF, M : ZACH, M; CZERATZKI, W. 1976 Ein Beitrag zum Problem der Bodenverdichtung beim Einsatz leisunsstarker Schlepper. Landbau Voelkerode 25(2)69-74

10 VOMOCIL, J.A.; FLOCKER, W. 1965. Degradation of structure of Yolo loam by compaction. ASSSP 29;7-12.

Resistencia del Frijol a Mustia Hilachosa y su Interacción con la Lluvia ${ }^{1}$

G. Frias*; M.R.Rojas*; S. Saborio**

ABSTRACT

The effect of environmental conditions on bean (Phaseolus vulgaris L.) resistance to web blight (WB) caused by Thanatephorus cucumeris (Frank) Donk was evaluated in Esparza, Costa Rica, in 1988. Discase severity and environmental factors were monitored on two plantings at the Na tional Web Blight Nursery of Costa Rica (VINTE) and two of the International Web Blight Nursery Elite (VIM Elite). The VINTE was spray inoculated with mycelial suspensions of T. cucumeris, and the VIM Elite was exposed to natural inoculum in the field. All bean lines presented lower disease severities than the susceptible control, "BAT 1155" when the average rainfall during crop development was $87-92 \mathrm{~mm} / 10$ days. However, with rainfalls of $134-168 \mathrm{~mm} / 10$ days, these lines were as susceptible as "BAT 1155" VINTE bean lines exposed to an average rainfall of $92 \mathrm{~mm} / 10$ days could not be differentiated from the susceptible control, based on the number of WB lesions four days after inoculation with mycelial suspensions. However, 23 days after inoculation, all lines had disease severities significantly lower than "BAT 1155". This suggests that WB resistance is a plant physiological response triggered by the fungus during infection, and results in lower growth rate of the pathogen within the infected tissue. To explain the interaction rainfall-WB resistance, the following hypothesis is proposed: Intensity of plant reaction to the infection by T. cucumeris varies according to soll moisture. High rainfalts ($134-168 \mathrm{~mm} / 10$ days) increase soil moisture to levels that completely inhibit plant resistant reaction to the pathogen. Knowledge gained on the interaction rainfallresistance may be used to modify the breeding strategy in order to increase efficiently the level of resistance to bean web blight.

1 Recibido para publicación el 3 de julio de 1989

* Centro Internacional de Agriculura Iropical (CIAT). Apdo. 55-200, Coronado. San José, C.R
** Estacion Experimental Fabio Baudrit, Universidad de Costa Rica

COMPENDIO

Se evaluó el efecto del medio ambiente sobre la resistencia del frijol a la mustia hilachosa causada por Thanatephorus cucumeris (Frank) Donk, en Esparza, Costa Rica, en 1988. Se registraron las condiciones climáticas y la severidad de la enfermedad en dos siembras del Vivero Nacional de Telaraña (VINTE), Costa. Rica, y del Vivero Elite de Mustia (VIN Elite). Et VINTE se asperjó con suspensiones de micelio del patógeno y el VIM Elite se expuso al inoculo natural. Cuando el promedio de lluvia, durante el ciclo de cultivo, fue de 87 $92 \mathrm{~mm} / 10 \mathrm{~d}$, las líneas de frijol evaluadas, en ambos viveros, presentaron severidades de mustia menores que el festigo susceptible "BAT 1155". Sin embargo, cuando la lluvia alcanzo $134-168 \mathrm{~mm} / 10 \mathrm{~d}$, todas las lineas fueron tan susceptibles como el testigo. En el VINTE expuesto a precipitaciones promedio de $92 \mathrm{~mm} / 10 \mathrm{~d}$, ninguna línea pudo diferenciarse de " $13 \Lambda T$ T 1155 " con base en el número de lesiones de mustia, cuatro dias después de la aspersión con suspensiones de micelio del patógeno. Sin embargo, 23 d despues de la inoculación, todas las lineas presentaron porcentajes de mustia significativamente menores que "BAT 1155". Esto sugiere que la resistencia a musitia es el resultado de una reacción fisiológica de la planta, que se activa después de la infeccion y que resulta en fa disminución del crecimiento del patógeno dentro del tejido infectado. Para explicar la interacción lluvia-resistencia a mustia, se proponela siguiente hipotesis: La intensidad con que la planta reacciona a la infección por T. cucumeris varia de acuerdo con la humedad del suelo. Cuando la lluvia es abundante (134 - $168 \mathrm{~mm} / 10$ d), la humedad del suelo alcanza niveles que inhiben completamente la reacción de resistencia de la planta. El conocimiento de la interacción lluvia-resistencia puede utilizarse para modificar la estrategia de mejoramiento y aumentar, en forma eficiente, el grado de resistencia del frijol a la mustia hilachosa.

INTRODUCCION

E1 uso de varicdades resistentes es una de las mejores alternativas para el manejo de la mustia hilachosa del frijol, causada por Thanatephorus cucumeris (Frank) Donk (anamorlo: Rhizoctonia solani). Desde 1974, se selcccionó germoplasma de frijol con base en su reacción a la enfermedad en condiciones de campo ($9,13,14,16$), y se identificaron muchas lineas y varicdades con algún grado de resistencia. Sin embargo, este germoplasma no posce niveles de resistencia adecuados para obtener rendimientos aceptables en regiones con alta precipitación y temperatura, en donde la enfermedad se ha convertido en la principal limitante del cultivo ($1,2,4,15,16$).

Los esfuerzos para incrementar el grado de resistencia del germoplasma seleccionado en el campo no han tenido el éxito esperado. En 1988 ninguna de las líneas mejoradas, incluidas en el Vivero Internacional de Mustia (VIM), superó significativamente a la variedad Talamanca, que posee niveles "intermedios" de resistencia $(7,8)$."Talamanca" fue seleceionada del Vivero del Equipo de Frijol, CIAT, sembrado en Cosia Rica en 1979 y ha sido usado como testigo del VIM desde 1983 (9)

Uno de los problemas para mejorar la resistencia del frijol a la mustia es que la reacción de las varicdades a la enfermedad, de un lugar olecha de siembra a otro, varía considerablemente. Por cjemplo, en el VIM 1983-85 se reportan variedades que fueron evaluadas como de resistencia intermedia ("tolerantes") en algunos países y susceptibles en otros (9). Este fue el caso de las varicdades HT 7719, MUS 6 y XAN 33 en el VIM 1985 sembrado en Costa Rica, Guatemala y Republica Dominicana.

Esta inconsistencia en la reacción del germoplasma a la cnfermedad se ha observado tambićn al comparar variedades sembradas en diferentes regiones de un mismo país. Flores (6) sembró 35 variedades en Pérez. Zeledón y Espara, Costa Rica, y encontró algunas con resistencia intermedia a la enfermedad en una localidad y susceptibles en la otra

También se han observados cambios en la reacción de las variedades de acuerdo con la época de siembra. Por cjemplo, "MUS 37 " fuc la varicdad con la más baja severidad de mustia entre las 100 líncas del VIM sembrado en mayo 1986 en Esparza, Costa Rica. En la siembra de setiembre, en el mismo año y localidad, más de 25 líncas presentaron se veridades menores que MUS $37(7,18)$.

Para aumentar la eheiencia del mejoramiento de frijol por resistencia a mustia, es nececario conocer los factores responsables de los cambios en la reacción del germoplasma de un lugar o época de siembra a otro.

Los datos que aqui se presentan sugieren que la cantidad de lluvia, durante el desarrollo del cultivo, es el principal factor responsable de los cambios en la reacción de las varicdades a la enfermedad, de una fecha de siembra a otra.

MATERIALS Y METODOS

Ubicacion y manejo agronómico

Los ensayos se llevaron a cabo en Esparza, Costa Rica, en 1988 , en una finca ubicada a 208 msnm , con una precipitación media anual de 2520 milimetros.

Las lincas de frijol del Vivero Nacional de Telaraña (VINTE), Costa Rica, 1988, y del Vivero Internacional de Mustia Elite 1988 (VIM ELITE), se sembraron en parcelas de tres surcos de 2 m de largo, espaciados a 0.6 metros. En cada surco se sembraron 30) semillas. Se fertilizó con la formula comercial 10:30:10, a razón de $200 \mathrm{~kg} / \mathrm{ha}$ y se aplicó Mcfosfolan (Cytrolane 2G). Tanto el fertilizante como el insecticida se aplicaron al fondo del surco, antes de la siembra.

Evaluación de resistencia en el VINTE:

Las 11 lineas de frijol del VINTE, un testigo susceptible a mustia, "BAT 1155", y uno de resistencia intermedia, "Talamanca", se sembraron el 26 de mayo (VINTE-mayo) y el 23 de setiembre (VINTE-sel.) de 1988. Parcelas de cada línea se distribuyeron en un diseño de bloques completos al azar con cuatro repeticiones. Las plantas del surco central de cada parcela se asperjaron con aproximadamente 100 ml de una suspensión de micelio de R. rolani con 60000 fragmentos por mililitro, preparada siguiendo la metodología que a continuación se describe.

Se cultivó un aislamiento de R. solani en papa dextrosa agar. Antes de que el hongo cubricra la superficie del medio, se transfirieron tres discos de micelio (5 ml de diámetro) de la orilla de la colonia a un Erlemeyer de 500 ml con 50 ml de caldo de papa dextrosay se incubó por 3 d a 25° centigrados. Cincodie\% colonias de R. solani se separaron del medio de cultivo y se licuaron durante 3 min en $200 \mathrm{ml}-250 \mathrm{ml}$ del "buffer" ácido morfolinoctano-sulfónico 0.0005 M , pH 6.1 (MES) (Sigma), La suspensión resultante se filtoó a través de ocho capas de gasa. El número de fragmentos de micelio en el filtrado, se estimó con un hemacitómetro y se diluyó con el "buffer" MES hasta ajustar la concentración a 60000 fragmentos por mililitro.
L.os VINTE-mayo y setiembre se inocularon 19 d y 24 d despućs de la siembra (DDS), respectivamente. Para reducir la infección por salpique del inóculo natural presente en el suclo, el surco central de las parcelas del VINTE-mayo se cubrió con zacate seco. En el VINTE-sctiembre, los tres surcos de la parcela se cubricron con cascarilla de arroz. La selccción del tipo de substrato usado para evitar el salpique fue hecha con base en la disponibilidad del material, pero ambos fueron considerados igualmente eficientes. En el VINTE-setiembre se cubricron los tres surcos de la parcela para cuitar el efecto del salpique del suclo alcdaño al surco central inoculado.

Los bloques del VINTE, asperjados con suspensiones de micelio, se alternaron con bloques no
inoculados de las mismas lineas y con el mismo tipo de cobertura. En estas parcelas se cvaluó la proporción de enfermedad producida por salpique de inóculo natural.

El porcentaje de âra foliar con mustia se estimó visualmente cada 7 da 12 dias En el VINTE-mayo, se contó el número de lesiones en 10 trifolios por surco, 4 d después de la inoculación (DDI), para determinar si las diferencias en severidad de mustia, entre variedades, se debian a una reducción de las infecciones producidas por el patógeno

Evaluacion de resistencia en el VIM Elite

Las 12 lincas que componen el VIM Elite 1988, un testigo susceptible, "BAT" 1155, y uno de resistencia intermedia, "Talamanca", fucron sembrados utilizando el mismo tipo de parcela, mancjo agronómico y diseño usado para el VINTE. Sin cmbargo, el VIM Elite se expuso al inóculo natural presente en el suclo de la parcela experimental. No se inoculó ni se protegió del salpique.

El porcentaje de área foliar con mustia se estimó visualmente cada 7 da 10 días

Interaccion Iluvia-resistencia a mustia

Para obtener información adicional sobre el efecto de la lluvia en la reacción del frijol a mustia, se examinaron los resultados de diferentes viveros (VIM, VINTE, VIM Elite A y VIM Elite B) sembrados en Espařa, Costa Rica, en 1988, en épocas con precipitaciones on promedio de $87 \mathrm{~mm} / 10$ d a 168 $\mathrm{mm} / 10 \mathrm{~d}$, durante el ciclo de cultivo El grado de resistencia de las variedades MUS 37, NAG 217, RAB 79, Talamanca y BAT 1155, incluidas en los cuatro viveros, se calculó dividiendo el porcentaje de mustia de cada variedad entre el poreentaje de mustia en "BAT 1155". Por lo tanto, varicdades con calificaciones menores de uno fueron mais resistentes que "BAT 1155". En cada vivero la evaluación de la enfermedad se hizo cuando "BAT 1155 " presentaba severidades de mustia entre el 40% y el 85 por ciento.

Condiciones climáticas

Se hicieron registros de temperatura de la Estación Metcorológica Macacona, ubicada a 500 m de la parcela experimental. En cada siembra se calculó la temperatura media cada 10 dias Los datos de lluvia se obtuvicron de la Estación Metcorológica San Miguel de Barranca situada 3 km al oeste de la parcela experimental. En cada siembra se calculó la cantidad
total de lluvia cada 10 dias. La humedad relativa y luminosidad (horas de brillo solar) se registraron en la Estación Metcorológica de Puntarenas, 10 km al oeste de la parcela. Se calculó el número de horas de brillo solar y la humedad relativa media cada 10 dias

Rendimiento

El rendimiento en kilogramos por hectárea se calculó con base en el peso del grano cosechado del surco central de cada parcela. Aquí sólo se reportaron los rendimientos del VINTE

rescleados

Vinte

En las parcelas inoculadas del VINTE-mayo, el número de lesiones de mustia, 23 d después de la siembra (cuatro DDI), varió considerablemente entre las líncas (Cuadro 1). Sin embargo, ninguna de las líneas presentó un número de lesiones significativamente menor que el testigo suscepible, "BAT 1155" (Cuadro 1) Por otra parte, el desarrollo de la cpidemia fue más rápido en "BAT 1155 " que en cualuuicra de las

Cuadro 1. Número de lesiones de mustia, cuatro dias después de la inoculación del Vivero Nacional de Telaraña con suspensiones de micelio de R. solani de 60000 fragmentos/mil. Siembra de mayo, 1988, Esparza, Costa Rica.

Lánea	Número de lesiones/Trifolio"
"RAB 408"	$29.9 \mathrm{a}^{* *}$
"RAB 377"	29.7 a
"A 237"	26.6 ab
"ICTA 883"	23.6 abc
"BAT 1155"	22.4 a bc
"XAN 222"	21.7 a bc
"HUETAR"	21.0 abc
"TALAMANCA"	17.9 abc
"MUS 3"	17.8 abc
"MUS 37"	17.2 abc
"REV 81"	161 bc
"MUS 47"	15.6 bc
"MUS 52"	11.9 c c

Notas:

* Promedio de cuatro repeticiones (10 trifolios/repetición).
** Promedios seguidos por la misma letra no difieren significativamente, de acuerdo con la prueba de Duncan ($p=0.05$).
líneas del VINTE-mayo, tanto en las parcelas inoculadas como en las no inoculadas, aunque en estas últimas la epidemia se inició en etapas más avanzadas del cultivo (Fig. 1). El porcentaje de mustia, 42 DDS, fue significativamente mayor en "BAT 1155" que en el resto de las líneas; esto sucedió tanto en las parcelas inoculadas como en las no inoculadas (Cuadro 2).

Cuadro 2. Porcentaje de mustia, 42 días después de la siembra en las líneas del Vivero Nacional de Telaraña. Siembra de mayo, Esparza, Costa Rica, 1988.

Línea	$\begin{gathered} \text { Inoculado* } \\ \text { mustia*** } \left.^{*} \%\right) \end{gathered}$		No inoculado mustia (\%)	
"BAT 1155"	59.2	***	221x6 a	
"HUETAR"	35.0	b	6.2	c d
"RAB 377"	33.2	b c	14.0	b
"REV. 81"	27.7	bcd	5.0	d
"ICTA 883"	25.0	b cd	12.0	b c
"MUS 47"	23.2	b cd	7.5	c d
"A 237"	22.7	bcd	7.2	c d
"RAB 408"	22.7	bcd	7.2	c d
"XAN 222"	18.5	c d	6.2	c d
"TALAMANCA"	18.2	c d	3.7	d
"MUS 37"	17.7	c d	4.5	d
"MUS 3"	17.0	c d	7.0	c d
"MUS 52"	16.2	d	4.5	d

Notas:

* Las parcelas inoculadas se asperjaron con una suspensión de micelio de R. solani de 60000 fragmentos por mililitro.
** Promedio de cuatro repeticiones.
*** Promedios seguidos por la misma letra no difieren significativamente de acuerdo con la prueba de Duncan ($\mathrm{p}=0.05$).
En las parcelas inoculadas del VINTE-setiembre, el desarrollo de la epidemia fue muy similar en todas las líneas (Fig. 2). Lo mismo ocurrió en las parcelas no inoculadas, aunque en éstas la epidemia se inició en etapas más avanzadas del cultivo (Fig. 2). No se observaron diferencias significativas, en el porcentaje de mustia, entre las líneas del VINTE-setiembre y "BAT $1155^{\prime \prime}, 44$ DDS (Cuadro 3) o en cualquier otra etapa de la epidemia.

En las dos siembras del VINTE, la temperatura y la humedad relativa durante los 60 DDS se mantuvieron entre $\operatorname{los} 26^{\circ} \mathrm{C}$ y $29^{\circ} \mathrm{C}$, y 84% y 89%, respectivamente (Fig. 3).

El brillo solar durante los primeros 30 DDS fue mayor en la siembra de mayo que en la de setiembre,

Fig. 1. Desarrollo de la mustia hilachosa en las cinco líneas de frijol, seleccionadas del Vivero Nacional de Telaraña. Siembra de mayo, 1988, Esparza, C.R. a) Parcelas inoculadas con una suspensión de micelio de R. solanide 60000 fragmentos por mililitro; b) parcelas no inoculadas.
pero el promedio durante el ciclo de cultivo fue muy similar; se registraron 58 h sol y $54 \mathrm{~h} \mathrm{sol} / 10 \mathrm{~d}$ en la siembra de mayo y setiembre, respectivamente (Fig. 3). Sin embargo, estos datos no son muy precisos pues fueron tomados à 10 km de la parcela experimental.

La cantidad de lluvia durante los 60 DDS en la primera y segunda siembra del VINTE varió ampliamente. Se registraron promedios de $92 \mathrm{~mm} / 10$ d y 134 $\mathrm{mm} / 10 \mathrm{~d}$ en la siembra de mayo y setiembre, respectivamente (Fig. 3).

VIM Elite

Todas las líneas del VIM Elite, sembradas en octubre, presentaron porcentajes de mustia significativamente menores que el testigo susceptible "BAT 1155", 40 DDS (Fig 4). En la siembra de setiembre, las variedades no pudieron diferenciarse de "BAT 1155", 40 DDS (Fig. 4) ni en cualquier otra etapa de desarrollo de la epidemia (datos no incluidos).

Fig. 2. Desarrollo de la mustia hilachosa en cinco líneas de frijol, seleccionadas del Vivero Nacional de Telaraña. Siembra de setiembre, 1988, Esparza, C.R. a) Parcelas inoculadas con una suspensión de micelio de R. solani de 60000 fragmentos por mililitro; b) parcelas no inoculadas.

En las dos siembras del VIM Elite, la temperatura media durante el desarrollo del cultivo fue de 26° centígrados. Las diferencias en humedad relativa y luminosidad entre la siembra de setiembre y la de octubre fucron mínimas. En la primera se registró una humedad relativa de 86.8% y un promedio de 50.5 h sol/ 10 d , respectivamente. En la siembra de octubre se registró una humedad relativa de 84.3% y un promedio de $52.6 \mathrm{~h} \mathrm{sol} / 10$ días. En contraste, la lluvia varió ampliamente entre siembras. Se registraron promedios de $168 \mathrm{~mm} / 10 \mathrm{~d}$ y $87 \mathrm{~mm} / 10 \mathrm{~d}$, en la siembra de setiembre y octubre, respectivamente (Fig. 4).

Interacción Iluvia-resistencia a mustia

La resistencia de las cinco variedades usadas en este análisis disminuyó conforme se incrementó el promedio de lluvia de $87 \mathrm{~mm} / 10 \mathrm{~d}$ a $168 \mathrm{~mm} / 10$ días. En siembras con precipitaciones de 87 mm y 98 mm , las líneas superaron por amplio margen a "BAT 1155" (Cuadro 4). En la sicmbra con 134 mm de lluvia, sólo "MUS 37 " fue más susceptible que "BAT 1155". Con

Cuadro 3. Porcentaje de mustia, 44 días después de la siembra, en las líneas del Vivero Nacional de Telaraña. Siembra de septiembre, Esparza, Costa Rica, 1988.

Línea	Inoculado* mustia* (\%)	No inoculado mustia (\%)
"RAB 377"	87.6 a	48.3 a
"XAN 222"	82.5 a	41.2 a
"REV 81"	80.0 a	26.2 a
"RAB 408"	79.5 a	52.5 a
"ICTA 883"	78.7 a	48.7 a
"A 237"	76.2 a	19.2 a
"MUS 3"	71.2 a	37.5 a
"MUS 37"	68.3 a	15.6 a
"MUS 52"	65.0 a	17.5 a
"MUS 47"	60.0 a	41.6 a
"HUETAR"	60.0 a	22.5 a
"BAT 1155"	56.6 a	23.3 a
"TALAMANCA"	56.6 a	18.3 a

Notas:

* Tratamientos con igual letra son estadísticamente iguales, según prueba de Duncan al cinco por ciento.

168 mm de lluvia, sólo las variedades Talamanca y RAB 79 mantuvieron algún grado de resistencia (Cuadro 4).

Rendimiento VINTE

El rendimiento en las parcelas no inoculadas superó ampliamente el de las inoculadas, en las dos épocas de siembra (Fig. 5).

En el VINTE-mayo, todas las líneas superaron por amplio margen al testigo susceptible "BAT 1155", tanto en las parcelas inoculadas como en las no inoculadas (Fig. 5).

En el VINTE-seticmbre no se observaron diferencias marcadas en rendimiento entre líneas en las parcelas inoculadas (Fig. 5), mientras que en las parcelas no inoculadas se obtuvieron diferencias de más de 1000 kg/ha entre "MUS 37" y "BAT 1155" (Fig. 5).

Los rendimientos en la siembra de mayo fueron marcadamente menores que en la de setiembre (Fig. 5), aparentemente por el inicio tardío de la epidemia en esta última fecha.

Fig 3 Condiciones climaticas durante la primera (mayo) y segunda (setiembre) siembra del Vivero Nacional de Telaraña (VINTE) en Esparza, Costa Rica. 1988 Las unidades climáticas se expresan como el promedio (temperatura y humedad relativa) o total (lluvia) cada 10 d . después de la siembra y como promedio durante el ciclo del cultivo

DISCLSION

Las lincas del VINTE-mayo no pudieron diferenciarse del testigo susceptible "BAT 1155", con base en el número de lesiones de mustia, 4 d después de la inoculación (DDI) (Cuadro 1). Sin embargo, a los 11 DDI y 23 DDI todos los materiales presentaron porcentajes de mustia significativamente menores que "BAT 1155" (Fig. la, Cuadro 2). Esto sugiere que la resistencia a mustia es el resultado de una reacción fisiológica de la planta, que se activa después de la infección y que resulta en la reducción del crecimiento del patógeno dentro del tejido infectado. Este tipo de mecanismo de resistencia ha sido reportado en enfermedades de otros cultivos (10, 12).

La reacción de resistencia de las líneas evaluadas en los diferentes viveros cambió drásticamente de acuerdo con la época de siembra. La cantidad de lluvia fue el principal factor climattico asociado al cambio de reacción; cuando la precipitación promedio durante el
desarrollo del cultivo fue de $87 \mathrm{~mm} / 10$ d ó $92 \mathrm{~mm} / 10$ d, todas las lincas presentaron menor severidad de mustia que el testigo susceptible "BAT 1155" (Cuadros 2 y 4 , Fig. 1). En contraste, ninguna linea presentó severidades significativamente menores que "BAT $1155^{\prime \prime}$ cuando se registraron promedios de lluvia de 134 $\mathrm{mm} / 10 \mathrm{~d}$ ó $168 \mathrm{~mm} / 10 \mathrm{~d}$ (Cuadros 3 y 4, Fig. 2). Un promedio de lluvias de más de $134 \mathrm{~mm} / 10$ d durante la época de siembra son bastante comunes en Esparza y en otras regiones, como Pérě Zeledón y Guápiles, donde la mustia es importante.

La lluvia abundante pucde aumentar la presión de inóculo mediante el incremento del salpique o de la humedad relativa. Sin embargo, la humedad relativa en las diferentes siembras de los viveros evaluados fue muy similar Por otra parte, el efecto del salpique en las siembras del VINTE, se minimizó mediante la cobertura del suclo con zacate o cascarilla de arroz. Además las dos siembras del VINTE se asperjaron con

Promedio: 87 mm
Leyenda:

$$
1=" M U S 6,2=" M U S 22,3=\operatorname{MUS} 11,4=" M U S
$$ $3 ", 5=" R A B 47^{\circ}, 6=$ "NAG $116^{\circ}, 7=" N A G 217^{\prime}, 8=$ "XAN 222", $\mathrm{TR}=$ ' 1 alamanca", $9=$ MUS 37", $10=$

 1155*

Fig 4. Cantidad de lluvia y porcentaje de mustia en la primera (scliembre) y scgunda (octubre) siembra del Viverolnternacional de Mustia Elite (VIM Elite) en Fsparza, Costa Rica, 1988 La cantidad de lluvia se expresa como el total cada 10 d después de la siembra y como el promedio durante el ciclo de cultivo

Leyenda:
$1=$ MUS $37,2=\operatorname{MUS} 3,3=1 C T A 883-5-2-m, 4$ $=\mathrm{XAN} 222, \mathrm{TR}={ }^{\prime \prime}$ 「amanca $, 5=\mathrm{RAB} 408,6=$ MUS 52", $7={ }^{\prime}$ MUS $47^{\prime \prime} 8={ }^{\prime}$ RAB $377^{\circ}, 9={ }^{\prime} A 237^{\prime}$. $10=$ "REV $81 ", 11=$ Huctar, $\mathrm{TS}="$ BAI 1155

Fig 5 Rendimiento del Vivero Nacional de lelaraña (VINTI) en parcelas no inoculadas e inoculadas con suspensiones de micelio de R solani en las siembras de mayo y seticmbre, Esparza, Costa Rica, 1988

Cuadro 4. Efecto de la cantidad de lluvia sobre la reacción de cinco lineas de frijol a la mustia hilachosa. Esparza, Costa Rica, 1988.

Linea	Fecha de siembra-lluvia (mm/10 d)			
	$\begin{aligned} & \text { Octubre } 17 \\ & 87 \mathrm{mma}^{*} \end{aligned}$	$\begin{gathered} \text { Mayo } 20 \\ 92 \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \text { SeL. } 25 \\ & 134 \mathrm{~mm} \end{aligned}$	$\begin{gathered} \text { Set. } 9 \\ 168 \mathrm{mmm} \end{gathered}$
	(Mustia Linea (\%) / Mustia "BAT 1155" (\%))			
"MUS 37"	0.46	0.62	1.59	1.13
"NAG 217"	0.40	0.67	0.67	1.15
"RAB 79"	0.49	0.52	0.59	0.83
"T'ALAMANCA"	0.45	0.78	0.79	0.83
"BAT' 1155"	1.00	1.00	1.00	1.00

Nota:

* Promedio de lluvia durante $\operatorname{los} 60$ dias después de la siembra
suspensiones de 60000 fragmentos de micelio por mililitro y "BAT 1155 " alcanzó severidades de 57\% $60 \%, 20-22$ DDI (Cuadros 2 y 3) Estas consideraciones y los resultados de inoculaciones hechas en el laboratorio (7,8) indican que la cantidad de inóculo no fue responsable de los cambios en la reacción de las líncas a la mustia.

Para explicar el efecto de la lluvia sobre la reacción de las líneas a la enfermedad, se formuló la siguiente hipótesis: Existe una interacción entre la resistencia a mustia y la humedad del suclo. Cuando la lluvia es abundante ($134 \mathrm{~mm} / 10 \mathrm{~d}-168 \mathrm{~mm} / 10 \mathrm{~d}$), la humedad del suelo alcanza niveles que inhiben la reacción de resistencia de la planta a la infección.

Un buen drenaje del suclo mediante la siembra en lomillo o camas altas, reduce la severidad de la enfermedad. El efecto benéfico de estos sistemas de siembra se le atribuye a la disminución del salpique de inóculo del suelo a la planta. Sin embargo, un mejor drenaje implica menor humedad del suelo y, de acuerdo con la hipótesis aquí planteada, mayor reacción de resistencia

Algunos investigadores sugieren que la mayor severidad de mustia en épocas de siembra con alta precipitación se debe al incremento en salpique y a la alta humedad relativa (5, 17). Los resultados obtenidos en este trabajo sugieren que, además de aumentar el salpique, la lluvia abundante inhibe la reacción de resistencia de la planta, haciéndola más susceptible al ataque del patógeno y, como consecuencia, aumenta la severidad de la enfermedad.

La evaluación de germoplasma de frijol por resistencia a mustia a través de localidades y del tiempo ha resultado en datos inconsistentes (6, 7, 18). La inhibición de la reaceión de resistencia por lluvias abundantes podría explicar los cambios en la reacción del germoplasma a la enfermedad. Sin embargo, otros factores como: variabilidad del patógeno, lipo de inóculo predominante (basidiósporas o esclerocios) y características físico-químicas del suclo podrían también afectar la reaceión de resistencia a mustia. Se requiere más investigación para establecer la importancia de cada uno de cstos factores en la reacción de las variedades a la enfermedad. Esto permitiria establecer las condiciones óptimas para la reacción de resistencia.

La información generada en este estudio sugiere modificar la estrategia de mejoramiento para aumentar, en forma más eficiente, los niveles de resistencia a mustia. La nueva estrategia podría meluir una ctapa de acumulación de genes de resistencia en la que se seleccionen y crucen materiales en cic los de cultivo con precipitaciones que no inhiban la reacción de resistencia. Un tamizado, usando métodos de inoculación en
laboratorio o invernadero $(8,11)$, facilitaría este trabajo y complementaría las evaluaciones de campo.

El germoplasma seleccionado en la primera ctapa se sometería a condiciones de estrés de mustia, característico de cada región o país (c.g. luvia abundante), y se seleccionarian las líneas que muestren mejor nivel de resistencia en estas condiciones En los viveros evaluados en este estudio, la reacción de resistencia de algunas variedades, como "MUS 37", fue completamente inhibida por una precipitación promedio de $134 \mathrm{~mm} / 10 \mathrm{~d}$, mientras que otras, como "Talamanca" y "RAB 79", manuvieron cierto grado de resistencia aun con lluvia a razón de $168 \mathrm{~mm} / 10 \mathrm{~d}$ (Cuadro 4). Variedades como Talamanca y RAB 79 pueden entonces cruzarse y su progenic tamizarse para mejorar la habilidad del germoplasma para expresar resistencia en condiciones de alta precipitación.

Finalmente, se evaluarian progenies de cruzas entre las mejores variedades seleccionadas en la fase de acumulación de genes de resistencia y materiales mejorados bajo estrés de lluvia

La mustia hilachosa redujo severamente la producción del VINTE, tanto en la siembra de mayo como en la de setiembre. Muchas de las variedades no inoculadas duplicaron el rendimiento de las variedades asperjadas con suspensiones de micelio de R. solani (Fig. 5).

El rendimiento ha sido usado como un criterio importante para la selección de materiales resistentes a mustia (4,18). Los resultados de este estudio indican que, cuando la epidemia se inicia en ctapas avanzadas de desarrollo del cultivo, este criterio de selección debe ser cuidadosamente aplicado, pues podria permitir la selección de materiales susceptibles. Por ejemplo, "Huctar" y "REV. 81" fucron muy susceptibles y presentaron rendimientos en las parcelas del VINTE inoculadas en mayo. Sin cmbargo, en las parcelas no inoculadas, en las que la epidemia se inició tardiamente, estas variedades fucron las más rendidoras (Fig. 5).

LITERATLRACITADA

1 ARAYA.R ; ZAMORA. A (COMPS) 1988 Problemática del frijol común en Costa Rica. San José. C R , Programa Nacional de Frijol Común 32 p
2. CARDOSO, JE ; NEWMAN. L. 1981. Avanços na paquiasa sobre a mela de feijociro no Estado de Acre. Rio Branco-AC, Brazil EMBRAPA, Unidade de Extensao de Pesquisa de Ambito Estadual Bolletim de Pesquisa no. 1. 29 p
3. CASTANO, M 1986. Evaluación de germoplasma de frijol (Phaseolus vulgaris L.) para resistencia a mustia ASCOLFI Informa (Col) 8(4):37m 38
4. CIAT (CENTRO INTERNACIONAL DE AGRICULTURA TROPICAL). 1987. Actividades colaborativas con la red C Africa, Proyecto Regional de Africa Oriental. In Informe anual Programa de Frijol 1987. Col p. 311-325.
5. CONIRERAS, A. 1979 Incidencia de roya Uromyces phaseoli var. Typica Arth y de la mustia hilachosa Thanatephorus cucumeris (Frank-Donk) en frijol y su relación con los factores climáticos en la región de la Chontalpa, Tabasco. Tesis Ing Agr. Cárdenas, Tabasco, Méx. Colegio Superior de Agricultura Tropical. 62 p.
6. FLORES, D.M 1984 Evaluación de cultivares de frijol común tolerantes a la telaraña (Thanatephorus cucumeris (Frank) Donk-Rhizoctonia solani Khun) en Esparza y en Las Juntas del Pacuar de Pérez Zeledón. Tesis Ing Agr San José, C. R, Universidad de Costa Rica. 31 p .
7. FRIAS, G. A.; ROIAS, M.R. 1989a. Vivero Internacional de Mustia Hilachosa del Frijol 1988; Programa Cooperativo de Frijol para Centroamérica, México y El Caribe San José, C R , Centro Internacional de Agricultura Tropical.
8. FRIAS, G A; ROJAS, MR 1989b Evaluación de resistencia a mustia hilachosa del frijol en laboratorio y campo. In Reunión Anual del PCCMCA (35) Resumenes. San Pedro Sula, Hond
9. GALVEZ, G.; MORA, B ; ROJAS, M. 1983. Vivero Internacional de Mustia Hilachosa del Frijol; Programa Frijol para Centroamérica y el Caribe Centro Internacional de Agricultura Tropical, San José, Costa Rica. p. 50
10. GANGADIN, S. 1987. Differentiation of cultivars of sugar cane by their resistance reaction to Puccinia melanocephala M. Sc Thesis Gainesville, Fl , University of Florida.
11. ISAAC, L. 1987. Desarrollo de un método de evaluación de resistencia de cultivares de frijol (Phaseolus vulgaris L.) a mustia hilachosa en invernadero y campo. Tesis Mag.

Sc. Iurrialba, CR., Programa Universidad de Costa Rica/CATIE 90 p.

12 LUKE, H H.; BARNETT, R.D.; PFAHLE, PIL 1984. Postpenetration development of $P_{u c c}$ inia coronata avenae in slow and fast-rusting cultivars of Avena bizantina Phylopathology 74:899-903.
13. MORA, B.E: GALVEZ, GE 1979. Evaluación de variedades promisorias de frijol (P vulgaris) a la incidencia de mustia In Reunión Anual del PCCMCA (25, 1979. Tegucigalpa, Hond.) p L38/1-L38/5

14 MORALES, A. 1986. Mustia hilachosa en Costa Rica: Avances de la investigación en mejoramiento genético del frijol comuin p. 1-65

Presentado en: Taller de Mustia Iilachosa (Thanatephorus cucumeris) (2., San José, C R, 1988) Centro Internacional de Agricultura Tropical p. 1-51.
15. RAJNAUTHA, G 1987. Web blight: Animportant disease of bean and pack-choi in Trinidad. Tropical Agriculture (Tri) 64(4):356-358.

16 ROCHA, MA.; CHAN, RD 1983. Comportamiento de 20 genótipos de frijol (Phaseolus vulgaris L.) a infecciones de la mustia hilachosa en el estado de Tabasco, Méx Turrialba 33(4):405-408.
17. ROJAS, M.; MORA, B.; GAL VEZ, G ; FERNANDE\%, O. 1987. Evaluación de dos sistemas de siembra sobre el desarrollo de mustia hilachosa Thanatephor uscucumeris en cultivares de frijol comun. In Meeting of the American Phytopathological Society Caribbean Division (37., Gua) Gua
18. SOLERA, E. 1987. Evaluación de la reacción de cultivares de frijol común (Phaseolus vulgaris L.) a Thanatephorus cucumeris Frank (Donk) = Rhizoctonia solani Kuhn en Esparza. Tesis lng. Agr. San José, C R , Universidad de Costa Rica 27 p .

Imogolita en un Andisol de México ${ }^{1}$

C. Hidalgo*, J D. Etchevers** y P. Quantin***

Abstract

The amorphous mineral fraction on three horizons of an Andisol in the Sicrra Nevada of Mexico was studied by field qualitative methods (NaF 1 N and toluidine test) and by laboratory procedures: Selective dissolution with acid ammonium oxalate, sodium pyrophosphate and citrate-dithionite-bicarbonate reagents; infrared spectroscopy; Xray diffraction; and electron miscroscopy (transmision and scanning). The field qualitative test with NaF showed the presence of amorphous materials but the toluidine test was non-conclusive. A//Si relationships as determined in selective dissolution assays showed the presence of amorphous allophane material in the upper borizons (0 to 50 cm , and 50 to 135 cm), and of imogolite at a depth lower than 135 cm . Occurence of these materials was confirmed by infrared spectrograms and electromicroscopy studies.

INTRODUCCION

!a presencia de imogolita ha sido repontada en suclos volcánicos de América, por cjemplo por Colmet-Daage et al (8), en Nicaragua, y por Besoain (5), en Chile En México, sin cmbargo, la ocurrencia de este mineral no ha sido estudiada en detalle, aun cuando se sospecha su existencia. Los suelos derivados de cenizas volcánicas en este ultimo país ocupan una superficie de aproximadamente ocho

1 Recibido para publicación el 24 de agosto de 1989 Trabajo parcialmente financiado por el Proyecto de Apoyo al Postgrado en Edafología, CONACYT, Colegio de Postgraduados. Méx
Los autores agradecen las valtosas contribuciones de las senoras A Bouleau y G Millot del I aboratorio de Oflice de la Recherche Scientifique Outre Mer (ORSTOM) Bondy, y del M Se. Jorge Valde\% y de la M Sc. Elizabeth Cárdenas del Colegio de Postgraduados, en la obtención de las folografias con microscopio electrónico y de los difractogramas de rayos-X

* Auxiliarenlnvestigacion. Centrode Edafologia, Colegiode Postgraduados. Chapingo, Méx
** Profesor Investigador, Centro de Edafología. Colegio de Postgradados, Chapingo, Méx
*** Director de Investigación, Office deRecherche Scientifigue Outre-Mer (ORSIOM), Bondy. Francia

COMPENDIO

I a fracción mineral amorfa de tres horizontes del perfil en un Andisol de la Sierra Nevada de México se estudió por métodos cualitativos de campo (NaF 1 N y prueba de la toluidina) y por los siguientes procedimientos de laboratorio: (a) disolución selectiva con oxalato ácido de amonio, pirofosfato de sodio y ditionito-citrato-bicarbonato, (b) espectroscopía infrarroja, (c) difracción de rayos-X, y (d) microscopía electrónica de transmisión y barrido. La prueba cualitativa de campo con NaF mostró la presencia de materiales amorfos, en tanto que la reacción con toluidina no fue conclusiva. Las relaciones $\mathrm{Al} / \mathrm{Si}$, determinadas con las disoluciones selectivas, indican la presencia de material predominantemente alofánico en los horizontes superiores (0 cm a 50 cm y 50 cm a 135 cm) y de imogolita en ta profundidad mayor de 135 centímetros. Dicha presencia fue confirmada por los espectrogramas infrarrojos y las imagenes fotomicroscópicas.
millones de hectareas, las cuales se ubican a lo largo del cje neovolcánico en las inmediaciones del paralelo 19, que cruar gran parte del territorio mexicano. Los suclos que han recibido mayor atención desde el punto de vista mineralógico son los de la Sierra Nevada (13) en las inmediaciones de la ciudad de México y los de la Sierra Tarasca en el estado de Michoacán (2, 3, 4, 7, $10,14,20$)

Mielhich (13) concentró su atención en la fracción de arena de los suclos de la Sierra Nevada, donde observó vidrios volcánicos claros de color café, en parte con cristobalita y sanidina, que constituyen los minerales más frecuentes. En la fracción $0.2 \mu \mathrm{~m}-4 \mu \mathrm{~m}$ de los suelos de la Sierra Tarasca se ha reportado la presencia de alófano, gibbsita, caolinita y, en algunos casos, pequeñas cantidades de esmectita.

El presente trabajo tiene por objetivo documentar la presencia de imogolita en la fracción $<2 \mu \mathrm{~m}$ en un Andisol de la Sierra Nevada de México.

MATERIALES Y METODOS

Se recolectaron muestras de las profundidades 0 cm a $50 \mathrm{~cm}, 50 \mathrm{~cm}$ a 135 cm y 135 cm de un Andisol de la Sierra Nevada de México, ubicado en la localidad de

Felipe Neri El sitio se localiza a una altitud de 2400 msnm , con una pendiente de 10%; el paisaje corresponde a un lomerio o pie de monte; el clima se define como: $C\left(W_{2}\right)$ (W) big, con una precipitación media anual de 1200 mm y régimen hidrico Udic; el suelo corresponde a un Andisol mólico o Mollic Vitrandept, formado a partir de tres capas de ceniza volcánica andesitica.

Las muestras ya secas se tamizaron con una malla de 2 milimetros. La determinación cualitativa en el campo del material amorfo y paracristalino se hizo con toluidina (22) y con NaF IN (17) La naturalera de la fracción mincral se determinó por disolución selectiva y se emplearon tres técnicas: (a) oxalato ácido de amonio (6); (b) ditionito de sodio en una solución de citrato y bicarbonato (12) y (c) pirofosfato de sodio (21). Para la granulometria se climinó la materia orgánica con agua oxigenada al 30% siguiendo cl procedimiento sugerido por el ISRIC (15). Para dispersar el suelo se añadió, bajo agitación y gota a gota, NaOH 0.1 N (profundidades 0 cm a 50 cm y 50 cm a $135 \mathrm{~cm})$ ó $\mathrm{HCl} 0.1 \mathrm{~N}(135 \mathrm{~cm})$ hasta alcanzar la dispersión. La suspensión resultante se agitó mecánicamente durante 16 h , en un agitador de acción recíproca regulado a aproximadamente 1800 PM .

Se separaron las fracciones arena (<2 mm pero 0.50 mm) y arcilla ($<0.002 \mathrm{~mm}$), la primera utilizando un tamiz de malla $400(0.050 \mathrm{~mm})$ y la segunda mediante la técnica de centrifugación, propuesta por Jackson (11). Para el estudio por técnicas instrumentales se utilizó la fracción arcilla ($<0.002 \mathrm{~mm}$). Para el análisis espectroscópico de IR se prepararon a presión discos de bromuro de potasio-arcilla ($185 / 5 \mathrm{mg}$). Para el estudio de difractometría de rayos- X se utilizó un aparato Siemens D 500 . En la microscopia electrónica de barrido se emplearon muestras cubiertas con una laminilla de oro de aproximadamente $500 \AA$ de espesor y las mediciones se hicieron con un microscopio de barrido Jeol $35-\mathrm{C}$ a un voltaje de aceleración de 20000 kJ y con aumentos que variaron de 540 X a 2400 X . Para las observaciones con microscopio de transmisión se utilizó un aparato Zciss M-9 y también un Jeol 100. Se emplearon rejillas de cobre cubiertas con una membrana de "formvar" y una capa delgada de carbono.

Se usó una suspensión de polvo de arcilla (2 mg a 3 mg) en agua que contenía ácido o base en una relación de $10: 1$, la cual se agitó manualmente. Las fotografías fueron tomadas en el escalón correspondiente a 4900 X. El câlculo de alófano c imogolita se hizo de acuerdo con el procedimiento propuesto por Quantin (19), que se basa en el empleo de las fórmulas estructurales de aloffano-haloisita o de imogolita, y en la composición química obtenida por la extracción con oxalato ácido
en la relación de los óxidos de silicio y aluminio con sus elementos.

RESELTADOS Y DISCUSION

Algunas de las caracteristicas físicas, quimicas y fisioquímicas del perfil estudiado se muestran en el Cuadro 1

Cuadro 1. Características físicas y químicas generales para el perfil Felipe Neri, Méx.

Determinación	Profundidad (cm)		
	$0-50$	50-135	>135
$\mathrm{pH} \mathrm{H}_{2} \mathrm{O}$	6.4	6.6	6.1
pH KC1	5.2	5.2	5.2
$\mathrm{pH}, \mathrm{NaF}, 60 \mathrm{~min}$	11.3	105	11.8
$\mathrm{ClC}(\mathrm{mEq} / 100 \mathrm{~g})$	28	30	21
PSB	29	72	17
P Bray-1 (ppm)	2.5	25	2.0
Materia orgánica (\%)	5.4	58	5.2
P fijado (\%)	83	80	86
Densidad aparente ($\mathrm{g} \mathrm{cm}^{3}$)	0.85	0.78	0.53
Humedad (0.3 bars) (\%)	46.07	46.46	48.14
Humedad (6 bars) (\%)	39.34	39.61	41.70

Extracción de aloffano

En el Cuadro 2 se presentan los resultados de la disolución selectiva con oxalato ácido de amonio, pirofosfato de sodio y ditionito-citrato bicarbonato (dcb); asi como las relaciones molares para Al, Si y sus óxidos obtenidos a partir de la extracción de ambos clementos con oxalato-ácido.

Para los dos horizontes superiores del perfil $(0 \mathrm{~cm}$ a 50 cm y 50 cm a 135 cm) los valores de las relaciones $\mathrm{Al} / \mathrm{Si}$ y $\mathrm{SiO}_{2} / \mathrm{Al}_{3} \mathrm{O}_{3}$ fueron cercanas a uno y alrededor de dos, respectivamente, mientras que para el tercer horizonte (135 cm) las relaciones anteriores fueron dos y uno, respectivamente; estos resultados hacen suponer, de acuerdo con Quantin (19), la presencia de alófano haloisita en los horizontes superficiales del perfil y de imogolita en el más profundo.

Espectroscopía de IR

Los espectros de IR que se muestran en la Fig. 1 corresponden a los tres horizontes estudiados; en el más

Cuadro 2. Resultados de la disolución selectiva en diferentes extractantes y relaciones molares entre Al, Si y sus sesquióxidos para el perfil Felipe Neri, Méx.

Profundidad cm	Oxalato-ácido			Pirofosfato-Na			$\mathrm{dcb}^{\text {y }}$			Al/Si	$\mathrm{SiO}_{2} \mathrm{Al}_{2} \mathrm{O}_{3}$	Alófano o imogolita (\%)
	Al	Fe	Si	Al	$\begin{gathered} \mathrm{Fe} \\ (\%) \end{gathered}$	Si	Al	Fe	Si			
0-50	1.70	1.40	1.52	0.90	0.30	4.33	1.35	1.72	---	106	1.52	$7.23{ }^{27}$
50-135	1.25	2.00	1.28	0.40	0.30	616	0.82	2.00	0.00	1.02	1.74	6.10^{2}
> 135	3.50	130	230	120	0.24	4.33	1.65	1.32	0.83	1.59	1.12	$16.97{ }^{\text { }}$

Notas:

1/ Ditionito-citrato-bicarbonato.
$2 /$ Principalmente alơfano
3/ Imogolita
superficial (0 cm a 50 cm) se observaron bandas de absorción a $3680,3650,1100,920,700,550,470$ y $340 \mathrm{~cm}^{-1}$ y, además, las bandas de absorción de agua, características de la haloisita hidratada pero poco cristalizada.

El espectro correspondiente al segundo horizonte (50 cm a 135 cm) presenta características semejantes a las descritas con anterioridad; sin embargo, las bandas entre 3690 cm a 3620 cm en la región presentan mayor amplitud, lo que corresponde a una mayor cristalinidad del mineral. Para el tercer horizonte, cl espectro correspondiente señala las siguientes bandas de absorción: $1110,960,570,480,430$ y $350 \mathrm{~cm}^{-1}$, a los cuales se añaden las bandas de absorción de agua de gran amplitud alrededor de 3400 a $3500 \mathrm{~cm}^{-1}$ y a $1630 \mathrm{~cm}^{-1}$.

Si se observan las bandas alrededor de 960 y $350 \mathrm{~cm}^{-1}$, muestran claramente la presencia de imogolita.

Difracción de rayos-X

Los difractogramas de la fracción $<0.002 \mathrm{~mm}$, correspondientes a las profundidades 0 cm a 50 cm y 50 cm a 135 cm (Fig. 2), señalan claramente la presencia de haloisita ($7 \AA$) y rastros de plagioclasa, pero no revelan la existencia de micas o arcillas con espacio o 10-14 \AA como en el estudio de microscopía. En el horizonte 50 cm a 135 cm también se observa haloisita (10 y $7 \AA$). La difracción con rayos- X del horizonte 135 cm revela la presencia de imogolita, alófano y trazas de haloisita (Fig. 2).

Fig. 1. Espectros IR en tres horizontes estudiados

Fig. 2. Presencia de haloisita y de plagioclasa en difractograma de la fracción $<0.002 \mathrm{~mm}$, correspondientes a las profundidades 0 cm a 50 cm y 50 cm a 135 centímetros.

Microscopía electrónica

La microscopia de barrido muestra la presencia de microlitos (vidrio, feldespatos, cuarzo, otros) y fitolitos en el primer horizonte (Fig. 3).

Fig. 3. Microscopia de barrido para el primer horizonte del perfil Felipe Neri (fracciôn $<0.002 \mathrm{~mm}$).

La observación con microscopio electrónico de transmisión de la fracción $<0.002 \mathrm{~mm}$, correspondiente a las profundidades 0 cm a 50 cm y 50 cm a 135 cm (Figs. 4 y 5), muestra la presencia de particulas enrolladas, forma particular de la haloisita esferoidal; también se observan alófano esférico (protohaloisita) y un poco de vidrio volcánico alterado y micas del tipo 2:1.

En el tercer horizonte (1.35 cm), que se muestra en las Figs 6 y 7, se observan mayormente redes de imogolita, y un poco de haloisita esferoidal, de alófano esférico (protohaloisita) y de micas.

Fig. 4. Toma en microscopio electrónico de transmisión de la fracción $<0.002 \mathrm{~mm}$ para el horizonte 0 cm a 50 cm del perfil Felipe Neri, Méx. (Al : alófano).

Fig 5 Microscopia electrónica de transmisión para la fracción $<0.002 \mathrm{~mm}$ del horizonte 50 cm a 135 cm del perfil Felipe Neri, Méx (Mi:mica, Al:alófano, Hi esf: haloisita esferoidal, Ht. tub :haloisita tubular).

Es posible que el alófano que se observa en la fotografia, con microscopio electrónico de transmisión, sea en realidad una haloisita esférica muy fina, probablemente protohalosita, lo cual está en concordancia con el análisis quimico.

CONCLLSIONES

En el caso de los dos primeros horizontes, se observan las siguientes caracteristicas del material menor de 0.002 mm : dispersión en medio alcalino, una

Fig 6. Alófano, imogolita y estructuras cristalinas, observadas con mictoscopios de transmisiōn en el horizonte 135 cm del perfil Felipe Neri, Méx (Im: imogolita, Cr: cristobalita).
composición quimica que corresponde a relaciones $\mathrm{Al} / \mathrm{Si}$ alrededor de uno y $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ cerca a dos y un espectro de IR, que corresponde al de una haloisita hidratada de baja cristalinidad, que probablemente es una mezcla de alófano y haloisita (o metahaloisita); la cristalinidad de la haloisita disminuye con el aumento de la profundidad en el perfil.

El comportamiento de suelo del tercer horizonte $(135 \mathrm{~cm})$ fue el siguiente: dispersión en medio ácido, relaciones $\mathrm{Al} / \mathrm{Si}$ y $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ cercanas a uno y alrededor de dos, respectivamentc; un espectro de IR correspondiente al de la imogolita, formas fibrosas que se observan por microscopia de transmisión que muestran la predominancia de imogolita mezclada con alófano, pero sin presencia importante de haloisita ni de otros minerales bien cristalizados.

En conclusión, es interesante notar que es la primera vez que la imogolita es reportada en andisoles mexicanos. El Andisol en cuestión está compuesto de al menos dos suelos superpuestos que presentaron una edafogénesis un poco distinta, ya que en la parte superior se desarrollan mayormente arcillas paracristalinas del tipo haloisita esférica ($10-7 \AA$) y alófano; mientras que la parte profunda está compuesta principalmente por imogolita

Se puede decir que esta diferencia podria sugerir un comportamiento un poco diferente de la parte superior del suelo y de la partc inferior que se podria explicar de la manera siguiente: la formación de arcilla tipo haloisita y de alófano se debe a la edad más joven de la ceniza superficial y a un clima menos húmedo que el clima adecuado para el desarrollo de la imogolita, en la última profundidad de acuerdo con Aomine y Mizota (1). En el caso de la formación de la imogolita, es bien

Fig. 7. Estructuras de micas observadas con microscopio de transmisión en el horizonte 135 cm del perfil Felipe Neri, Méx
conocido que necesita un clima perhúmedo ($16,17,18$). Esta observación puede sugerir también un cambio climático, es decir una formación anterior en un ambiente más húmedo y con un proceso de alteración más avanzado.

LITERATLRACITADA

1 AOMINE, S.; MIZOTA, C 1973. Distribution and genesis of imogolite in volcanic soils of Northern Kanto, Kanto, Japan In Clay Confer. (1972, Madrid). Proceedings Madrid, Ed Serratoza p. 207-213

2 AGUILERA. H, N. 1963. Algunas consideraciones, características, génesis y clasificación de suclos de ando. In Congreso Nacional de la Ciencia del Suelo (1). Memoria Chapingo, Méx, Sociedad Mexicana de la Ciencia del Suelo p. 233-247.
3. AL VAREZ V., V.H. 1982 Efecto de los factores calidad, intensidad y calidad amortiguadora de fosfato en la evaluación de fósforo disponible en suelos derivados de cenizas volcánicas de la Meseta Tarasca, Edo. Michoacán. Tesis Ph Sc. Chapingo, Méx, Colegio de Postgraduados.
4. BAUS P., J. 1980 Efecto de la fertilización orgánica e inorgannica del fósforo en un suelo de ando. Tesis M Sc Chapingo, Méx. Colegio de Postgraduados
5. BESOAIN, M, E 1968 Imogolite in volcanic soil of Chile Geoderma: An Internatiomal Journal of Soil Science 2:151-169.
6. BLACKEMORE, L.C. SEARLE, PI.; DALY, BK. 1977. Soil Bureau Laboratory Methods: A method for chemical analysis of soils. N.Z. Soil Bureau Science Report.
7. CERVANTES R. L.G. 1965. Génesis y clasificación de algunos suelos de la Meseta Tarasea. Tesis M Sc Chapingo, Méx + Estado de Michoacán, Colegio de Postgraduados
8. COLMEI-DAAGE, F. et al 1970. Caractéristiques de quelques sols dérivés de cendres volcaniques de la Côte Pacifique du Nicaragua Cahiers ORSTOM: Série Pédologie 8(2):113-172
9. FIELDES, M.; W PERROT K 1966 The nature of allophane in soils. III Rapid test for laboratory and field for allophane. Journal of Science (N Z) 9:623-629
10. GUAJARDO, V. R. 1967. Caracterización de algunos suelos de ando de la Sierra Tarasca Tesis M Sc. Chapingo, Méx, Colegio de Postgraduados.
11. JACKSON, M L. 1965. Soil chemical analysis: Advanced course Madison, Wisconsin, University of Wisconsin, Department of Son Science p. 31-36
12. MEHRA, O P:JACKSON, M L. 1960 Iron removal from soils and clays by a ditionite citrate system buffered with sodium bicarbonate In Nat Conference Clays and Clays Minerals (1958, Washington, D C.) v. 7.p. 317.327.

13 MELIHCH. G. 1980. Los suelos de la Sierra Nevada de México. Méx, Fundación Alcmana para la lnvestigación Cientifica. Suplemento Comunicaciones Proyecto Puebla Tlaxcala 7

14 MIRAMONIES, I, B 1972 Efecto del carbonato de calcio y silicato de calcio sobre el rendimiento de sorgo y algunas propiedades químicas en tres suetos de Mexico Tesis M. Sc. Chapingo, Méx. Colegio de Postgraduados.

15 PIEIJSIER, L K 1986 The laboratory methods and data exchange programme interim report on the exchange round 86.1 Wageningen, Holanda, International Soil Reference and Information Centre Working Paper and Preprint 86/4
16. QUANIIN, P. 1974. Hypothése sur la genèse des andosols en climat tropical: Evolution de la "pédogenèse initiale" en milieu bien drainé-sur roches volcaniques Cahiers ORSTOM. Sérvice Pédologie 12(1):3-12
17. QUANIIN, P; BONDANT-TRAUI, D; WEBER, F. 1975 Miocen evidence des minceraux sécondarics, argiles et hydroxydes dans les andosols des Nouvelles Hébrides, apres deférrification pour la méthode de Endredy Butletin Gr. Fr. Argiles 27(1):51-87.
18. QUANIIN, P 1987 Les Andosols Paris Cours DEA de Pédologie 25 p .
19. QUANIIN, P. 1987. Curso: Mineralogia de los andosoles y de los suelos de origen volcánico. Montecillos Mex. Colegio de Postgraduados (Apuntes xerografiados)
20. RAMOS M H 1972. Estudio del alófano y su efecto en la actividad metabólica de la flora microbiana en tres suelos: Vertisol, andosol y ranker alpino. Tesis M.Sc. Chapingo, Méx. Liscuela Nacional de Agricultara

21 WADA. K.; GUNJIGAKE N. 1979. Active aluminum and iron and phosphate adsorption in Ando soils Soil Science 128:331-336

22 WADA, K; KAKUIO, Y. 1985. A spot test with toluidine blue for allophane and imogolite Soll Science Society of American Journal 49:276-278

Potenciales Osmóticos y Tuberización in Vitro de Secciones de Brotes y Esquejes de Papa ${ }^{1}$

L. Martínez*, V.L. de Steccoo*, R. Tizio*

Abstract

The work aimed at establishing whether sugars play a role through osmotic effect in the mechanism of potato tuberisation. The action of mannitol and its interaction with sucrose was studied. Decapitated sprout sections of potato (Solanum tuberosum L.) were cultured in vitro in White-Nitsch-Morel medium supplemented with different levels of sucrose and/or mannitol. The cultures were placed in a dark location at a temperature of $20^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}$ unitl the end of the experiment. Mannitol did not promote tuberisation. Combinations with sucrose having identical osmotic potentlals caused delayed tuberisation and abnormal tuber growth. The effects of mannitol were also evident when the explants pretreated during different periods were transferred to media with sucrose. The same was true when the explants were cultured during four days in increasing levels of mannitol and then transferred to media with sugar. Steam cuttings treated with mannitol showed severe water stress followed by death. Cuttings treated with sucrose showed normal growth and tuberisation. Considering that identical osmotic potentials provoked varying delays in tuberisation, it is difficult to ascertain whether sugars act or not through an osmotic effect or whether they are in some way involved in the hormonal mechanism of potato tuberisation.

INTRODECCION

EI manitol ha sido utilizado para estudiar el efecto de los potenciales del agua sobre el crecimiento de tejidos y órganos, y sobre el desarrollo del estrés hídrico en células y tcjidos. Ello se ha basado en la presunción de que este compuesto penetra muy len-

[^7]
COMPENDIO

El objetivo de este trabajo fue determinar si los azúcares desempeñan algún papel, a través de un cfecto osmótico, en al mecanismo de tuberización de la papa (Solanum luberosum L.). Secciones de brotes se cultivaron in vitro en el medio de White-Nitsch-Morel, suplementado con diferentes niveles de sacarosa y, además o en su defecto, de manitol. Los cultivos secolocaron en la oscuridad a $20^{\circ} \mathrm{C}-\mathbf{2 2 ^ { \circ }} \mathrm{C}$ hasta la finalización de los ensayos. Manitol no promovió tuberización. Diferentes combinaciones con sacarosa de iguales potenciales osmóticos provocaron retardos variables sobre la tuberización y alteraron el crecimiento normal de los tuberculos. Los efectos del manitol también se observaron cuando los explantos, pretratados en diferentes períodos, se repicaron en medios con sacarosa. Igual ocurrió cuando aquéllos fueron cultivados durante cuatro dias en concentraciones crecientes de manitol y transferidos, luego, a medios con el azúcar. Esquejes foliosos tratados con manitol manifestaron severo estrés hídrico seguido de muerte. En medios con sacarosa crecieron y tuberizaron normalmente. Teniendo en cuenta que identicos potenciales osmóticos provocaron retardos diferentes sobre la tuberización, es aún incierto establecer sí los azücares también actúan por efecto osmótico, o si están involucrados en el mecanismo hormonal de tuberización de la papa.
tamente dentro de las células sin interferir en el metabolismo celular (12,13). Usando manitol, Lo et al. (7) estudiaron la posibilidad de que la tuberización de secciones de brotes de papa (Solanum tuberosum L.) cultivados in vitro podría deberse a bajos potenciales osmóticos (Ψ osm) en medios con altos niveles de sacarosa. Los autores determinaron que el manitol no promovía luberización, y concluyeron que la sacarosa era efectiva como fuente hidrocarbonada y no a través de sus potenciales osmóticos.

Sin embargo, el manitol no sólo penetra dentro de ciertos tejidos modificando aquel parámetro, sino que también altera el metabolismo de las plantas tratadas (11, 16). En otras palabras, dicho compuesto es transportado desde las raíces hacia los cjes caulinares induciendo necrosis foliar $(2,4)$.

El objeto de este trabajo fue determinar si ciertos azúcares como la sacarosa pueden desempeñar algún papel, a través de un efecto osmótico, en el mecanismo
de tuberización de la papa. Con ese fin, se estudió la interacción del manitol con diferentes niveles de sacarosa sobre la tuberización de secciones de brotes de papa cultivadas in vitro. También se analizaron los efectos del manitol y la sacarosa usando esquejes foliosos de la misma cspecie.

MATERIALES Y METODOS

Tubérculos brotados de papa (S, tuberosum L.) de los cultivares Spunta y Bintje se colocaron en oscuridad continua a $20^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}$ durante 15 dias, a fin de estimular el alargamiento de los brotes. A continuación fueron expuestos a luz natural difusa y a temperatura de laboratotio para estimular la diferenciación de los tejidos. Luego de la exuracción de los brotes de primera brotación, los restantes fueron eliminados a fin de obtener secciones de segunda y aun de una tercera brotación en las condiciones descritas precedentemente.

Secciones de brotes de primera, segunda y tercera brotación, de 3 cm a 4 cm de longitud, con dos o tres yemas axilares, se esterilizaron con 75% de etanol durante $3 \mathrm{~min} y$, lucgo, con una solución al 12% de hipoclorito de socio comercial (80 g de cloro activo por decímetro cúbico) adicionada con 0.04% de Tween 20 , durante 20 minutos.

Luego de tres enjuagues con agua bidestilada estéril, los explantos se cultivaron en tubos de ensayo con 25 ml de una mezcla de macronutrimentos de White (17) y micronutrimentos según Nitsch (9), adicionada con 0.75% de agar bacteriológico Difco, $10 \mathrm{mg} / \mathrm{l}$ de EDTA de Fe y diferentes concentraciones de sacarosa (0.25 , $0.33,0.42$ y 0.5 M), acompañadas o no con manitol ($0.08,0.17$ y 0.25 M). Luego del cultivo todos los tratamientos se expusieron a oscuridad continua a $20^{\circ} \mathrm{C}$ $-22^{\circ} \mathrm{C}$ hasta el final de los experimentos

Los potenciales osmóticos de los testigos (sin sacarosa o manitol) se midicron con un conductímetro Aradel Mod 3 P en 36 tubos con el medio nutriente de White-Nitsch adicionado con 0.75% del agar y $10 \mathrm{ml} / \mathrm{l}$ de EDTA de hierro. Se midió un valor promedio de $1068.5 \mu \mathrm{mhs}$ a 2 cm de profundidad, que correspondió a un potencial osmótico de -0.38 atmósferas normales. Este valor (-0.4 atm) se adicionó a los potenciales osmóticos, calculados para las difcrentes molaridades de sacarosa acompañada o no con manitol.

En el análisis estadistico se utilzó el test Tuckey de comparación múliple. Los primeros dos ensayos (Cuadros 1 y 2) se llevaron a cabo usando un diseño completamente alcatorizado con diez repeticiones. Los restantes se realizaron en la misma forma, con sicte repeticiones. Cada repetición consistió en scis tubos de cultivo que no presentaron signos de infección.

Cuadro 1. Efecto de diferentes concentraciones de sacarosa, manitol y combinaciones de ambos compuestos sobre la tuberización de secciones de brotes de papa del cv. Bințje, cultivadas in vitro (brotes de tubércules de primera brotación).

Sacarosa (M)	Manitol (M)	ψ osm $(-\mathrm{ntm})$	Días para alcanzar 50\% de explantos (uberizados	Tuberización de cultivo (\%
0	0	0.4	>76	0
0.25	0	6.0	50 bc	87
0.33	0	7.8	41 ab	81
0.42	0	9.8	38 a	89
0.50	0	11.6	39 a	55
0.25	0.25	11.6	61	50
033	0.17	11.6	51 c	67
0.42	0.08	11.6	41 ab	70

$$
\mathrm{HSD}=\alpha 0.05=9.17 \quad \mathrm{CV}=17.81 \%
$$

En el Cuadro 1 y en los siguientes, los valores medios acompañados por la misma letra no muestran diferencias significativas a nivel de $\Psi 005$ (Iest Tuckey).
$x=$ En todas las concentraciones utilizadas, el manitol solo no promueve tuberización.

Cuadro 2. Efecto de diferentes concentraciones de sacarosa, manitol y combinaciones de ambos compuestos sobre la tuberización de secciones de brotes de papa del ev. Spunta, cultivadas in vitro (brotes de tubérculos de segunda brotación).

Sacarosa (M)	Manitol (M) X	ψ osm (atm)	Días para alcanzar 50% de explantos tuberizados	Tuberización luego de 65 dias de cultivo (\%)
0	0	0.4	$>60 \mathrm{~b}$	0
0.25	0	6.0	30ac	100
0.33	0	7.8	27 a	85
0.42	0	9.8	28 a	83
0.50	0	11.6	44 d	80
0.25	0.25	11.6	$>60 \mathrm{~b}$	35
0.33	0.17	11.6	54	57
0.42	0.08	11.6	38 cd	67
$\mathrm{HSD}=\alpha 0.05=8.96$			$C V=14.48 \%$	

$x=$ En todas las concentraciones usadas, el manitol solo no promueve tuberización

Esquejes foliosos de 13 cm a 15 cm de longitud se extrajeron de plantas jóvenes, no tuberizadas, colocadas desde la brotación bajo luz continua Quince esquejes con 2 ó 3 hojas apicales se sumergicron por sus bases, cortadas a bisel, dentro de diferentes concentraciones de manitol o sacarosa ($0.17 ; 025 ; 0.33$; 0.42 y 0.5 M) durante 16 horas. Lucgo de los tratamientos, se plantaron en macetas con vermiculita húmeda, periódicamente regada con solución de Knop diluida a la mitad. Aquellas se colocaron en un invernáculo, a $22^{\circ} \mathrm{C}-44^{\circ} \mathrm{C}$ con un fotoperíodo de 14 horas.

resultados

Ensayos preliminares mostraron que el manitol, en cualquiera de las concentraciones utilizadas, fue completamente incfectivo en promover tuberización, como fucra anteriormente demostrado por Lo et al. (7). Asimismo, y en ausencia de sacarosa, la tuberización no tuvo lugar (Cuadros 1 al 6). Sin embargo, en ambos casos, se observó un moderado crecimiento de los tallitos estoloníferos formados a partir de las yemas de los explantos, que siempre terminaron por envejecer y secarse.

Cuadro 3. Efecto de periodos crecientes de cultivo en 0.25 M de manitol sobre la tuberización de secciones de brotes del cv. Bintje, cultivadas in vitro, luego de la transferencia a medios con 0.25 M de sacarosa (secciones de brotes de tubérculos de segunda brotación).

Días en 0.25 M de manitol	Número de dias para alcanzar 50% de explantos tuberizados	Tuberización luego de 60 dias de cultivo (\%)
0	30	100
4	38 a	71
8	40 a	77
16	54	62
24	>60	0

En secciones del cv. Bintje se observó una correlación directa entre la concentración de sacarosa en el medio del cultivo y tuberización precoz (Cuadro 1). En el cv. Spunta tal correlación no se observó, ya que altos niveles de sacarosa (0.5 M) retardaron considerablemente la formación de tubérculos (Cuadro 2).

En ambos cultivares, las combinaciones de sacarosa y manitol con idénticos potenciales osmóticos (-1), 6

Cuadro 4 Efecto de períodos crecientes de cultivo en 0.25 M de manitol sobre la tuberización de secciones de brotes del cv, Bintje, cultivadas in vitro, luego de la transferencia a medios con 0.25 M de sacarosa (secciones de brotes de tercera brotación).

Días en 0.25 M de manitol	Número de días para alcanzar 50% de explantos tuberizados	Tuberización luego de 56 dias de cultivo (\%)
0	12	100
4	22	100
8	35	100
16	46	52
24	>56	0

Cuadro 5. Efecto del cultivo, durante cuatro dias, en diferentes molaridades de manitol, sobre la tuberización de secciones de brotes, cultivadas in vitro, del cy Bintje, luego de la transferencia a medios con 0.25 M de sacarosa (brotes de fubérculos de segunda brotación).

Manitol (M)	Número de días para alcanzar 50\% de explantos tuberizados	Tuberización luego de 65 días de cultivo $(\%)$
0	29	95
0.25	39 a	85
0.33	45 a	82
0.42	$>65 \mathrm{~b}$	31
0.50	$>65 \mathrm{~b}$	10
$\mathrm{HSD}=\alpha 0.05=9.17$	$\mathrm{CV}=11.61 \%$	

atm) (Cuadros 1 y 2) retrasaron considerablemente la tuberización y alteraron el crecimiento normal de los uubérculos que resultaron muy pequeños y deformados.

En otros ensayos (Cuadros 3 y 4) se observó una correlación directa entre el lapso, durante el cual los explantos permanecieron en 0.25 M de manitol, y los retardos observados en la tuberización, luego del repique de los mismos a medios que contenían 0.25 M de sacarosa. En estos casos se reiteró el efecto detrimental del manitol sobre el crecimiento de los tubérculos.

Cuando las secciones se cultivaron en concentraciones crecientes de manitol durante un mismo

Cuadro 6. Efecto del cultivo, durante cuatro días, en diferentes concentraciones de manitol sobre la tuberización de secciones, cultivadas in vitro, del cv. Bintje, luego de la transferencia a medios con 0.25 M de sacarosa (secciones de brotes de tubérculos de tercera brotación).

Manitol (M)	Número de días para alcanzar 50\% de explantos tuberizados	Tuberización luego de 40 dias de cultivo $(\%)$
0	10	100
0.25	19 a	100
0.33	18 a	100
0.42	22 a	100
0.50	33	57

$$
\text { HSD }=\alpha 0.05=7.69 \quad C V=9.93 \%
$$

lapso (4 d), y luego fueron transferidas a medios con 0.25 M de sacarosa, la tuberización fue progresivamente retardada y aun completamente inhibida (Cuadros 5 y 6).

En los esquejes foliosos, previamente tratados con diferentes concentraciones de manitol, se manifestó una rápida y severa marchitez seguida de muerte del material. Esquejes tratados con iguales concentraciones de sacarosa, enraizaron, crecicron y tuberizaron normalmente, luego de 20 da 25 d desde la plantación.

DISCUSION

De los resultados expuestos en los Cuadros 1 y 2 , claramente, se demuestra que el manitol, en combinaciones con sacarosa de iguales valores de potenciales osmóticos (-11.6 atm), no sólo es cl causante de los retardos observados en la tuberización sino también del crecimiento anormal de los tubérculos. Esto implica que dicho compuesto penetró dentro de las secciones, e incluso probablemente modificó los potenciales osmóticos de sus tejidos. También es evidente que, en ambos cultivares, el efecto retardador que puede atribuírsele al manitol aparece como una función de su molaridad. Ello significaria que en todas las experiencias realizadas, el potencial osmótico de los medios de cultivo, igual que para todas las combinaciones de manitol con sacarosa, no ha sido el factor que controló la formación de los tubérculos.

Teóricamente, se cree que si el manitol hubicra actuado sólo como agente osmótico, seria correcto
deducir que en todos los casos la tuberización hubiera tenido lugar aproximadamente al mismo tiempo, sin presentar diferencias significativas entre las diferentes variables. Ello teniendo también en cuenta que la menor concentración utilizada de sacarosa (0.25 M) corresponde a un 8.56% en el medio de cultivo, que resulta más que suficiente para provocar la formación de lubérculos in vitro (15).

Sin embargo, podria argüirse que el efecto retardante del manitol se relacionaría con la conversión de sacarosa a almidón. En ese sentido, Oparka y Wright (10) demostraron que la conversión, en discos de tubérculos de papa, incubados en un determinado rango de manitol, fue óptima a 300 mM , pero declinaba considerablemente por encima o por debajo de esa concentración

En opinión de los autores de este articulo, el fenómeno descrito no puede asimilarse a lo ocurrido en este caso, ya que el manitol, asociado con sacarosa, ejerce su acción retardante sobre la tuberización antes de que ésta tenga lugar, es decir, antes de que comience a sintetizarse el almidón en los meristemas subapicales o yemas axilares de los tallos estoloníferos.

Los resultados confirman que el manitol no actúa como fuente hidrocarbonada para la expresión de la tuberización (7). Sin embargo, y teniendo en cuenta los resultados expuestos, no resulta correcto concluir que, por la ausencia de tuberización en medios con manitol, los azúcares como la sacarosa no actúen sobre el fenómeno por acción de sus potenciales osmóticos tal como lo afirman Lo et al. (7).

Los resultados del presente trabajo también ponen de manifiesto un hecho que invalida, en nuestra opinión, las conclusiones de Lo et al (7): no tuvieron en cuenta que el manitol podría haber penetrado dentro de los explantos de papa, alterando a su vez sus potenciales osmóticos iniciales. Los resultados de los Cuadros 3 y 4 demucstran que efectivamente es asi, no sólo retardando la tuberización provocada por la disponibilidad de sacarosa, sino también alterando el normal crecimiento de los tubérculos.

Los resultados de los Cuadros 5 y 6 demuestran que el cfecto retardante del manitol sobre la luberización constituye una función de su concentración en presencia de niveles suficientes del azúcar como para desencadenarla.

La acción anormal del manitol sobre el crecimiento de los tubérculos es también ejercida en tejidos y órganos de otras especies $(6,8,11)$. En papa, dicha acción se ha corroborado al utilizarse estacas foliasas tratadas con aquel compuesto. Ese comportamiento
fue similar al observado en otras especies como centeno, girasol, maíz y haba, las que muestran un rápido y severo estrés hídrico seguido de muerte cuando son regadas con soluciones de manitol (4).

La falta de una estrecha correlación entre niveles crecientes de sacarosa y precocidad de tuberización en el cv. Spunta (Cuadro 2), plantea también dudas acerca de la acción de los azücares a través del desarrollo de sus potenciales osmóticos.

Por último, la precoz tuberización manifestada por las secciones de brotes de tercera brotación (Cuadros 4 , 5 y 6) podría atribuirse al grado de incubación, o cdad fisiológica mayor, alcanzado por los tubérculos de los que los explantos fucron extraídos (14). Algunos autores postulan, sin aportar pruebas concluyentes, que los azucares no participan en el mecanismo de tuberización de la papa, aunque consideran que son esenciales para la síntesis de almidón, ligada al crecimiento de los tubérculos (1,5).

Los resultados expuestos por este trabajo demuestran que auin es incierto establecer si los azúcares también actúan por efecto osmótico, o si están involucrados, juntamente con otros reguladores endógenos del crecimiento (3,15), en el mecanismo de tuberización de la papa.

LITERATURA CITADA

1. GREGORY,1.E. 1956. Some factors for tuberization in the potato plant American Joumal of Botany 43:281-288
2. GROENEWEGEN, H: MILLS, J.A. 1960. Uplake of manitol into the shoot of intact barley plants. Australian Journal of Biological Sciences 31:1-4.
3. GUIÑAZU, M; ABDALA, G.; TIZIO, R 1988. Effect of free and conjugated gibberelins on roots of potato cuttings treated with CCC (2-chlorochyl trimethlammonium chloride) in relation to tuber formation Journal of Plant Physiology 132:725-730.
4. KOZINKA, V: KLENOWSKA, S. 1965. The uptake of mannitol by higher plants. Biologia Plantarum 7:285-292.
5. LAWRENCE, CH: BARKER, W G 1963 A study of tuberization in the potato Solanum tuberosum American Potato Journal 40:349-356
6. LEWIS, D.H ; SMIIH, D.C. 1967. Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytologist 66:143-184

7 LO. FM ; IRVINE, B R ; BARKER, WG 1972. In vitro tuberization of the common potato (Solanum tuberoxiun) is not a response to the osmotic concentration of the medium Canadian Joumal of Botany 50:603-605.
8. MICIEL., BE 1970. Carbowax 6000 companed with mannitol as a supressant of cucumber hypocotyl elongation. Plant Physiology 507-509
9. NIISCH, J.P. 1951. Growth and development in vitro of excisedovaries American Journal of Botany 38:566-578
10. OPARKA, KJ; WRIGHT, K M 1988 Osmotic regulation of starch synthesis in potato tubers? Planta 174:123-126
11. RIOV, J; YANG, SH. F. 1982. Stimulation of ethylene production in citrus leaf dises by mannitol. Plant Physiology 70:142~146.
12. THIMANN, K.V. 1954. The physiology of growth in plant tissues American Scientist 13:586-606
13. THIMANN, K. V.; LOSS, GM; SAMUEI.. EW, 1960. Penetration of mannitol into potato discs. Plant Physiology 35:848-853
14. TVZIO, R. 1979a. Effect de la lumiere sur la tubérisation in vitro de germes de tubercules de pomme de terre (Solanum tuberosumL) d'âges physiologiques differents. Comptes Rendus Hebdomadaires des Séances de l'Acadernie des Sciences Série D: Sciences Naturelles 289:275-277

15 TVZIO. R. 1979b. Contribution à l'étude du mecanisme hormonal de tubérisation de la pomme de terre (Solanum ruberosum L..). Thèse Dr. d'Eatal. Paris 6, Université Pierre et Marie Curic.
16. IRIP, P; KROTKOV. G.; NILSON, OD. 1964. Metabolism of mannitol in higher plants American Journal of Botany 51:828-835.
17. WHITE, PR. 1943. A handbook of plant tissue cultures Lancaster, Pa., The Jacques Cattell Press

Estudio Preliminar sobre Insectos Polinizadores de Macadamia en Costa \mathbb{R} ica ${ }^{1}$

C. E. Masis*, HJ Lezama**

Abstract

A series of studies were carried out on Macadamia integrifolia trees and visiting insects on the Atirro Farm, Turrialba, Cartago Province. During a period from September through December, 1988, the major insect visitors, and probably pollinators, were: Apis mellifera (Apidae: Hymenoptera), Trigona spp. (Apidae: Hymenoptera) and Ornidia obesa (Syrphidae:Diptera). These insect species were recorded as follows: $79.49 \%, 14.88 \%$ and 6.35% respectively. Other insect species belonging to orders Coleoptera and Lepidoptera were also recorded (2.26%) It was found that the highest activity level of a given insect pollinator species never coincided with that of any other. This suggests the probability of competition by exclusion. Isolated inflorescences yielded 60% less fruit than those visited by insects.

INTRODLCCION

La macadamia en Costa Rica ha experimentado, en los últimos años, un avance significativo en el campo de las exportaciones, pues se trata de un producto ampliamente aceptado en el mercado internacional. Sin embargo, debido a la falta de información técnica adaptada, no se ha llegado aún a niveles adecuados de rendimiento para este país, lo cual probablemente influye, directa o indirectamente, en el aumento del rendimiento por área

Los estudios de polinización en macadamia representan un campo muy poco explorado, al punto de no existir en la literatura ningún trabajo realizado al respecto (2).

1 Recibido para publicación el 21 de marzo de 1989

* Ing. M.Sc. Investigador del Convenio Cooperativo Universidad de Costa Rica (UCR)/Instituto del Café de Costa Rica (ICAFE)/Consejo Agroindustrial Agropecuario Privado (CAAP)/Ministerio de Agricultura y Ganadería (MAG) Miembro del Programa Financicro de Apoyo a lnvestigadores del Consejo Nacional de lnvestigaciones Cientúficas y Tecnológicas (CONICIT); Costa Rica
** Museode Insectos, Facultad de Agronomía, Universidad de Costa Rica, San José, C. R.

COMPENDIO

Se estudió la interacción entre Macadamia integrifolia y sus insectos visitadores en la finca Atirro, Turrialba (prov. Cartago). Durante los meses de setiembre a diciembre de 1988, los principales insectos visitantes y posibles polinizadores fueron: Apis mellifera (Λ pidea: Hymenoptera), Trigona sp. (Apidae: Hymenoptera) y Ornidia obesa (Syrphidae: Diptera), y los porcentajes de visita de esos insectos fueron: $79.49 \%, 14.88 \%$ y 6.35%, respectivamente. Se observaron otros insectos de menor importancia, pertenecientes a los órdenes Colcóptera y Lepidóptera, en una frecuencia de 2.26 por ciento. En ningún caso, los períodos de mayor actividad de los insectos polinizadores ocurricron al mismo tiempo; esto evidencia, probablemente, un ciemplo de la competencia o desplazamiento interespecifico. Inflorescencias del clon 344, aisladas de la acción de los insectos, presentaron una disminución numérica del 60% en ta producción de frutos.

Las flores de M integrifolia son de color blanco con un ovario biovulado, un estilo largo y un estigma terminal pequeño, que forma una proyección curvada en su sección mediana justo antes de la abertura floral (Fig. 1). El polen es liberado dentro de la flor uno o dos dias antes de su apertura, sin embargo, una o dos horas antes de la antesis los sépalos se retraen exponiendo las anteras cerca de la extremidad del estilo. Las anteras se separan y, 5 min a 10 min más tarde, el estilo brota libre y erecto extendiéndose más allá de las mismas. El estigma se vuelve receptivo solamente después de la (s) antesis(s). Esta última observación sugiere que los insectos pueden recolectar el polen antes de que el estigma sea receptivo, polinizando más tarde otras flores con el material previamente recogido.

El objetivo de este trabajo es informar sobre las principales especies de insectos visitadores de las flores de macadamia (M. integrifolia) en Costa Rica, y su importancia como agentes polinizadores.

MAIERIALES Y METODOS

Los estudios se llevaron a cabo en seis árboles de macadamia (clon 344), de ocho años de cdaden la Finca

Atirro, a 630 msnm , Turrialba (prov. Cartago). Las observaciones se realizaron los días 28 y 29 de setiembre de 1988, durante la fase de mayor floración.

Por espacio de 24 h , y a intervalos de 30 min , se observó la frecuencia de todos los insectos visitadores de las inflorescencias. Solamente se consideraron como supuestos polinizadores a aquellos insectos en cuyo cuerpo se observaron granos de polen adheridos. Para determinar esta condición se procedió a efectuar comparaciones en el laboratorio, entre el polen recolectado de flores recién abiertas y aquél tomado de los cuerpos de insectos visitadores.

Para la determinación del efecto de la presencia de los insectos polinizadores en la producción de nuez en la macadamia, se escogieron 80 inflorescencias en botón, de tamaño uniforme y distribuidas en 28 árboles del clon 344 (octubre y noviembre de 1988). Cuarenta de estas inflorescencias fueron cubiertas con bolsas de Nylon para evitar la llegada de los insectos después de la apertura floral. Los racimos restantes se dejaron expuestos a la visita de los polinizadores.

Se realizaron dos evaluaciones a intervalos de 20 días, y se contó el número de frutos formados en cada tratamiento.

RESULTADOS Y DISCUSION

Los insectos visitadores más comúnmente encontrados fueron: A. mellifera, con un promedio de frecuencia de 76.49%, mientras que Trigona sp. y O. obesa presentaron valores del 14.88% y 6.35%, respectivamente. Se observaron, además, otros insectos pertenecientes a los órdenes: Coleóptera y Lepidóptera con una frecuencia de 2.26\% (Fig.1).

Los datos obtenidos concuerdan con los de Urata '(8), quien menciona a A. mellifera y a los sírfidos, O. obesa, L. arvorum y L. aemea, como los visitantes más frecuentes de las flores de macadamia en Hawaii.

Con respecto a la mayor frecuencia de visita observada en A. mellifera sobre los demás visitantes de la flor de macadamia, existe la posibilidad de que esto haya ocurrido debido a que sus poblaciones son más constantes y altas durante todo el año.

La Figura 2 muestra los diferentes períodos de actividad de A. mellifera, Trigona sp. y O. obesa durante el día. Se puede observar que la mayor frecuencia de visita de A. mellifera ocurrió a las 9:30, 12:30 y 17:00 horas. Sin embargo, con excepción de las 13:30 h, la actividad de estas abejas no desapareció totalmente durante el resto del período de horas-luz.

Fig. 1. Porcentaje de insectos visitadores de macadamia (clon 344), finca Atirro, Turrialba, C.R., 1988.

Con respecto a Trigona sp., se observaron tres períodos de mayor actividad a las 8:30, 13:00 y 15:00 h , con un cese total a las $7: 30,9 ; 30$ y 13:30 horas. O. obesa presentó su mayor frecuencia de visita a las 7:00 h y 10:30 h, y su actividad llegó a cero varias veces durante el día principalmente de las 15:00 h a las 16:00 horas.

Los períodos de máxima actividad a las $12: 30 \mathrm{~h}$ (Fig. 2), para cada una de las especies no coinciden entre sí. Esto sugiere la posibilidad de que exista competencia interespecífica o que unas especies actuén como visitadores casuísticos u opcionales, ya que cuando una especie se encontraba en un período de mayor actividad, las otras se caracterizaron por mostrar niveles sumamente bajos.

Ejemplos similares de competencia interespecífica entre algunas especies de Trigona sp., se encuentran en Johnson y Hubbel (4), y Hedström (1).

La superioridad de A. mellifera como visitante y polinizador sobre otras abejas del géncro Trigona sp. estriba en: a) una mejor capacidad de comunicación, determinación de la distancia y sentido de dirección entre la colmena y la fuente de alimento; b) mayor tamaño corporal y c) colonias más numerosas (6).

Durante la noche no se observó actividad alguna por parte de abejas ni dípteros sírfidos, aunque sí hubo visita de coleópteros cantáridos del género Chauliognathus considerado como un consumidor de polen en el mango (3).

Fig 2 Actividad polimzadora de A mellifera, Irigona spp y O obesa en macadarnia (clon 344), Finca Atirro, I urrialba, CR., 1998

Las inflorescencias protegidas con envolturas de Nylon presentaron un número menor de frutos formados cuando se compararon con las no cubiertas y totalmente accesibles a los insectos polinizadores. En este caso, la diferencia fue de un 60 por ciento.

Las dos evaluaciones realizadas a intervalos de 20 d en el clon 344 demostraron que existe un 37.74% de pérdidas de frutos. Estudios posteriores deberán ser realizados en otros clones, pues existe la posibilidad de que,el porcentaje de aborto varíc de uno a otro, debido a factores como fertilización y condiciones ambicntales adversas que puedan alterar los resultados obtenidos.

La alta diferencia en la formación de los frutos en el clon 344 , en inflorescencias protegidas, refleja una baja autofecundación. El polen de la flor de macadamia es de textura pegajosa; Shroeder (7) cita a A. mellifera como el principal medio de polinización cruzada en la macadamia, señalando además que la existencia de clones diferentes favorece la formación de frutos.

CONCLUSIONES

Estudios preliminares hacen suponer que A. mellifera es el principal polinizador de la macadamia en Costa Rica, seguido por Trigona sp. y O obesa La presencia de granos de polen en las corbiculas de las
abcjas y en el cucrpo del sirfido, así como los datos de fertilización y los frutos formados, lucgo de la cobertura de inflorescencias con bolsas de Nylon, confirman cl papel que desempeñan estos insectos en este proceso.

La frecuencia de visitas a lo largo del dia de las diferentes especies de insectos, permitió detectar una posible competencia interespecifica

Hacen falta cstudios más detallados de polinización por insectos en los clones de macadamia, comúnmente sembrados en Costa Rica, debido a que el poreentaje de fecundación es bajo. Además es importante cstudiar el requerimiento de polinizadores y distribución de los mismos en la plantación, puesto que estos pueden variar de un clon a otro.

La dependencia de insectos polinizadores por parte de la macadamia, hace necesario un uso racional de los métodos de combate de plagas. Esto implica que la aplicación de insecticidas para este propósito, deba realizarse cuando sea estrictamente necesario y en las horas de menor actividad de los polinizadores. En aquellas plantaciones, en donde se busca favorecer la polinización a través de abcjas, se sugiere alejar las colmenas de las árcas de aplicación o cvilar su salida al campo en ese momento.

Estudios posteriores sobre la polinización de la macadamia deberán ser realizados a fin de obtener un manejo adecuado de las poblaciones de insectos asociados con este fenómeno.

LITERATLRA CITADA

1. HEDSTRÖM. I. 1986 Pollen carriers of Cocos nucifera L (Palmac) in Costa Rica and Ecuador (Neotropical region) Revista de Biología Tropical 34:297-301.
2. JIRON, LF: BARQUERO, ME 1983. Indice de publicaciones entomológicas de Costa Rica San José, CONICIT-OTS. 308 p
3. JIRON, LF: HEDSTROMM, I 1985. Pollination ccology of mango (Mangifera indica L) (Anacardiaceac) in the Neotropic region. Turrialba 35:269-277
4. JOHNSON, L. K, HUBBEL, S.P. 1974. Aggression and competition among stingless bees: Field studies Ecology 55:120-127
5. McGREGOR, SE 1976 Macadamia: Insect polination of cultivated crop plants. Washington. Agriculture Ilandbook no 496 p. 251-253
6. ROUBIK, D.W 1980. Foraging behavior of competing Africanized honey bees and stingless bees Ecology 61:836-845

7 SCHROEDER, C.A. 1959 Some observations on the pollination of macadamia in California California Macadamia Society Ycarbook 5:49-53

8 URATA, U. 1954. Pollination requirements of macadamia Hawaii, Agriculture Experimental Station Technical Bulletin no 2240 p

Goma Extraída de Vagens de Parkia nitida Miquel para Inoculação e Revestimento de Sementes de Leguminosas ${ }^{1}$

F.MS.Moreira*, A A Franco**

Abstract

ABSTRACI Pods of Parkia nitida Miquel, a native Amazon legume species, yielded on a dry weight basis 13.5% of a gum extracted using a home mixer. This gum was tested as a substitute for gum arabic in the inoculation and pelleting of legume seeds. The Amazon gum was compared with the gum arabic for adherence of CaCo_{3} on seeds before and after mechanical shaking, for survival of rhizobia on seeds for up to six days after inoculation, and for nodulation and growth of the inoculated plants. No difference between the gums was detected. These results indicate the possibility of replacing gum arabic imported from Africa by a gum that is abundant in the Amazon region.

Keys words: Adhesive, pelletization.

Abstract

RESLMO

Foi extraida uma goma de vagens de Parkia nitida Miquel, espécie nativa da Amazônia, por meios mecânicos, que apresentou um rendimento de 13.5% do peso total de vagens secas. Testes comparativos desta goma com a goma arábica tanto para aderência, come sem agitaçäo das sementes revestidas com CaCo_{3}, como para sobrevivência de rizơbio até 6 dias após a inoculação, nāo mostraram diferenças significativas. Estes resultados mostram a possibilidade de substituiço da goma arábica, que é importada, pela goma amazônica na inoculação de sementes deleguminosas.

Termos de indexação: Adesivo, peletizaçäo.

INTRODUÇÃO

Um grande número de plantas produzem os complexos carbohidratos conhecidos comercialmente como gomas (3). A mais importante espécic produtora de goma explorada comercialmente é a Acacia senegal (L.) Willd -uma leguminosa nativa de frica, adaptada a climas secos e quentes. Do seu tronco é extraída a "goma arábica" que tem aplicaçōes em diversas áreas. Seu uso mais conhecido é na formulaçao de adesivos mas ela pode ainda ser ,utilizada, entre outros, nas indústrias alimenticias e de cosméticos.

[^8]A inoculação de sementes de leguminoas com bactérias fixadoras de nitrogênio atmosférico é uma técnica amplamente difundida que, para algumas culturas, substitui a adubação com fertilizantes nitrogenados. O inoculante é geralmente preparado com uma cultura liquida de rizóbio misturada com turfa. A goma arábica ć empregada na inoculação com a função de fixar o inoculante à semente. O uso de adesivos permite também a aplicação de revestimentos à semente como, o calcário, fosfato de rocha, ou micronutrientes, que conferem maior sobrevivencia o bactéria c adaptação a detcrminadas condições edáficas (5). Foi proposto por Salema et al (4), que o adesivo "methocel" também pode proteger a bactéria durante o processo de dessecamento.

Além da goma arábica e do methocel pode-se utilizar como adesivos outros produtos industrializados como o celolás (metil-ctil-celulose) co metofás (metilhidroxipropil celulose), produtos comerciais estes, de dificil aquisição pelos agricultores. Por isso, têm sido realizados estudos visando a substituição desses adesivos por produtos mais accessíveis ao agricultor brasileiros. Faria et al. (1) compararam o polvilho de araruta, a farinha de trigo e o polvilho de mandioca com
a goma arábica, como adesivos na inoculação de sementes de leguminosas. Os adesivos alternativos mostraram-se tão eficientes quanto a goma arábica nos testes de aderência, mas ligeiramente inferiores à goma arábica na sobrevivência de rizóbio.
P nitida Miquel(Syn P oppositifolia Benth.) é uma espécie nativa de Amazônia que produz grande quantidade de vagens com sementes revestidas por uma goma de fácil extração aparentemente igual a goma arábica. Neste trabalho estudou-se a possibilidade de substituiçāo da goma arábica por esta goma, como adesivo na inoculação de sementes de leguminosas.

MATERIAL E METODOS

Extração da goma

Para a separação da goma das sementes de P nitida Miquel, aqui denominada goma amazônica, foi usado um liquidificador casciro com cada lâmina envolvida por um tubo de borracha revestido firmemente por uma camada de fio de arame. Após secagem ao ar as sementes foram interruptamente batidas no liquidilicador acima descrito até a separação destas da goma.

Teste de aderência

A goma extraida de P. nitida Miquel foi testada nas seguintes concentrações $\mathrm{em} \mathrm{g} / 100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} 0: 10,20,40 \mathrm{c}$ 60 , com 3 repelições. Para comparação foi usada a goma arábica com solução de $40 \mathrm{~g} / 100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} 0$ preparada segundo Vincent (5). A goma amazônica foi preparada colocando-se o produto seco cm água e aquecendo-se em banho-maria. Após a dissolução completa, passou-se o material em uma peneira de plástico (coador doméstico comum) para remoção de resíduos de vagem c, principalmente, de tegumentos das sementes. Os revestimentos foram preparados colocando-se 100 g sementes de Phaseolus vulgarisev Capixaba precoce num saco plástico; cm seguida adicionaram-se 4 ml das várias concentraçōes de goma amazônica e de solução da goma arábica agitando-se até complcta uniformização.

Este procedimento foi realizado o mais rápido possível para evitar que as gomas secassem antes da aplicação de CaCO_{3} p.a. ($100 \mathrm{~g} /$ amostra de 100 g de sementes). Os sacos plásticos contendo o material foram agitados manualmente de forma rotativa, até se obter uma cobertura uniforme das sementes de CaCO_{3}, formando-se o chamado pelete ou revestimento. Após secagem à sombra, as sementes revestidas foram peneiradas para separação do matcrial não adcrido às mesmas, o qual foi pesado e subtraído do peso inicial
adicionado, estimando-se assim a quantidade aderida. Para verificação da estabilidade do revestimento aderido, às sementes revestidas com $\mathrm{CaCo3}$, obtidas como descrito anteriormente, foram colocadas em frascos cônicos (Erlenmeycr) de 500 ml , fixados cm um vibrador Burrcl ("Wrist action") a 328 vibrações por minuto durante 3 minutos. Após este tratamento o material desagregado foi pencirado e pesado.

Sobrevivência de rizóbio em sementes peletizadas com goma amazônica

A sobrevivência do rizóbio em sementes de feijão (mesma variedade usada no experimentoanterior), com diferentes tipos de revestimentos, foi testada fazendose a contagem do numero de bactérias viáveis aos (), I, 4 c 6 dias após inoculação. Juntamente com a inoculação das sementes foram usados os seguintes tratamentos: a) goma amazônica; b) goma amazônica $+\mathrm{CaCO}_{3}$; c) goma amazônica + mincrcal; d) goma amazônica com pH corrigido para 5.2: c) goma arábica; D) goma arábica $+\mathrm{CaCO}_{3}$ pa; g) goma arábica + calcárco calcinado. O delineamento experimental foi de blocos ao acaso com 3 repetiçoes

Para cada amostra contendo 20 g de sementes foram adicionados: 0.75 ml de solução com 40 g de goma amazônica ou arábica/ $100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} 0,0.1 \mathrm{~g}$ de inoculante comercial (preparado no Centro Nacional de Pesquisa de Biologia de Solo, EMBRAPA), adicionado junto com as soluçōes de gomas, e quando pertinente, 4 g de calcário As sementes foram desinfestadas superficialmente com $\mathrm{HgCl}_{2}(0.1 \%)$ por 2 minutos depois lavadas 8 vezes em agua esterilizada. As soluçôes de gomas, o calcárco calcinado co CaCO_{3} p a foram esterilizados separadamente cm autoclave. As contagens foram feitas adicionando-se dez sementes de cada amostra em 50 ml de solução de sais do meio 79 (2) diluida a $1 / 4$ a feitas as diluiçōes sucessivas e contagens scgundo Vincont (5). Para elevação do pH da solução de goma amazônica, que inicialmente cra de 43 usou-se uma solução tampão de $\mathrm{KH}_{2} \mathrm{PO}_{4}(20 \mathrm{mM})$ e K $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (7 mM) adicionando-se em seguida NaOH até clevar o pH de solução a 6.2 que, após autoclavagem, desceu para 5.2.

Efeito da goma amazónica na germinaçăo das sementes, nodulação e crescimento de plantas de feijảo

Este experimento foi conduzido cm casa de vegetação usando inoculante comercial, e vasos contendo 500 g de solo classificado como Podzólico Vermelho Amarelo da sćric Itaguaí. O delincamento experimental utilizado foi o de blocos ao acaso, com 6
repetições, e os seguintes tratamentos: água; goma amazốnica; goma amazônica + calcário; goma arábica; goma arábica + calcário. A proporção em peso das sementes, gomas e calcário foi a mesma do experimento anterior: Antes do plantio, misturou-se ao solo 1 g de calcárco calcinado por vaso elevando o pH do solo para 6.0. Foram plantadas 15 sementes por vaso. Após a germinação anotou-se o número de sementes germinadas, deixando-se após o desbaste 2 plantas por vaso. Após o desbaste as plantas receberam uma adubação complementar de $1 \mathrm{ml} \mathrm{KH} \mathrm{H}_{2} \mathrm{P} 0_{4}(10 \% \mathrm{p} / \mathrm{v})$ por vaso. A colheita foi feita aos 25 dias após a germinação. Avaliou-se o número e peso dos nódulos secos e peso da parte aérea da planta seca.

RESULTADOS E DISCUSSĀO

O rendimento da goma extraida de vagens de P nitida Miquel foi de $785 \mathrm{~g} / 20$ vagens (Quadro 1). P nitida é uma espécie arbórea de grande porte e frutificação abundante. Com base em uma amostra de 640 vagens coletadas em uma única planta, estimou-se uma produção de pelo menos 2.5 kg de goma/árvore/ano. Este resultado é bastante superior a produção de goma arábica por A senegal que produz. uma média anual de 250 g de goma/árvore(3).

Quadro 1. Rendimento da goma amazônica e peso de sementes em amostras de 20 vagens (média de 13 repetiçōes).

Peso (g)	Rendimento em relaçäo ao peso de vagens (\%)	
20 vagens	$582.4 \pm 37.7^{\mathbf{1}}$	\ldots
Sementes	213.4 ± 12.7	36.6
Goma extraida	785 ± 15.4	135

Notas:

1. desvio padrâo

A aderência máxima de $\mathrm{CaCO}_{3} \mathrm{em}$ sementes de feijão foi obtida com a concentração de $40 \mathrm{~g} / 100 \mathrm{ml}$ $\mathrm{H}_{2} \mathrm{O}$ de goma amazônica (Quadro 2). Este resultado não diferiu estatisticamente ao obtido com goma arábica na mesma concentração. Entretanto, a maior estabilidade do revestimento foi obtida com a goma amazônica a $60 \mathrm{~g} / 100 \mathrm{ml}$ igualando-se a goma arábica a $40 \mathrm{~g} / 100 \mathrm{ml}$. A diminuição de aderência quando se aumentou a concentração de goma amazônica de 40 para $60 \mathrm{~g} / 100 \mathrm{ml}$ foi provavelmente devida ao aumento da viscosidade que propiciou uma distribuição mais
restrita do adesivo em volta das sementes. Em termos práticos a concentração de $40 \mathrm{~g} / 100 \mathrm{ml}$ pode ser usada se as sementes peletizadas não forem submetidas a grande agitação, caso contrário, seria recomendável usar um volume maior de solução de goma amazônica a $60 \mathrm{~g} / 100 \mathrm{ml}$.

Quadro 2. Aderência de CaCO_{3} com goma amazonica em diferentes concentraçöes e goma arábica coma e sem agitação nas sementes de fejjão.

Tratamentos ${ }^{1}$		Quantidade de CaCO , aderida ${ }^{2}$	
Goma	Concentração (g/ $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$)	$\begin{aligned} & \text { Antes da } \\ & \text { agitaçăo } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Após } \\ \text { agitação } \end{gathered}$
Arábica	40	2697 a	20.27a
Amazônica	- 60	23.53 b	18.50 ab
Amazönica	40	27.70a	17.93 b
Amazônica	- 20	21.73 c	7.57 c
Amazônica	- 10	11.57 d	4.00 d
C.V. (\%)		3.33	8.00

Notas:

$1 \quad 100 \mathrm{~g}$ de sementes de feijão +100 g de CaCO_{3} p.a + 4 ml de solução de goma.
2. Valores na mesma coluna com letras diferentes diferem entre si pelo teste de Duncan ($\mathrm{p}<005$)
3. Em vibrador Burrel com 328 vibraçöes por minuto durante 3 minutos.

A goma amazônica tem pH bastante ácido (4.3) e inferior ao da goma arábica (5.1). Como o pH baixo afeta a sobrevivência de Rhizobium incluiu-se um tratamento onde o pH da goma amazônica foi elevado para 5.2. Em todos os tratamentos testados (Quadro 3) observou-se uma boa sobrevivencia de Rhizobium: aproximadamente 10^{3} células/semente até 6 dias após a inoculação, considerando que os inoculantes aplicados continham cerca de 3.5×10^{7} células $/ \mathrm{g}$ de inoculante (Quadro 3).

A elcvação do pH da goma amazônica elevou o número de bactérias sobreviventes em relaçāo ao nümero obtido no pH original. Mesmo sem clevação de pH , a goma amazônica mostrou-se plenamente satisfatória para inoculação de leguminosas quando usada juntamente com peletização com calcário calcinado ou CaCO_{3} (Quadro 3). Observol-se ainda que a adição de calcário às duas gomas aumentou o número de células de Rhizobium sobreviventes. O tratamento com goma amazônica e calcáreo calcinado näo diferiu estatisticamente do tratamento no qual a goma

Quadro 3. Efeito de alguns adesivos na sobrevivência de Rhizobium junto as sementes de feijăo (média de 3 repetiçöes).

Tratamento.	Log do número de Rhizobium/semente, Dias após a inoculaçáo				
	0	1	4	6	X

Notas:

1. Valores seguidos de letras diferentes diferem entre si pelo teste de Duncan a $p<0.05$
amazônica teve seu pH clevado para 5.2 , sendo estes superiores ao tratamento com goma arábica.

A porcentagem de germinação das sementes de feijão utilizando como adesivos tanto a goma arábica como a goma amazônica foi de 100%. Os pesos da matéria seca da parte aérea das plantas cujas sementes foram revestidas com goma arábica e goma amazônica com e scm calcário não diferiram entre si mas foram superiores ao obtido no tratamento con inoculação simples (sem adesivo e sem revestimento) (Quadro 4).

Não houveram diferenças significativas em número e peso de matéria seca de nódulos entre todos os tratamentos, mas houve aumento do peso da parte aérea seca com a adição de adesivos ou calcário indicando que nestes tratamentos houve favorecimento da população de estirpes eficientes do inoculantc. Estes resultados confirman os do Quadro 4 onde se observa boa sobrevivência do rizóbio no dia de inoculação em todos os tratamentos en que foram usados adesivos.

CONCLUSOZES

A goma amazônica, extraída de vagens de P. nitida "in natura", pode substituir, com igual eficiência, a

Quadro 4. Efeito da inoculação das sementes, com diferentes adesivos e revestimentos, na nodulação e simbiose do feijūo, Rhizobium, em vasos com solo podzólico vermelho-amarelo em casa de vegetação (média de seis repetições).

Tratamentos de inoculaçăo	Matéria seca parte aérea ${ }^{1}$ (g)	Nódulos/planta	
		número	$\begin{gathered} \text { peso } \\ \text { (g) } \end{gathered}$
Agua	1265 b	153	0.171
Goma amazônica	1.433 a	113	0.163
Goma amazônica + calcário	150 a	119	0.149
Goma arábica	1.382 ab	115	0.160
Goma arábica + calcário	1.402 ab	117	0.137
C.V. (\%)	8.48	235	21.47

Notas:

1. Valores na mesma coluna seguidos de letras diferentes diferem entre si pelo teste de Duncan a $p<0.05$
goma arábica como adesivo na inoculação de sementes de leguminosas com rizóbio, e, para revestimento com produtos como o fosfato de rochae CaCO_{3}, entre outros.

A esterilização de ambas as gomas por autoclavagem aumentou a acidez destas, diminuindo a sobrevivência do rizóbio após a inoculação que pode ser corrigido pela neutralização da acidez das gomas pelo uso de peletização com calcário.

LITERATURA CITADA

1. FARIA, SM DE; DE-POLLI, H; FRANCO, AA 1985. Adesivos para inoculação e revestimento de sementes de leguminosas. Pesquisa Agropecuária Brasileira. Scric Agronomia 20(2):169~176.
2. FRED, F B.; WAKSMAN, S \wedge 1928. Laboratory manual of gencral microbiology. New York, McGraw-Hill 145 p.
3. NATIONAL ACADEMY OF SCIENCES. 1979. Tropical legumes: Resources for the future. Washingion p. 278283.
4. SALEMA, M.P.; PARKER, C.A.; KIBDY, O.K. 1982. Death of rhizobia on inoculated seed. Soil Biology and Biochemistry. 14:13-14.
5. VINCENT, S.M. 1970. A manual for the practical sudy of root nodule. Oxford, IBP Handbook, Brockwell Scientific Publication. 164 p .

Efecto del Almacenamiento Hermético en la Calidad del Maíz para Tortillas ${ }^{1}$

E. Moreno*, MM Reyes*, Z. Nieto**, I.Ramirez*

Abstract

To ascertain the effect of high moisture content on the quality of hermetically stored maize for making "tortillas," as well as its effect on the development of grain storage fungl and insects, maize with a moisture content of 17% was stored in air-tight containers during 270 days at $26^{\circ} \mathrm{C}$. The grain was infested with adults of the maize weevil Sitophiluszeamais Motschulsky. During the storage period the composition of the atmosphere was determined, as well as the moisture content of the grain, the seed germination, the development of fungi and insects and the quality of the "tortillas" thorough rheological, organoleptic and chemical tests. From the beginning of the storage period there was a striking change in the carbon dioxide and oxygen levels. At the first sampling, 15 days, the oxygen level dropped to 1.5% and the carbon dioxide increased to 53.9%; this atmosphere was lethal to insects and also inhibited the development of storage fungi. The seeds lost their germination capacity between 30 and 90 days of storage. According to quality tests, there were not significant differences between the "tortillas" made with maize stored under a normal atmosphere and maze with a low moisture content.

COMPENDIO

Para conocer el efecto de un alto contenido de humedad sobre la calidad de grano de maiz para tortillas, almacenado herméticamente, y sobre el desarrollo de insectos y hongos de almacén, sealmacenó maíz en recipientes hermêticos durante 270 d a $26^{\circ} \mathrm{C}$, con un contenido de humedad del 17%, e infestado con insectos Sitophilus zeamais Motschulsky. Durante el experimento se determinó la composición de la atmósfera de almacenamiento, el contenido de humedad del grano, el porcentajedegerminación y laincidencia deinsectos y hongos de almacén; y se evaluó la calidad de las tortillas mediante pruebas reológicas, organolépticas y químicas. A los 15 d , el oxígeno de la atmósfera de almacenamiento descendió hasta 1.5%, y el bióxido de carbono se incrementó en 53.9 por ciento. Esta atmósfera fue letal para los insectos e inhibió los hongos de almacén. El grano perdió completamente su germinación entre los 30 d y 90 d de almacenamiento. Al ninal del periodo de almacenamiento no se observaron diferencias significativas entre la calidad de las torillas elaboradas con maíz almacenado herméticamente y de aquellas hechas con maiz almacenado, con un contenido bajo de humedad y en una atmósfera normal.

INTRODUCCION

Las pérdidas en postproducción de los granos alimenticios se clasifican en dos categorias: cuantitativas y cualitativas. Ambos tipos se deben al manejo inadecuado de los granos desde la cosecha hasta su destino final. Una de las causas de estas pérdidas son los hongos de almacén, especies de los géneros Aspergillus y Penicillium (3), que acclecan la pérdida de viabilidad de las semillas agrícolas; algunas especies son capaces de producir micotoxinas que atentan contra la salud humana y animal $(4,8)$

[^9]El combate de las especies de Aspergillus y Penicillium, que atacan a los granos almacenados destinados a la alimentación del hombre y de sus animales domésticos, actualmente sólo se logra con el almacenamiento de los granos con bajos contenidos de humedad (5). En el caso de las semillas agricolas, el combate de estos hongos puede lograrse mediante fungicidas, los que no pueden usarse en granos alimenticios por su toxicidad para el hombre y los animales domésticos $(9,10)$.

En las zonas rurales, sobre todo en cálidas y húmedas, la conservación del maiz para autoconsumo es más dificil, debido a la carencia de estructuras adecuadas de almacenamiento. Esto lo que permite que la alta humedad del ambiente esté en contacto con los granos, favoreciendo la proliferación de insectos y de hongos que demeritan la calidad nutricia y sanitaria del maiz almacenado. Para estas áreas rurales se requiere el desarrollo de tecnologias simples, pero efectivas, como alternativas para la conservación de los granos que constituyen la dieta básica de millones de mexicanos.

Una de esas alternativas es el almacenamiento hermético, cuyo principio se basa en la eliminación del oxígeno requerido para la vida de los insectos y hongos de almacen, mediante la respiración conjunta de los hongos, los insectos y los granos. Este método de almacenamiento ha sido utilizado desde épocas antiguas hasta la actualidad (13). En México se ha usado desde la época precortesina y, actualmente, es utilizado en las costas del Pacífico y del Golfo de México, y es en el estado de Veracruz donde se ha difundido con mayor popularidad. En estos lugares se emplea en forma empírica, desconociéndose los limites de su uso, razón por la cual se han realizado investigaciones para definir las condiciones en las cuales se puede manejar con mayores ventajas para el usuario (11).

En la práctica del almacenamiento hermético se recomienda que el grano tenga un contenido de humedad de alrededor del 12%, para cvitar la proliferación de microorganismos anacrobios que pueden ocasionar olores y sabores desagradables, propios de su metabolismo de fermentación; además, se recomienda el uso de insecticidas ofumigantes pará eliminar los insectos provenientes del campo.

Tomando en cuenta que el comenido de humedad inlluye en la intensidad de la respiración de los granos, insectos y hongos, en este trabajo se almacenó grano con un contenido de humedad del 17%, con el lin de observar el efecto de la atmósfera del almacenamiento, que se genera con ese contenido de humedad, sobre el desarrollo de insectos y de hongos, así como en la calidad de la masa de maiz para la elaboración de tortillas.

MATERIALES Y METODOS

Se utilizó maiz de la variedad VS-525, cuyos contenidos de humedad y germinación fueron de 10.7% y 98\%, respectivamente El grano estaba intemamente libre de hongos de almacén, lo cual se determinó sembrando granos superficialmente desinfectados, en un medio de cultivo, como más adelante se describe.

El contenido de humedad del grano se ajustó al 17% con adición de agua. El grano se almacenó en latas metálicas de 31 de capacidad. En la tapa de ta lata se colocó un tapón de hule para permitir el muestreo de la atmósfera con la jeringa del cromatógrafo de gases La tapa y el tapón de goma se sellaron con silicón Se utilizaron 15 latas para cinco muestreos, a ios $15 \mathrm{~d}, 30$ d, $90 \mathrm{~d}, 180 \mathrm{~d}$ y 270 d , con tres repeticiones de 23 kg cada una. En cada unidad experimental se colocaron 45 insectos adultos de la especie S zemair Motschulsky de la misma cdad y sin sexar

En cada muestreo se determinó la concentración de bióxido de carbono, oxígeno y nitrógeno en la atmósfcra que rodeaba a los granos; también se determinó el contenido de humedad, germinación del grano, micoflora acróbica, población de insectos y calidad de tortillas.

La determinación del bióxido de carbono y oxígeno se llevó a cabo con cromatografía de gases, con un equipo Perkin Elmer modelo "Sigma I", provisto de un detector de conductividad térmica. Se emplearon dos columnas: la (A) empacada con porapak Q de 1 m de longitud por 3 mm de diámetro de acero inoxidable; la (B) cmpacada con malla molecular de $5 \AA$ de 1 m de longitud por 3 mm de diámetro de accro inoxidable Las condiciones de operación, para las dos columnas, fueron: temperatura de inyector: $100^{\circ} \mathrm{C}$, temperatura de detector: $100^{\circ} \mathrm{C}$; y temperatura del horno: $90^{\circ} \mathrm{C}$ Se utilizó helio como acarreador, con un flujo de 25 ml por minuto.

Se inyectó 0.1 ml de aire de cada una de las muestras en cada una de las columnas. De la inyección en la columna A se obtuvieron los porcentajes de las áreas correspondientes a la señal de la mezcla nitrógenooxígeno y la de oxígeno. De la inyección en la columna B se obtuvicron los porcentajes de las areas de las señales correspondientes a nitrógeno y oxigeno. Con esta información se calcularon los porcentajes de bióxido de carbono y oxígeno en las atmósferas de almacenamiento.

El contenido de humedad de los granos se determinó mediante el método de secado en la estufa, a $103^{\circ} \mathrm{C}$ por 72 h , recomendado por el USDA (14). El contenido de humedad se expresó en porcentaje, con base en el peso humedo de la muestra. La germinación se determinó con 300 semillas de cada repetición, utilizando el método entre papel: se colocaron las semillas entre toallas de papel húmedas, las que se enrollaron y pusicron en incubadoras a $25^{\circ} \mathrm{C}$ durante $7 \mathrm{~d}(6)$. Para determinar la micoflora, presente en el interior de los granos de cada repetición, se desinfectaron 25 granos en hipoclorito de sodio al 2.0% durante 2 min ; los granos desinfectados fueron sembrados en malta-agar con el 6% de cloruro de sodio (MSA 6\%) La temperatura de incubacion fue de 25° centigrados.

Para la claboración de las tortillas se usaron 2 kg de maíz de cada repetición. El proceso de "nix tamalización" se llevó a cabo en forma tradicional, con una concentración del 1% en peso de cal viva con respecto del peso del grano, con una relación aguagrano de $3: 1$ y llevando la temperatura a ebullicion hasta el cambio de color y reblandecimiento del grano

Para la claboración de las tortillas se siguieron las indicaciones de Alarcón et al (2), Las tortillas-testigo
se elaboraron con maiz almacenado con una humedad de 10.7% y a $4^{\circ} \mathrm{C}$, desde su arribo al laboratorio. Después de la cocción de las tortillas, éstas se dejaron enfriar a temperatura del laboratorio y se almacenaron en bolsas de polietileno hasta por 72 h , tiempo necesario para realizar pruebas reológicas y organolépticas que indicaran, por medio de las tortillas, la calidad de la masa. Para tal cfecto se realizaron en las tortillas las pruebas de ampolla, doblez, enrollado y corte.

Estas se ejecutaron en cuatro tiempos: inmediatamente después de la cocción de las tortillas, $1 \mathrm{~h}, 24$ h y 72 h después de su cocción. Para estas pruebas se utilizaron diez tortillas tomadas al azar. La ampolla que se forma durante la cocción de la tortilla, indica que su masa fue homogénea y que su textura no favorece las fracturas de la tortilla. La prueba de doblez permite verificar si hay ruptura en la cara extema del doblez, opuesta a la cara de la ampolla; para ello las tortillas fueron dobladas en dos y en cuatro partes. La prueba de enrollado es también una forma indirecta de evaluar la textura de la masa, para lo cual las tortillas se enrollan en una barra de aluminio de 15 mm de diámetro, a manera de "taco", observando si se presenta alguna ruptura en la cara extema. La prueba de corte consiste en romper la tortilla por la parte central, estirándola con ambas manos hacia afuera, con el fin de apreciar si el corte se efectúa con facilidad sin presentar resistencia por dureza.

Para la evaluación organoléptica se realizaron las pruebas dúo-trio y la prueba de escala hedónica (12). Para ambas pruebas se integró un panel de ocho jueces, con personas de ambos sexos y diferentes cdades.

Para la prueba dúo-trio se colocaron en una bandeja tres tortillas codificadas: dos iguales y una diferente. A cada jucz se le proporcionó un formato en el que deberia señalar su apreciación sobre las diferencias o similitudes entre las tortillas de la prueba. Esta prueba se realizó conjuntamente con las pruebas reológicas. La prueba de escala hedónica es de tipo discriminatorio, que parte del agrado al desagrado del producto para el paladar. Para esta prueba, a cada juez se le proporcionaron cuatro muestras diferentes codificadas, que: correspondian a tres repeticiones y a un testigo en cada periodo de almacenamiento. Igualmente a cada juez se le proporcionó un formato para que anotara su apreciación al agrado o desagrado de las tortillas. Los resultados de ambas pruebas fueron sometidos a un análisis de variancia ($p=0.05$), siguiendo la metodologia señalada por Larmond (7) para este tipo de prucbas organolépticas.

Además de las pruebas, señaladas, se realizó un análisis quimico proximal de harina proveniente de la molienda de tortillas desecadas. En él se determinaron el porcentaje de humedad, proteina cruda, grasa cruda, fibra cruda, cenizas y carbohidratos totales por diferencia, de acuerdo con métodos y técnicas de la AOAC (1).

RESLLTADOS Y DISCUSION

El contenido de humedad inicial del 17.1% y tuvo un incremento hasta del 13 por ciento. Ese aumento se debió a la respiración del grano y de los microorganismos microacrofílicos y anacróbicos, que no fueron cuantificados ni identificados.

Cuadro 1. Contenido de humedad, composición de la atmósfera de almacearmiento, población de Sitophilus zeamais y germinación del grano.

Período de almacenamiento (D)	Contenido de humedad (\%)	Atmósfera*			Insectos		Germinación (\%)
		O_{2}	$\begin{aligned} & \mathrm{CO}_{2} \\ & (\%) \end{aligned}$	N_{2}	Vivos	Muertos	
0 (testigo)	17.1	23.8	0.07	78.0	45	0	98
15	17.1	1.5	53.90	445	0	45	95
30	18.0	1.5	68.60	28.7	0	45	78
90	18.4	1.4	81.70	16.80	0	45	0
180	17.8	-	-	-	0	45	0
270	17.8	2.2	70.40	27.0	0	45	0

[^10]Cuadro 2. Pruebas reológicas en tortillas claboradas con maíz almacenado en condiciones herméticas, a $26^{\circ} \mathrm{C}$ durante cinco períodos de almacenamiento.

Período de almacenamiento (d)	Tipo de prueba"	Analisis** (\%)			
		1	2	3	4
0	$\mathrm{A}^{* * *}$	90			
(testigo)	E	100	100	100	100
	D	100	100	100	100
	C	100	100	100	100
15	A	100			
	E	100	100	100	100
	E	100	100	100	100
	C	100	100	100	100
30	A	99			
	E	100	100	100	100
	D	100	100	100	100
	C	100	100	100	100
90	A	99			
	E	100	100	100	100
	D	100	100	100	100
	C	100	100	100	100
180	A	96			
	E	100	100	100	100
	D	100	100	100	100
	C	100	100	100	100
270	A	94			
	E	100	100	100	100
	D	100	100	100	100
	C	100	100	100	100

Notas:

- Base 10 tortillas $A=$ Prueba de ampolla; $E=$ Prueba de carollado; $\mathrm{D}=$ Prueba de doblez y $\mathrm{C}=$ Prueba de corte.
** 1 = Análisis en el momento de la elaboración de las tortillas, $2=$ Una hora después; $3=24 \mathrm{~h}$ después y $4=$ 72 h después de la elaboración de las tortillas
*** La prueba de ampolla se realiza solamente al momento de la cocción

En cuanto a la composición de la atmósfera, a los 15 d de almacenamiento se observó un fuerte cambio en la concentración de oxígeno y bióxido de carbono, registrándose niveles del 1.5% y del 33.9%, respectiva-
mente. Estos cambios en la concentración de los gases se debió a la actividad metabólica del grano y de los microorganismos. A partir de los 15 d de almacenamiento, el oxígeno fluctuó del 1.5% al 2.2% y el bióxido de carbono del 53.9% al 81.7% (Cuadro 1), condiciones que no permiticron el desarrollo de Aspergillus y Penicillium, que comun y vigorosamente se desarrollan en maiz con un contenido de humedad del 17 por ciento.

Los insectos con que inicialmente se infestó el grano no sobrevivieron a los 15 d de almacenamiento, ni posteriormente se registró el desarrollo de nuevas gencraciones (Cuadro 1). La germinación del grano se mantuvo alta, 78% hasta $\operatorname{los} 30 \mathrm{~d}$ de almacenamiento, declinando drásticamente a partir de ese muestreo.

En lo que respecta a las pruebas reológicas, se observó que la formación de la ampolla en la tortilla, durante su cocción, se presentó en las tortillas de todos los periodos de almacenamiento en un rango del 94% al 100%; las tortillas-testigo la presentaron en un 90% (Cuadro 2); por lo tanto, no hubo diferencias entre las tortillas hechas con el maiz almacenado en forma hermética y las tortillas del maíz-testigo. No hubo formación de ampolla en las prucbas a $1 \mathrm{~h}, \mathrm{a} 24 \mathrm{~h}$ y a 72 h después de la cocción, lo cual es normal, ya que la tortilla sólo forma ampolla al momento de la cocción y no cuando es calentada posteriormente

En las prucbas de enrollado, doblez y corte tampoco se apreció ninguna alteración en las tortillas, debido al

Cuadro 3. Análisis de la prueba dúo-trío en tortillas de maíz almacenado herméticamente a $26^{\circ} \mathrm{C}$ durante cinco períodos de almacenamiento.

Período de almacenamiento	Panclistas* con diferencia (núm)	Significancia de la diferencia
(d)	$\frac{\text { Percibida }}{}$No Percibida	

(testigo)	4	4	no significativa	
15	3	5	$"$	$"$
30	4	4	$"$	$" 1$
90	3	5	$"$	$"$
180	5	3	$"$	$"$
270	5	3	$"$	$"$

Notas:

* Promedio de 96 panelistas (los ocho panelistas por tiempo de prueba y para cada repetición del experimento).

Cuadro 4. Composición bromatológica* de tortillas de maíz almacenado herméticamente durante 270 días a 26° centigrados.

Periodo de almacenamiento	Humedad (\%)	Proteina total	Grasa	Fibra	Cenizas	Carbohidratos totales
			cruda			
		(\%)				
0 (testigo)	14.0	7.9	32	1.6	1.2	72.1
15	11.6	8.0	3.3	1.6	1.2	74.3
30	11.9	7.7	3.3	1.6	1.2	74.3
90	11.8	7.9	3.1	1.6	1.3	74.3
180	10.1	7.8	3.1	1.5	1.3	76.2
270	11.0	7.8	3.1	17	12	75.2

Notas:

* Base humedad; promedio de tres repeticiones.
almacenamiento hermético del maiz. El total de las tortillas, en todos los períodos de almacenamiento, pudieron enrollarse y doblarse sin presentar fractura en su cara externa; este porcentaje se mantuvo no solamente para la prueba al momento de la cocción, sino también en la prueba a 1 h , a 24 h y a 72 h (Cuadro 2). Esto indica que la textura de la masa de maíz no fue afectada por las condiciones de almacenamiento.

En lo referente a las pruebas organolópeticas, el análisis de variancia de los datos de la prueba dúo-trío señaló que el número de panelistas que detectaron diferencias no fue significativo $(p=0.05)$. El numero de panelistas que percibieron diferencias entre tortillas se mantuvo entre 3 y 5 , al igual que los que no detectaron diferencias (Cuadro 3).

Con esto se puede decir que el periodo de al macenamiento no fue lo suficientemente prolongado como para detectar los efectos de procesos fermentativos de microorganismos microaerofflicos o anaeróbicos, desarrollados en esas condiciones de almacenamiento, cuya presencia sólo fue reconocida por el olor característico de una fermentación.

Por otra parte, el análisis de variancia de los datos bromatológicos de las tortillas elaboradas con maiz almacenado herméticamente y las tortillas-testigo, no mostró diferencias significativas, $\mathrm{p}=0.05$ (Cuadro 4). Por lo tanto, se concluye que el almacenamiento hermético no tuvo efectos nocivos detectables sobre la composición química de las tortillas, teniendo en consideración los limites del análisis químico proximal.

Es importante señalar que a partir de $\operatorname{los} 90 \mathrm{~d}$ de almacenamiento se observó un ennegrecimiento del
embrión de los granos. Ello no afectó la calidad de las tortillas, ya que éstas tuvieron buena aceptación por los panelistas de las pruebas organolépticas y rcológicas.

Por los resultados obtenidos en este trabajo, se puede decir que el almacenamiento hermético de maiz con humedad inicial del 17%, no afecta su calidad para la elaboración de tortillas, las cuales además de presentar sus propiedades fisicas y químicas normales, fueron aceptadas por el paladar de los consumidores. Sin embargo se realizaron otros estudios para evaluar el efecto de la microbiota microacrofilica y anaeróbica, que se desarrolla en estas condiciones de almacenamiento, sobre la calidad de las tortillas.

Por otra parte, es importante señalar que el contenido de humedad con que se almacenó el maiz en estos estudios favorece una rápida reducción del oxigeno y, a la vez, una generación elevada de bióxido de carbono, con lo que se climinan los insectos de almacén $S_{\text {s zeamais y hongos aerobios como A flavus, }}^{\text {zen }}$, que crece vigorosamente en maiz con contenidos de humedad de 17 por ciento.

LITERATLRACITADA

1 AOAC (ASSOCIATION OF OFPICIAL ANALYIICAL CHEMISTS). 1970. Official methods of analysis 11 ed Washington D.C. AOAC
2. ALARCON, A.; GUERRA, R L; PEDROZA, R ; NIE TO, Z. DURAN, C. 1985 Mezclas nixtamalizadas de maiz y sorgo. Iecnol Aliment (Méx.) 20:6-11.
3. CHRISTENSEN, C.M; KAUFMANN, H. 1976 Contaminación por hongos en granos almacenados Méx., Editorial Pax. 189 p.
4. CHRISTENSEN, CM. 1978. Storage fungi In Food and beverage mycology. R.L. Beuchat (Ed). Wesport. Conn, Ari Pub p. 173-190.
5. CHRISTENSEN, C.M: SAUER, D. 1982 Microflora. In Storage of cereal grains and their products. 3 ed. CM Christensen (Ed.) St. Paul, Minn. American Association of Cereal Chemists p. 219-240.
6. INTERNATIONAI SEED IESIING ASSOCIATION 1976. International rules for seed testing: Rules 1976 Sced Science and Technology 4(1):177.
7. L.ARMOND, E. 1970. Methods for sensory evaluation of food. Otawa, Food Rescarch Institute, Central Exp. Farm Publication 1284:385 p.
8. MORENO,ME.; CHRISTENSEN, C M 1971 Differences among lines and varieties of maize susceptibility to damage by storage fungi. Phytopathology 81:1498-1500.
9. MORENO, ME; VIDAL, G. 1981. Preserving the viability of stored maize seed with fungicides. Plant Discase 65:280-281.

10 MORENO, ME ; RAMIREZ, J 1985. Protective effect of fungicides on com seed stored with low and high moisture contents Seed Science and Technology 13:285-290.
11. MORENO. ME; RAMIREZ, J. 1988 The influence of hermetic storage on the behavior of maize seed germination Sced Science and Technology 16:427-434.

12 NIETO, V, DURAN, C; LASO, F: NUNEZ $\%$ V 1986 Calidad molinera de mezclas de mair y sorgo perlado e integral Tecnol Aliment (Méx.) 21:17-21
13. SIGOUT, F. 1980. Significance of underground storage in traditional systems of grain production. In Controlled atmosphere storage of grains. J. Shejbal (Ed) Amsterdam, Elsevier p 3-13.

14 USDA (UNITED SIATES DEPARTMENT OF AGRICULTURE). 1979. Grain cquipment manual GR. 916-6. Kansas City, Mo, Federal Grain Inspection Service, Standardization Division. Richard-Geabauer AFB

Natural Cross-Fertilization of Sesame Grown in Sonora, Mexico ${ }^{1}$

GL.C. Musa*,VI Padilla*

Abstract

AlSIRACT The extent of natural cross-fertilization of seven white seeded genotypes of sesame (Sesamum indicum L.) was studied under growing conditions in Sonora, Mexico. A line with black seed (a simply inherited dominant character) was used as control. The genotypes investigated showed significant differences in the extent oinatural cross-fertilization. The percentages of natural cross fertilization ranged from 6.1% to 20.1% and averaged 12.8 ± 2.2 percent. Honcy bees were observed as the most active pollinators. The results obtained indicated that a high degree of natural cross-fertilization occurs in sesame. Possible applications for sesame breeding are discussed.

INTRODLCTION

Sesame (Sesamum indicum L) is generally considered as a self-pollinated crop. However, 1% cross-fertilization was reported in experimental plots by Kinman and Martin (8). Collister (5) reported natural cross-fertilization values of 0.5% to 9.6 percent. Yermanos (22) found 68% natural cross-fertilizition in Moreno, Califormia, where sesame was the only blooming plant species in the midst of a semiarid area. Levels of 60% to 65% natural cross fertilization have also been reported in sesame (21).

1 Received for publication 27 Novernber 1989
The authors would like to thank Dr. R D. Brigham for his helpful comments in reviewing an carlier draft of this manuscript. This study was partly supported by the Instituto Nacional de Investigaciones Forestales y Agropecuatias (INIFAP), and the Patronato para la Investigación y Experimentación Agricola del Estado de Sonora (PIEAES), Mex.

* INIFAP.CIFAPSON, Yaqui Valley Agricultural Experiment Station, Apdo Postal no 515, Cd. Obregon, Sonora, Mex.

COMPENDIO

Abstract

Se estudió el grado de fecundación cruzada natural de sicte genótipos de grano blanco de ajonjoif (Sesamum indicum L.), en las condiciones de crecimiento imperantes en Sonora, Méx. Una línea de grano negro (carácter dominante de herencia simple) fue utilizada como marcador genético. Los resultados indicaron diferencias significativas en el grado de fecundación cruzada natural, en los genótipos de ajonjolí evaluados, Los porcentajes de cruzamiento natural tuvieron un rango de 6.1% a 20.1%, con una media general de 12.8 ± 2.2 por ciento. Se observó que las abejas fucron las más activas polinizadoras. Los datos indican la presencia de un alto grado de fecundación cruzada natural en ajonjolí. En el presente trabajo se discuten las posibles aplicaciones de estos resultados en el mejoramiento genćtico de ajonjolí.

Martinez and Quilantan (10) found natural cross fertilization to range from 3% to 15% for sesame grown in Iguala, Mex, during the summer and winter. The values were dependent on the season and the frequency of insect pollinators. In India, natural cross fertilization values of 1% to 17% have been reported $(1,2,19)$. Langham (9) reported 4.6% natural cross fertilization for sesame grown in Venezuela.

Rheenen (15) found natural cross-fertilization to range from 3.5% to 9.6% in Nigeria, the values depending on varicty and experimental design Similarly, Khidir (6) estimated the extent of natural cross fertilization in sesame grown in Sudan to range from 3.1\% to 6.7% depending on location and planting pattern Chaudhari and Zope (3) reported maximum cross fertilization in sesame cultivar UT-43 sown at 28 distances from 0.3 m to 16.2 m to 16.2 m to be within 20%, the values being dependent on the direction. Using the di45 (determinate) plants as marker gene, Brigham (2) found 10.2% natural cross fertilization in sesame plants grown at Lubbock, Texas. The range of natural cross fertilization in sesame is this very wide ($1 \%-65 \%$), apparently being dependent on genotype and environmental conditions.

In view of the sporadically high amounts of natural cross fertilization and high variation with various environmental factors, maintenance of purity of varietal characteristics is complicated. In order to avoid the occurrence of genetic shifts in a crop species, it is important that a breeder have an estimate of the degree of contamination of his advanced breeding lines due to natural cross fertilization. According to McVetty and Nugent-Rigby (11), knowledge of the estimate of natural cross fertilization in a crop species would ensure that significant genetic shifts occur in subsequent years of testing, or final years of seed increase of new varietics.

In Sonora, Mexico, no precise research exists on the extent of natural cross fertilization in sesame Maintenance of genetic purity of the commercially grown varieties has been difficult. Since most of the sesame varieties are highly heterogeneous, it is imperative to obtain information on the extent of natural cross fertilization of sesame grown in Sonora, so as to formulate an effective breeding strategy for crop improvement. The sesame breeding program in Sonora cmploys the pedigree and bulk breeding methodologies

The present study was thus conducted with the aim of determining the extent of natural cross fertilization for seven different genotypes of sesame under conditions in Sonora.

MATERIALS AND METHODS

Five commercial cultivars of sesame Ciang 16 , Ciang 27, Yori 77, Teras 77, and Pachequeno and two advanced breeding lines, Liza 70 and Sinaioa 2, were studied for natural cross fertilization. All seven genotypes carry a recessive allele for white-colored seeds in a presumably homozygous condition.

The genotype M-T-B-3, from the sesame germplasm collection that carries a dominant allele for black seed, was used as a pollen donor in this study. The condition of black sceds is inherited in a monofactorial fashion, as previously reported by Sikka and Gupta (20).

In order to facilitate the occurrence of natural cross fertilization, the tested genotypes with seeds were cach planted in alternate rows with "M-T-B-3" (black seeds) during the summer of 1986 . Single row plots 6 m long and 75 cm between rows were used. Plant to plant distance was kept at 10 cm within the row. A randomized complete block experimental dcsign with four replications was used. During the growing season, samples of the most prevalent insect populations were taken. Honey bees were observed as the most active and frequent insect pollinators.

In order to determine the extent of natural cross fertilization, seeds from individual plots of the white seeded genotype were harvested separately. These were grown out as FWI plants during the summer of 1987. Due to lack of xenia in sesame, all of the harvested FW1 seed were white. The seed harvested from each plot of the white seeded genotype was used as a separate treatment. Two-row plots 6 m long and 75 cm between rows were planted in a randomized complete block experimental design with four replications.

In the F_{2} gencration, seed color segregates; this relation has been used in estimating the extent of natural cross fertilization in sesame (10,18)

Seeds of the segregating F_{2} generation were harvested from plants and bulked within each plot in 1987 This seed was used in determining the extent of natural cross fertilization in the seven genotypes under study. Data from each cultivar were combined using an analysis of variance approach as oullined by Cochran and Cox (4). Differences among means were determined using Duncan's multiple range test. The estimate of natural cross fertilization was made be calculating the percentage of black seeds (dominant) in the progeny of white seeded genotypes.

Since the amount of the harvested seed from the plot of the white seeded genotypes was large, a $10 \mathrm{~cm}^{3}$ sample of seeds (containing approximately 3000 seeds) was taken. Two samples were taken from each harvested plot. The F_{1} seed harvested from each plot in 1986 was divided in four parts and grown out in cach replication in 1987. The segregating F_{2} seed used for determining natural cross fertilization represented 16 samples per genotype with white seed. The number of white, black and total seeds were determined. The percentage of black sceds which scgregated and was observed in each white seeded genotype indicated the extent of natural cross fertilization as previously outlined by Martincz and Quilantan (10).

RESULTS AND DISCUSSION

The data in Table 1 show the percentage of natural cross fertilization in the seven genotypes of sesame grown in Sonora. The extent of natural outcrossing ranged from 6.1% to 20.1% and averaged $12.8 \pm 22 \%$ natural cross fertilization.

Two genotypes, Ciano 27 and Pachequeño, presented low natural cross fertilization values of $6.1 \pm$ 0.8% and $7.2 \pm 3.0 \%$, respectively. These two genotypes are slightly later-flowering than the other materials tested. The low values obtained may have resulted from the short flowering period to which they

Table 1. Natural cross-fertilization in the progenies of seven white seeded genotypes of sesame grown in Sonora, Mex.

Genotype	Cross fertilization (\%)	
	Mean ${ }^{1}$	Range
"Liza 70"	20.1 a + 3.7	16.7-24.8
"Ciano 16"	16.5 b - 1.7	14.8-18.9
"Sinaloa 2"	$15.4 \mathrm{~b} \pm 2.3$	12.9-18.0
"Teras 77"	$13.3 \mathrm{bc} \pm 2.0$	115 - 16.1
"Yori 77"	$11.3 \mathrm{c} \pm 1.8$	8.6 - 12.5
"Pachequéno"	$72 \mathrm{~d} \pm 3.0$	4.4 - 11.4
"Ciano 27"	$61 \mathrm{~d} \pm 0.8$	5.0 - 6.7

Notas:

1. By the same letter are not significantly different at $P=5 \%$, according to Duncan's multiple range test.
were exposed with the dominant tester (M-T-B-3). Three genotypes, Ciaro 16, Liza 70 and Sinaloa 2, showed percentages of natural cross fertilization of over 15 per cent. The observed natural cross fertilization values were $15.4 \pm 23 \%, 16.5 \pm 17 \%$ and $20.1 \pm$ 3.7% for Sinaloa 2, Ciano 16 and Liza 70 , respectively. Teras 77 and Yori 77 showed natural outcrossing values of $133 \pm 2.0 \%$ and $11.3 \pm 18 \%$, respectively. These two genotypes are not statistically different according to Duncan's multiple range test (Table 1)

Statistical analysis of the data indicate differential natural cross fertilization between genotypes Liza 70, which registered the highest natural cross fertilization value, was significantly different from all the test genotypes (Table 1).

The data obtained in this study demonstrate the magnitude of natural cross fertilization in sesame grown under the conditions of Sonora. These results also confirm that sesame is predominantly a self-pollinated crop with a certain degree of natural outcrossing. The results reported here are similar to those reported by Martinez and Quilantan (10), Rheenen (15, 16) and Brigham (2).

Numerous insect pollinators were observed during the flowering period. In this study, honey bees were frequently observed visiting sesame flowers; Khidir and El Awad (7) reported them, rather that wind, as the most active pollinators in sesame. In general, the flower structure of sesame offers ample opportunitics for cross-fertilization by insects. Similar observations were previously made by Rheenen (17).

From the data obtained in this study, it can be concluded that a high percentage of natural cross-fertilization can occur in sesame grown in Sonora. This obviously complicates the problem of maintenance of breeding lines and cultivars and requires isolation between them. This aspect is important in maintaining the purity of varietal characteristics.

Natural cross fertilization in sesame has been reported to vary from 1% to 65% (13). This phenomenon is dependent on genotype, environment and experimental design. It is important, therefore, that each brecding program in a given area determine the extent of natural cross fertilization of this crop. This information would facilitate the identification of an appropriate brecding methodology.

The range of natural cross-fertilization reported in sesame is similar to that reported in faba beans (Vicia faba L.) by McVetty and Nugent-Rigby (11). These authors reported a range of $1 \%-79 \%$ in faba beans, and mentioned that at the lower end of the reported range ($1 \%-65 \%$ for sesame) the species could be handled as a self-pollinated crop, using a pedigree approach. At the upper end of the range, the crop could probably be handled quite satisfactorily as a cross-pollinated species using a recurrent breeding approach to produce improved populations and or synthetics. Similar observations were made by Rheenen (16), Rajan (14) suggested the development of synthetics or composites in sesame as a means of exploiting the high degree of vicinism observed in this crop.

In Sonora, the data indicate that the populations could be handled with the pedigree, bulk and backeross breeding approach. However, in order to avoid genetic shifts in advanced breeding populations, it is necessary to grow sesame populations in isolation. Rheenen (16) and Khidir (6) recommended the use of controlled self-pollination for maintenance of germplasm collec-tions. This can be achieved by covering the upper part of the stem before flowering, which would help reduce natural cross-fertilization in sesame and ensure the maintenance of genctic purity.

LITERATLRE CITED

1 ALI, M; ADAM, Z 1933 Iypes of (Sesamum indicum) D.C in the Punjab. Indian Joumal of Agricultural Science 3:897-911.

2 BRIGHAM, RD 1986 Determinate sesame (Sesamum indicum L.), a promising new phenotype Proceedings of the American Association for the Advancement of Science 62:26
3. CHAUDHARI, P.N.;ZOPE,RE. 1977. Studies on vicinism in sesamum (Sesamum indicum L). I. Mahastra Agric. University 2(3):233-235.
4. COCHRAN, W.C.; COX, G.M. 1957. Experimental designs New York, John Wilcy, p. 106-114
5. COLLISTER, E.H. 1955 Improvement of sesame Renner, Tex, Texas Research Foundation Bulletin no. 4. 42 p .
6. KHIDIR, MO. 1972 . Natural cross pollination in sesame under Sudan conditions. Experimental Agriculture 8:55-
59.
7. KHIDIR, MO : EL. AWAD S.H. 1972 Studies on foral biology in sesame Sudan Agric Journal 7:17-26.
8. KINMAN, ML.; MARTIN, JA. 1954. Present status of sesame breeding in the United States. Agronomy Joumal 46:24-27.
9. L.ANGHAM, D.C. 1944. Natural and controlled pollination in sesame. Joumal of Heredity 35:255-256.
10. MARTINEZ, HA.; QUILANTAN, VL. 1964. Percentage of natural cross pollination of sesame in Iguala. Agric Tex Mex 2:175-177.
11. McVETTY, PBE ; NUGENT-RIGBY, J. 1984. Natural cross pollination of faba beans (Vicia faba L.) grown in Manitoba. Canadian Journal of Plant Science 64(1):4346.

12 MUHAMMED, S.V.N: SRIVASALN, N: SHANDRASEKALON, N.R.; SUNDARAN, N.; SIVASUBRAMANIAN, P. 1965. Studies on natural cross pollination in Sesamum orientale L. Madras Agric Journal 52:452.
13. OSMAN, HE 1985 Studies in sesame: Hybridization and related techniques In Sesame and safflower: Status and
potentials. A. Ashri (Ed.). Rome, FAO, Plant Production and Protection Paper no. 66. p. 145-156
14. RAJAN, S. 1981. Sesame breeding material and methods In Sesame: Status and improvement. A. Ashri (Ed). Rome, FAO, Plant Production and Protection. Paper no. 29 p. 138-140.

15 RIIEENEN, HA. VAN 1968 Natural cross fertilization in sesame (Sesamum indicum L.) Tropical Agriculture (Tri) 45:147-153.

16 RHEENEN, HA VAN 1968 . Natural cross fertilization in sesame (Sesamum indicum L.). Tropical Agriculture (Tri) 45:147-153.
17. RHEENEN,HA.VAN, 1980. Aspeces of natural crosswertilization in sesame (Sesamum indicum L.). Tropical Agriculture (Tri) 57:57-53.
18. RHEENEN, H. A. VAN 1981. Time of crossing and capsule set in sesame (Sesamum indicum L.). In Sesame: Status and improvement A. Ashri (Ed). Rome, FAO, Plant Production and Protection. Paper no. 29 p. 151-153.
19. ROBL.ES, S.R. 1985. Producción de oleaginosas y textiles 2 ed Limusa, México, DF. p. 87-88
20. SIKKA, SM; GUPT A, N.A. 1949. Pollination studies in (Sesamum orientale L..). Indian Journal of Genetics and Plant Breeding 7:35-42.
21. UZO, J. 1976. Expression of hybrid vigor in sesame (Sesamum indicum L.). Ph D dissertation Riverside, University of California
22. YERMANOS, D.M. 1980. Sesame. In Hybridization of crop plants W.R Fehr, I.H Hadley (Eds.). Madison, Wisconsin, ASA p. 549-563

Propagación Vegetativa in vitro del Chayote (Sechium edule (Jacq.) Sw.). Fase de Establecimiento ${ }^{1}$

G Somarribas*; J Sandoval**, L Müller**

Abstract

ABSTRAC By meristem, apex and shoot segment cultures, which contained an axillary bud, possibilities for obtaining rapid in vitro propagation in chayote (Sechium edule (Jacq.) Sw.) was explored. It became apparent that there existed a strong tendency to form callus indistinctly between the types of explant employed. It was found that shoot apices showed the best growth response. Complete plantlets were regencrated in Murashige and Skoog medium, suplemented with 1 mg $.01^{-1}$ ANA, $0.3 \mathrm{mg} .01^{-1}$ BA and $0.2 \mathrm{mg} .0 \mathrm{I}^{-1} \mathrm{~K}$. The morphogenic responses were studied histologically.

Keys words: Sechium edule, micropropagation.

INTRODLCCION

EI chayote es un producto no tradicional de exportación de Costa Rica, apetecido en mercados internacionales. Los paises compradores poseen normas rigurosas para la calidad de los productos que importan. Desde este punto de vista, el chayote no es la excepción y los problemas fitosanitarios son con frecuencia una limitante a su exportación. En consecuencia, es prioritario un trabajo de mejoramiento genético, mediante el cual se puedan seleccionar tipos más productivos y de mejor calidad; sin embargo, la investigación en esta árca es incipiente.

El chayote pertenece a la familia de las cycurbitáceas y es una planta alógama, que causa la producción de descendencias heterogéneas. Poblaciones homogéneas, previamente seleccionadas, pueden obtenerse mediante propagación asexual La experimentación del uso de esquejes en este aspecto es escasa. Una alternativa seria establecer una metodología para la micropropagación del chayote, utilizando varias partes de la planta como explante, para poder obtener su multiplicación asexual rápida.

1 Recibido para publicación el 20 de marzo de 1990.

* Ministerio de Agricultura y Ganaderia (MAG). San José. C.R.
** Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, CR

Abstract

COMPENDIO

Mediante el cultivo de meristemas, apices y segmentos de tallo con una yema axilar, se exploró la posibilidad de lograr una multipllcación rápida in vitro del chayote (Sechium edule (Jacq.) Sw.). Se observó una fuerte tendencia a la formación de callo, indistintamente del tipo de explante utilizado. Se determinó que los ápices fueron los explantes que mostraron mayor respuesta al crecimiento. Se obtuvieron plantas completas en medio Murashige y Skoog suplementado con 1 mg $.01^{-1} \mathrm{ANA}, 0.3 \mathrm{mg} .01^{-1} \mathrm{BA}$ and $0.2 \mathrm{mg} .01^{-1} \mathrm{~K}$. Los patrones de morfogénesis observados fueron estudiados histológicamente.

Palabras clave: Sechium edule, micropropagacion

Otros representantes de esta familia han sido estudiados y cultivados in vitro (17, 18). Así, por ejemplo, Jelaska $(8,10)$ informó sobre la inducción de callo y la diferenciación de embrioides a partir de segmentos de hipocótilo en Cucurbita pepo, obtenidos de plántulas germinadas in vitro. Jelaska (8) también logró la formación de embrioides en C pepo por medio del cultivo de secciones de un cotiledón. Este autor, en la mayoría de sus experimentos, utilizó el medio de Murashige y Skoog.

Nadolska y Malepszy (14) usaron como explantes secciones de hojas de Cucumis sativus y obtuvicron plantas enteras al inocular los explantes en medio de Murashige y Skoog más $0.1 \mathrm{mg} \cdot 0.1^{-1}$ de ANA y cinctina. Otros autores (11) han informado la inducción de callo en varias cucurbitáceas, usando como explantes, en la mayoría de los casos, los cotiledones o el hipocótilo

Coults y Wood (4) aislaron protoplastos de C. sativus y, luego, obtuvieron respucsta organogénica al observar la regeneración de raices. Recientemente, Alvarenga y Villalobos (1) propusieron la metodología in vilro como una alternativa para la conservación de germoplasma de S edule. Al igual que otros miembros de importancia cconómica de la familia Cucurbitaceae, el chayote no ha sido investigado in vitro Según Jelaska (9,11), es posible lograr éxito en cucurbitáceas después de una adecuada selección y manipulación de
explantes y apropiadas condiciones de cultivo. Tomando esta sugerencias en consideración, en este trabajo, se trató de investigar las bases para establecer una adecuada metodología para una micropropagación rápida y eficiente de esta verdura.

materiales y metodos

Los explantes utilizados (meristemas, ápices, segmentos de tallos con yema axilar), provenian de plantas establecidas en el campo en el ărea de colecciones vivas del CATIE (Cabiria). Para cada serie experimental se muestreó una sola planta, con el propósito de minimizar el error debido a la heterogeneidad del material. Una vez escogidas las plantas, donadoras de explantes, fueron atomizadas cada cinco días durante dos meses con una mezcla de fungicidas con base en Benlate (Du Pont® Benomyl = Metil-1-(butilcarbomil)-2- ben-zimidazol-carbamato) y Ridomil (Ciba-Geigy ${ }^{(1)} \mathrm{N}$ -(2.6-Dimetilfenil)- N - (metoxiacetil)-alanina metil éster) en dosis de $1 \mathrm{~g} \cdot 01^{-1}$ y $2 \mathrm{~g} \cdot 01^{-1}$ respectivamente. A esta mezcla se le agregó $1.5 \mathrm{~m} \cdot 01^{-1}$ de Triton (Rohm and Hass ${ }^{(1)}$ surfactante) como adherente. Simultáneamente se aplicó el insecticida metilparatión en dosis de $3 \mathrm{ml}^{-1}$.

Luego, en laboratorio, se practicaron cuatro tratamientos desinfectantes con 50 repeticiones cada uno:

- ápices y segmentos de tallo se colocaron durante 15 min en solución acuosa de Savlon 0.5\% (Imperial Chemical Industries(®) Cetrimida 15%, gluconato de clorohexidina 1.5%). Posteriormente, el material permaneció 1 h en solución de Benlate 1.5 g " $0 \mathrm{I}^{-1}$, Ridomil $1.5 \mathrm{~g} \cdot 01^{-1}$ más Triton $2 \mathrm{ml} \cdot 0 \mathrm{l}^{-1}$. Después se lavó tres veces con agua destilada estéril;
- material se sumergió en Savlon al 0.05\% durante 20 min, se lavó con agua y se transfirió a la mezcla de Benlate $0.05 \mathrm{~g} \cdot 0 \mathrm{I}^{-7}$, Ridomil $0.05 \mathrm{~g} \cdot 0 \mathrm{I}^{-1}$ y Triton $2 \mathrm{ml} \cdot \mathrm{I}^{-1}$ por espacio de 15 min ;
- porciones de tallo con su yema axilar se colocaron en una solución de hipoclorito de calcio al 5\% durante 15 minutos. Después fueron lavados tres veces con agua destilada estéril. Este tratamiento se practicó únicamente para segmentos de tallo de 1.5 cm de longitud;
- material fue sumergido en alcohol de 70% por espacio de 10 segundos. Luego fue puesto en solución de bicloruro de mercurio (HgCl 2) al 0.1% durante un minuto; inmediatamente se lavó el material tres veces con agua destilada estéril y se sumergió en hipoclorito de sodio (blanqueador comercial "Ajax cloro" diluido 1:1) (2.5\%), más tres
gotas de Tween 20 , durante 10 minutos. Por último se lavó el material tres veces con agua destilada estéril.

En condiciones asépticas, en una campana de flujo laminar, se inocularon los explantes en el respectivo medio de cultivo. Se utilizaron tubos de vidrio de $100 \mathrm{~mm} \times 23 \mathrm{~mm}$ que contenían alícuotas de 10 ml de medio cada uno. Se usó el medio basal de Murashige y Skoog (13), más inositol $100 \mathrm{mg} \cdot 01^{-1}$, glicina $2 \mathrm{mg}-0 \mathrm{I}^{-1}$, ácido nicolínico $0.5 \mathrm{mg}-0 \mathrm{I}^{-1}$, piridoxina $0.5 \mathrm{mg} \cdot 0 \mathrm{I}^{-1}$, tiamina $0.1 \mathrm{mg} \cdot 01^{-1}$, riboflavina 0.1 mg $.01^{-1}$, sacarosa $30000 \mathrm{mg} 0 \mathrm{l}^{-1}$, y los reguladores de crecimiento AIA, ANA, BA, GA3, desde $0.1 \mathrm{mg} \cdot 01^{-1}$ hasta $5 \mathrm{mg} \mathrm{I}^{-1}$ solos y en combinaciones La consistencia semisólida del medio se logró con la adición de $7000 \mathrm{mg} \cdot 01^{-1}$ de Bacto-Agar (Difco). El pH se ajustó a 5.8 y luego el medio fue esterilizado en autoclave durante 15 min a 15 kg de presión por $\mathrm{cm}^{2}\left(121^{\circ} \mathrm{C}\right)$.

Después de su inoculación, los explantes fueron incubados en un ambiente controlado: $27^{\circ} \mathrm{C}$ durante el dia, $25^{\circ} \mathrm{C}$ durante la noche, fotoperiodo de $16 / 8 \mathrm{~h}$, iluminancia de 3000 lux al nivel de los cultivos y humedad relativa del 80 por ciento.

Durante la incubación de los cultivos se determinó el desarrollo, brotación y enraizamiento de yemas axilares; el crecimiento de meristemas y ápices; formación de callo; porcentaje de supervivencia del material, de contaminación de los explantes, y del grado de oxidación del material. Además, para estudiar histológicamente las respuestas observadas en el material cultivado in vitro, se practicó el método usual de infiltración en parafina, corte con micrótomo y microscopía de luz (15).

RESLLTADOS Y DISCLSION

El alto porcentaje de contaminación endógena del material escogido y tratado como explante (Cuadros I y 2) limitó el establecimiento de las metodologias de micropropagación de S edule en este experimento. Constantine (3) manifestó que la contaminación ocurre usualmente por una inadecuada manera de trabajar en condiciones asépticas, por el uso de una insuficiente desinfección superficial del explante y por la presencia de microorganismos endógenos. En este experimento el porcentaje de contaminación aumentó conforme se incrementó el tamaño del explante utilizado. El principal problema fue la aparición de bacterias endofíticas que causaron contaminaciones blanquecinas o rojizas; luego ocurrió la muerte de los explantes. Resultados similares fueron obtenidos por Alvarenga y Villalobos (datos sin publicar, 1988), al trabajar con cultivo de ápices para el establecimiento de un banco de germoplasma in vitro.

Cuadro 1. Resultados de la contaminación in vitro después de diferentes intervalos de incubación, en explantes tratados y no tratados con fungicidas sistémicos en el campo.

Tratamiento	Material	Días de incubación	Contaminación (\%)
Sin tratamiento en el campo	Apices y meristemas	6	47
		15	65
		30	82
	Yemas laterales	6	71
		15	75
		30	83
Con tratamiento en el campo	Apices y meristemas	6	38
		15	62
		30	70
	Yemas laterales	6	52
		15	70
		30	75

En cuanto al cultivo de meristemas, éstos se desarrollaron lentamente y no se logró observar diferenciación de un vástago completo. Fue muy evidente la tendencia a la formación de callo con los tratamientos: a) $5 \mathrm{mg} \cdot 01^{-1} \mathrm{AlA} ;$ b) $2 \mathrm{mg} \cdot 01^{-1} \mathrm{AIA}$; $\left.+0.5 \mathrm{mg} \cdot 01^{-1} \mathrm{ANA}+1 \mathrm{mg} \cdot 0 \mathrm{I}^{-1} \mathrm{~K} ; \mathrm{c}\right) 5 \mathrm{mg} \cdot 0 \mathrm{I}^{-1}$ AIA $+2 \mathrm{mg} .01^{-1} \mathrm{~K}$ y d) $0.5 \mathrm{mg} \cdot 01^{-1}$ ANA +1 mg . $01^{-1} \mathrm{~K}$. Resultados similares han sido informados por otros autores $(7,12)$ con otros representantes de la familia Cucurbitaceac.

Los ápices de aproximadamente 5 mm de tamaño, crecieron lentamente debido, posiblemente, a la interferencia por contaminación. Se notó también una tendencia hacia la formación de callo y algunos explantes desarrollaron raices cuando el medio fue enriquecido con auxinas, especialmente ANA. Se logró un crecimiento relativo de 3 cm en dos meses de cultivo, en un medio Murashige y Skoog, suplementado con $1 \mathrm{mg} \cdot 0 \mathrm{I}^{-1} \mathrm{ANA}+0.3 \mathrm{mg} \cdot 0 \mathrm{I}^{-\mathrm{P}} \mathrm{BA}+0.2 \mathrm{mg} \cdot 0 \mathrm{I}^{-1}$ $\mathrm{K}+0.5 \mathrm{~g} \cdot 0 \mathrm{I}^{-1}$ de carbón activado; no se observó rizogénesis. En algunos cultivos (22%) se notó una pérdida de coloración verde en hojas y tallos, los que se tornaron amarillentos, luego blanquecinos y traslúcidos (vitrificación) y posteriormente necróticos.

En el cultivo de segmentos de tallo con la yema axilar, fue evidente la formación de raices alimenticias

Cuadro 2 Efecto de varios tratamicntos desinfectantes en explantes de chayote (Sechium edule (Jacq.) Sw.) cultivados in vitro ($\mathrm{N}=50$) ,

Tratamiento	Explante	Tiempo de cultivo (d)	Contaminación (\%)	Explantes limpios (\%)
A*	ápices y segmentos de tallo con yema axilar	15	75	25
$\mathrm{B}^{* *}$	ápices y segmentos de tallo con yema axilar	15	73	27
$C^{* * *}$	Segmentos de tallo con yema axilar	15	85	15
D****	ápices y segmentos de tallo con yema axilar	15	82	18

Notas:

* Savlon (Cetrimida 15%, gluconato de clorohexidina 1.5%) 0.5% durante 15 min ; más permanencia durante una hora en solución de Benlate $1.5 \mathrm{gl}^{-1}$, Ridomil $1.5 \mathrm{gl}^{-1}$, Triton 2 mll l^{-1}; más tres lavados con agua estéril.
** Savlon al 0.05% durante 20 min ; más dos lavados con agua estéril; más tratamiento con la mezela Benlate $0.05 \mathrm{~g} . \mathrm{l}^{\text {t }}$, Ridomil 0.05 $\mathrm{g} .1^{-1}$ y Tritón $2 \mathrm{ml}^{-1}$ por espacio de 15 min ; más dos lavados con agua estéril.
*** Hipoclorito de calcio al 5% durante 15 min ; más tres lavados con agua estéril.
**** Inmersión en alcohol de 70% por espacio de 10 s ; más permanencia en solución de bicloruro de mercurio (HgCl 2) al 0.1% durante un minuto; más tres lavados con agua estéril; más inmersión de 10 min en hipoclorito de sodio 25%; más tres lavados con agua estéril

Fig. 1. Explante de S edule constituido por un segmentode tallo con yema axilar, después de dos meses de cultivo La yema se transforma en un brote, se inician raíces en la base, en que se nota hinchamiento y formación de callosidades
y la aparición de callo en la base del explante (Fig. 1) Exámenes histológicos demostraron que este callo se inicia encélulas epidérmicas y subepidérmicas (Fig. 2), Al dividirse éstas, se forman células con dimensiones muy superiores a las células madres. En un estado más avanzado (Fig. 3) se aprecia que la parte externa de callo es morfológicamente similar a la del súber. La posición en serie de las células hijas, especialmente cerca de la superficic, confirma este hecho

Leyenda:
Cel: células epidérmicas y subepidérmicas modificadas (iniciales de callo)
Clo: clorénquima
Col: colénquima angular
Epi: epidermis
Esc: esclerénquima lignificado.
Fig. 2 Cone transversal del tallo de S. edule in vitro. el cuat muestra el inicio de la formación de callo.

Leyenda:

Esc: esclerénquima lignificado.
Hen: hendidura.
Par: parénquima medular
Per: peridemis en formación.

Fig. 3. Corte transversal del tallo de S. edule in vitro en que se nota formación avanzada de callo.

En la Fig. 3 aparece una hendidura en la superficie del callo. Tales hendiduras, que corresponden a los surcos del tallo, pueden transformarse en canales profundos en un estado más avanzado del callo. En 'dichos canales (Fig. 4) las células expuestas al aire son derivadas típicamente de células cambiales del tipo felógeno, con amplia capa de suberina en la pared externa; estos cambios no se observan en un tallo crecido en el campo (Fig. 5).

En caso de una raíz joven producida en medio de cultivo (Fig. 6), ésta muestra poca diferenciación. Al envejecer (Fig. 7) se diferencia la estructura tetrarca. Sin embargo, no se distinguen bien la endodermis y el periciclo, como ocurre en una raíz desarrollada en suclo (Fig. 8). Pero la mayor diferencia entre una raiz in vitro y una formada en el campo, la constituyen los pelos radicales cortos y exageradamente inflados y deformados.

Se estudió también la anatomia de la hoja de un explante con 25 d de permanencia en cultivo in vilro

Leyenda:
Can: hendidura en forma de canal
Flo: floema
Sub: suberización
Fig 4. Conte transversal del tallo de S edule in vitro Se aprecia la presencia de hendiduras en forma de canales profundos y suberización en las células superficiales del callo.
(Fig. 9) Al hacer la comparación con una hoja desarrollada en condiciones naturales (Fig. 10), y del mismo estado de madurez, se aprecia en la primera que la superficie adaxial muestra mayor densidad de tricomas, lo que se debe a la superficie de la lámina muy reducida. Los parénquimas no se diferenciaron bien y mostraron hipertrofia. El mesoffilo parece parénquima fundamental, sin espacios acríferos grandes y pocos cloroplastos; y no sc observaron estomas (Fig. 9).

Las anteriores observaciones concucrdan con los resultados de otros autores $(2,5,6,16)$, los cuales han encontrado que condiciones in vitro favorecen cambios anatómicos y morfológicos en los explantes.

CONCLLSIONES

En esta investigación los explantes que presentaron una mayor capacidad de morfogénesis, y que posibilitarian la micropropagación del S edule, fucron los ápices y segmentos de tallo con una yema axilar. Sin embargo, su desinfección superficial resultó difícil, incluso después del tratamiento repetido de la planta madre con fungicidas sistémicos antes de la excisión, o después de un tratamiento de sumersión en estos fungicidas.

Fig. 5 Corte transversal del tallo de 5 edule crecido en el campo.

Fig. 6 . Corte transversal de una raiz. in vitro muy joven de 5 .

Fig. 7. Corte transversal de una raíz in vitro vieja de S edule

Fig 8 Corte transversal de una raiz adulta de 5 edule crecida en el campo.

Fig. 9 Corte transversal de una hoja adulta de explante in vitro de S edule.

Fig. 10. Corte transversal de una hoja adulta crecida en campo de S. edule

El efecto de la adición de reguladores de crecimiento al medio debe ser críticamente observado para evitar la tendencia hacia la formación de callo, la cual limitaria la obtención de una multiplicación clonal. Se encontró que, a menor tamaño de explante utilizado, menores fueron los problemas de contaminación, pero resultó en una deficiente respuesta morfogénica. No hubo presencia o interferencia en el desarrollo de los explantes causada por liberación y oxidación de polifenoles.

El menor crecimiento se produjo en el medio sin reguladores de crecimiento, lo cual sugiere que los reguladores exógenos son necesarios para un rápido desarrollo in vitro del ápice del chayote.

LITERATURA CITADA

1. ALVARENGA, S: VILLALOBOS, V. 1988. Estudio morfogénicodechayote(Sechium edule). In Reunión del Programa Cooperativo Centroamericano para el Mejoramiento de Cultivos Alimenticios (34., 1988) Resumenes. San José, CR 112 p.
2. BONNEL, E ; DEMARLY, Y.; ESSAD, S. 1983. Evolution anatornique des tissus foliaires de canne à sucre (Saccharum sp.) cultivés in vitro. Canadian Journal of Botany 61:830-836.
3. CONSTANTINE, D. 1986. Micropropagation in the commercial environment. In Plant tissue cutture and its agricultural applications. Withers L., Alderson, P. Butterworths (Eds.) London p. 175-186.
4. COUTTS, R ; WOOD, K 1975. The isolation and culture of cucumber mesophyll protoplasts. Plant Science Letters 4:189-193
5. DONNELLY, D; VIDAVER, W ; LEE, K 1985. The anatorny of tissue cultured red raspberry prior to and after transfer to soil. Plant Cell, Tissue, Organ Culture 4:43-50.
6. GROUI, B ; ASTON, M. 1978. Modinied leal anatomy of cauliflower plantets regenerated from menistem culture. Annals of Botany 42:993-995
7. HANDIEY, L.W.; CHAMBLISS, O. 1979. In vitro propagation of Cucumis sativus L. HortScience 14(1):2223
8. JELASKA, S 1972. Embryoid formation by fragments of cotyledons and hipocotyls in Cucurbita pepo. Planta 103:278-280
9. JELASKA, S 1974. Embryogenesis and organogenesis in pumpkin explants Physiologia Plantarum 31:257-261.
10. JEL ASKA S 1980. Growth and embryoid formation in Cucurbita pepo callus culture In Réunion Eucarpia: Application de la culture in vitro à l'amelioration des plantes potagères Doré C. (Ed) Versailles, INRA, Section Legumes P. 172-178

11 JELASKA, S. 1986 Cucurbits. In Biotechnology in agriculture and forestry: Crops Y.P.S. Bajaj (Ed.). BerIin, Heidelberg, Springer Verlag v. 23 p $371-386$

12 L.AZARTE, JE; SASSER, C. 1982. Asexual embryogenesis and plantet development in anther culture of Cucumis sativus L. HortScience 17(1):88
13. MURASHGE, T; SKOOG, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15(3)473-497

14 NADOLSKA; MALEPSZY 1984 In vitro culture of Cucumis sativus. II Histological aspects of plant differentiation In International Symposium Plant Improvement Proceedings F. Novak, L. Havel, J. Dolezel. Prague, Czechoslovakia, Institute of Experimental Botany p 187-188.
15. SASS, JE 1958 Botanical microtechnique 3 ed lowa State College Press, Ames. 228 p.
16. SUTTER, E: LANGHANS, R 1979. Epicuticular wax formation on carnation plantlets regenerated from shoot tip culture Journal of the American Society for Horticultural Science 104:493-496.

17 VAJRANABHAIAH, S.; MEHTA, A 1977. Effects of kinetin on growth and nucleic acid metatolism in suspension cultures of Cucumis melo L. Annals of Botany 41:483-491

18 WEHNER, R.; LOCYR 1981. In vitro adventitious shoot and root formation of cultivars and lines of Cucumis sativus L. HortScience 16(6):759-760.

Efecto de Algunos Caracteres Agronómicos de Bothriochloa ischaemun en la Producción de Forraje Verde y Seco ${ }^{1}$

H.A Paccapelo*; H: O Lorda*;
L. Anton de Ferramola**

Abstract

A population of Bothriochloa ischaemun var ischaemun cv. Ww-Spar planted in 1985 at the Agronomy Faculty of the University of La Pampa was analyzed for agronomic characters and their contribution to summer green forage yield and autumn dry matter yield. These characters were: plant vigor, height, number of ears, ear length, leaf/stalk ratio, crown area, crown diameter and stubble volume. The methodology employed the path coefficient which divides the correlation coemicient Into direct and indirect effects. Green forage yield showed important effects in plant volume, crown area, and vigor. The dry matter yield recognized stubble volume, number of ears and crown diameter. The characters under study explained about 80% of green forage and dry matter yield.

INTRODUCCION

Las características agroccológicas de la región semiárida pampeana de Argentina permiten una mejor adaptación de las gramíneas forrajeras perennes estivales con respecto de las invernales.

El pionero, dentro de las especies estivales, fue el pasto llorón (Eragrostis curvula L.), el cual se extendió ampliamente en la región. La disminución rápida de su calidad, principalmente en la época de invierno, motivó la incorporación de nuevas especies que complementen el 'pasto llorón y lo reemplacen en épocas crílicas durante el año.

1 Recibido para publicación el 14 de agosto de 1989.

* Docentes de la Cátedra de Mejoramiento Genćtico de Plantas y Animales; Facultad de Agronomia, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Arg
** Docente de la Cátedra de Estadistica y Diseño Experimental; Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Arg

COMPENDIO

Se analiza una población de Bothriochloa ischaemun var. ischaemun cy. Ww-Spar, sembrada en 1985 en la Facultad de Agronomía de fa Universidad Nacional de La Pampa, en cuanto a la contribucion de algunas caracteristicas agronómicas sobre el rendimiento de forraje verde estival y materia seca otonal. Las características analizadas fueron: vigor de la planta, altura, área y diámetro de corona, volumen de planta, número de espigas por planta, longitud de espiga y relación entre hoja y tallo. La metodologia empleada fue el coeficiente de paso, que divide el coeficiente de correlación en efectos directos e indirectos. El rendimiento de forraje verde se relaciona con efectos importantes del volumen de la planta, área de corona y vigor. El rendimiento de materia seca otoñal, por su parte, con el volumen de la planta, número de espigas y diametro de corona. Las caracteristicas consideradas explican aproximadamente un 80% de la producción de forraje verde y de materia seca.

Entre las especies promisorias para ser introducidas se encuentran las del género Bothriochloa, originarias del Viejo Mundo y, por tal motivo, se las conoce genéricamente como "Old World bluestems". Fueron introducidas originalmente a Estados Unidos de América (EE.UU.) entre 1940 y 1950; y las primeras evaluaciones fueron realizadas por Harlan et al. (1). Ellos determinaron que se comportaban como plantas de una sucesión secundaria.

Su origen es curoasiático, aunque su hábitat natural varía desde lugares ecológicamente restringidos, como ocurre con Caucasian bluestem (B. caucasica Trin) (2), hasta lugares relativamente cosmopolitas como ocurre con B. ischaemun y B. intermedia ($=B$ bladii). Estas últimas son producto de la mezcla de diferente germoplasma. Presentan una amplia distribución geográfica desde las costas atlánticas del ocste de Europa hasta la costa pacífica de China y Taiwán.

Harlan, Richardson y De Wet (3) iniciaron en 1964 la selección de lineas promisorias de Bothriochloa, incluyendo cruzamientos entre líncas, ya que la apomixia facultativa que presentan estas especies, puede generar plantas gencticamente homogéneas y, de esta forma, más susceptibles a enfermedades y a variaciones climáticas.

En 1972, en EE.UU., fue liberado el cv. Ww-Spar a partir de "Plains". Ambos presentan resistencia invernal, tolerancia a la sequia y producción de forraje aceptable.

MATERIALES Y METODOS

El experimento se realizó en la Facultad de Agronomía de la Universidad Nacional de La Pampa. Su objetivo fue determinar la interacción genotipica entre caracteres agronómicos, estableciendo los efectos sobre la producción de forraje verde y seco.

A partir de 1985 se evaluaron tres cultivares de B. ischaemun var. ischaemun; B. caucasica cv. caucasica) y B. bladii cv . Ww-857, en lo referente a su producción de forraje, calidad, persistencia y producción de semilla. Se utilizó como testigo el pasto llorón, cuyo comportamiento es conocido en la zona.

En la pastura de B. ischemun cv. Spar, sembrada al voleo con una densidad aproximada de 20 plantas $/ \mathrm{m}^{2}$, se analizaron individualmente 101 plantas en el corte estival, y de éstas, 76 en el rebrote otoñal de 1989.

Las características agronómicas evaluadas fueron las siguientes:
designación

Vigor general mediante escala de l a 5	
(l= muy malo 5= muy vigoroso)	V
Altura de la planta en plena floración	A
Número total de espigas	NE
Longitud promedio de espigas (sobre la	
base de diez espigas escogidas al azar)	LE
Relación hoja/tallo (sobre cinco tallos	
seleccionados al azar)	H / T
Area de corona	AC
Diámetro de corona	DC
Volumen de la planta (AC x A)	VP
Rendimiento de forraje verde (verano)	R
Rendimiento de forraje seco (otoño)	MS

Mediante la partición del coeficiente de correlación, coeficiente de sendero, se analizó la influencia directa e indirecta de las caracteristicas mencionadas (4) en el
rendimiento de forraje verde en verano y de materia seca en otoño. En el primer caso los efectos directos se obtuvieron por la resolución de la siguiente matriz:

```
P1 +0.380P2+0600P3+0069P4 +0034P5 +0.508 P6 +0 646 P8 =0842
0380P1 +P2+0464 P3-0063P4 +0086P5 +0.327 P6+0391 P8 = 0.402
0600P1 +0.464P2 +P3-0050P4+0098PS +0449P6+0556 P8 =0695
0069\textrm{P}1-0.063\textrm{P}2-0050\textrm{P}3+\textrm{P}4+0.073\textrm{P}5+0.016 P6+0.002P8}=006
0034PI-0.086 P2 +0098 P3 +0073 P4 + P5 +0.152 P6 +0.107 P8 =0015
0.508\textrm{P}1+0.327\textrm{P}2+0.449\textrm{P}3-0016\textrm{P4}-0.152\textrm{P}5+\textrm{P}6+0.948 P8}=0.59
0.646P1+0391P2+0556P3+0.002P4-0.107 P5 +0.948 P6 +P8=0.766
```

Los coeficientes de cada término son los coeficientes de correlación intracaracteres.

De igual manera se obtuvieron los efectos directos de las características agronómicas consideradas en el rendimiento de materia seca. La matriz utilizada fue:
$\mathrm{P} 1+0546 \mathrm{P} 2+0068 \mathrm{P} 3-0047 \mathrm{P} 4+0386 \mathrm{P} 5+0492 \mathrm{P} 6+0.766 \mathrm{P} 7=0676$
$0546 \mathrm{Pl}+\mathrm{P} 2+0.542 \mathrm{P} 3+0.144 \mathrm{P} 4+0.124 \mathrm{P} 5+0199 \mathrm{P} 6+0.570 \mathrm{P} 7=0.489$
$0068 \mathrm{Pl}+0542 \mathrm{P} 2+\mathrm{P} 3+0.467 \mathrm{P} 4-0181 \mathrm{P} 5-0680 \mathrm{P} 6+0270 \mathrm{P} 7=0.051$
$-005 \mathrm{P} 1+0144 \mathrm{P} 2+0467 \mathrm{P} 3+\mathrm{P} 4-0045 \mathrm{P} 5-0.082 \mathrm{P} 6-0115 \mathrm{P} 7=-0032$
$0386 \mathrm{P} 1+0124 \mathrm{P} 2-0181 \mathrm{P} 3-004 \mathrm{SP} 4+\mathrm{P} 5+0.949 \mathrm{P} 6+0542 \mathrm{P} 7=0606$
$0.492 \mathrm{P} 1+0199 \mathrm{P} 2-0168 \mathrm{P} 3-0.082 \mathrm{P} 4+0.949 \mathrm{P} 5+\mathrm{P} 6+0.608 \mathrm{P} 7=0709$
$0766 \mathrm{PI}+0.570 \mathrm{P} 2 \cdot 0.027 \mathrm{P} 3-0.115 \mathrm{P} 4+0542 \mathrm{P} 5+0608 \mathrm{P} 6+\mathrm{P} 7=0830$
El coeficiente de determinación (R2) del rendimiento de forraje verde (Y), a partir de las caracteristicas consideradas, se efectuó mediante la fórmula:

$$
r^{2}=r_{V Y} \cdot P_{V Y}+r_{A Y} \cdot P_{A Y}+r_{N E Y} \cdot P_{N E}+r_{L E Y} \quad P_{L E Y}+r_{G H T Y} \cdot P_{\text {(UITY }}+
$$ $r_{\text {Acy }} \cdot \mathrm{P}_{\text {Acy }}+\mathrm{rvpy}^{\prime} \cdot \mathrm{P}_{\mathrm{Vpy}}$

El efectoresidual, Pn, de los efectos no considerados se calculó como:

$$
\mathrm{P}_{\mathrm{n} 2}=1-\mathrm{R}^{2}(5)
$$

De la misma manera se calculó el coeficiente de determinación para el rendimiento de materia seca y su correspondiente efecto residual.

RESLLTADOS Y DISCUSION

Rendimiento de forraje verde en época estival

En el Cuadro 1 se observa que la población analizada presenta gran variabilidad en algunas de las caracteristicas agronómicas. Para el volumen de la planta y el rendimiento de forraje, el coeficiente de variación fue superior al 50%; para el vigor y el diámetro de corona fue del 20 por ciento.

Cuadro 1. Promedio y coeficiente de variación (CV) de las características agronómicas analizadas en plantas de Bn ischaemun varn ischaemun cv. Ww-Spar.

	Corte estival		Corte otoñal	
	promedio	CV (\%)	promedio	CV (\%)
Vigor (V)	2.61	38.62	3.64	28.58
altura de la planta (A) (cm)	83.39	12.16	73.92	23.93
longitud de la espiga (LE) (cm)	8.84	9.12	5.16	28.74
diámetro de la corona (DC) (cm^{2})	10.75	24.70	13.26	24.53
volumen de la planta				
(VP) $\left(\mathrm{cm}^{3}\right)$	3.49	58.61	4.55	62.28
número de espigas (NE)	9.56	1.08	46.56	60.69
relación hoja/tallo (H/T)	0.42	15.52	0.46	15.59
rendimiento de forraje				
verde (R) (gs/planta)	69.57	51.68	-	-
rendimiento de materia				
$\mathrm{scca}(\mathrm{MS})(\mathrm{gs} / \mathrm{pl})$	-	-		

A excepción de la longitud de espiga y la relación entre hoja y tallo, los demás caracteres estuvieron altamente asociados con el rendimiento de follaje verde (Cuadro 2). Los que más influyeron en el rendimiento de forraje verde fueron: vigor, volumen de la planta y número de espigas. La longitud de la espiga y la relación entre hoja y tallo no se relacionan estadísticamente con ninguna característica agronómica.

Para desarrollar el coeficiente de paso se introdujeron como variables todas las características
descritas, a excepción del diámetro de corona debido a su dependencia con el área de la misma. En el Cuadro 3, se muestran los efectos directos e indirectos de cada una de ellas.

Determinación del sistema

$$
\begin{aligned}
\mathrm{R}^{2}= & (0.393 * 0.842)+(-0.028 * 0.402)+(0.185 * \\
& 0.695)+(0.0 .32 * 0.065)+(-0.013 * 0.015)+ \\
& (-0.730 * 0.598)+(1.110 * 0.766)=0.88315 \\
\mathrm{P}_{\mathrm{n} 2}= & 1-0.88315=0.11685
\end{aligned}
$$

Cuadro 2. Cocficiente de correlación entre caracteństicas y rendimiento de forraje verde en plantas de B. ischaemun var. ischaemun cv . Ww-Spar.

Característica	V	A	NE	1x	H/T	AC	DC	VP
V								
A	0.380***							
E	0.600***	0.464***						
LE	0.069	-0.063	-0.050					
H/T	0.034	-0.086	0.098	0.073				
AC	0.508***	0.327***	0.449**	-0.016	-0.152			
DC	0.529***	0321***	0.418***	0.011	-0.148	0.991***		
VP	0.646***	0391***	0.556***	0.002	-0.107	0.948***	0.931***	
R	0.842***	0.402***	0.695**	0.065	0.015	0.598***	0.587***	0.766^{*}
$\mathrm{n}=101$. 01	**p			$p=0.001$		

Cuadro 3. Efectos directos e indirectos en la determinación del rendimiento en forraje verde en B. ischaemun var. ischaemun cv. Ww-Spar en época estival.

Efectos sobre rendimiento Directos/indirectos	$\begin{gathered} V \\ 0.393 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ -0.028 \end{gathered}$	$\begin{gathered} \text { NE } \\ 0.185 \end{gathered}$	$\begin{gathered} \text { LE } \\ 0.032 \end{gathered}$	$\begin{gathered} \mathrm{H} / \mathrm{I} \\ -0.013 \end{gathered}$	$\begin{gathered} \mathrm{AC} \\ -0.73 \end{gathered}$	$\begin{gathered} \text { VP } \\ 1.110 \end{gathered}$
V		0.149	0.235	0.025	0.013	0.199	0.254
A	-0.010		-0.013	0.003	0.030	-0.008	-0.010
E	0.110	0.086		-0,009	0.018	0.083	0.103
LE	0.002	-0.002	-0.001		0.002	-	--
H/T	-	0.001	-0.001	-		-	0.001
AC	-0.370	-0.238	-0.327	0.012	0.110		-0.692
VP	0.717	0.434	0.617	0.001	-0118	1.054	
	0.842***	0.402***	0.695***	0.065	0.015	0.598***	$0.766^{* * *}$

La alta asociación entre el vigor y el rendimiento (0.842) proviene de un escaso efecto directo (0.393) y una importante participación negativa, via indirecta, de área de la corona.

La altura está asociada con el rendimiento (0.402) casi exclusivamente a través del volumen de la planta (0.434). Lo mismo ocurre con el número de espigas (0.617)

La longitud de la espiga y la relación H / T no se asociaron con el rendimiento de forraje verde.

El área de corona de la planta está altamente relacionada con el rendimiento (0.598), a pesar de un efecto directo negativo muy importante; este resultado surge de un efecto indirecto positivo del volumen de la planta.

El volumen de la planta es un caracter complejo, resultante del producto del área de la corona de la planta y la altura del follaje. Tiene un efecto directo de 1.11
en el rendimiento y una influencia negativa del área de la corona (-0.692), lo que supone una contribución significativa de la altura del follaje para determinar mayores rendimientos.

De lo anterior se deduce que, además del vigor, es necesario considerar el volumen de la planta como atributo importante para la selección en B. ischaemun.

Martín et al. (6), al analizar una población de pasto crespo (Trichloris pluriflora Fourn), encontraron que los componentes más importantes para predecir la capacidad productiva fueron el volumen de la planta, el vigor general y el área de la corona, con un efecto residual de alrededor del 40 por ciento.

En esta investigación, se determinaron los efectos de los caracteres medidos sobre el vigor; se encontró que el volumen de la planta es muy importante en su determinación (75.5%). Cuando se analizó de la misma manera la incidencia sobre el volumen de la planta y el área de la corona (Cuadros 4), se encontró la interdependencia recíproca entre ellos.

Cuadro 4. Efectos directos de las características sobre el volumen de la planta (VP), área de corona (AC) y vigor de la planta (V) en el corte estival de B. ischaemun.

Característica	Valor de \mathbf{P}						
	V	A	NE	LE	H/T	AC	VP
VP	0.115	0.010	0.031	0.009	0.037	0.994	
AC	-0.149	-0.016	-0.049	-0.009	-0.027	-	1.075
V	-	0.062	0.279	0.085	0.041	-0.305	0.755

Rendimiento de materia seca en la época de otoño

En la época de otoño se analizaron, en 76 plantas incluidas en las observaciones estivales, los mismos caracteres que en época estival.

En el Cuadro 1 se muestra que el promedio en el número de espigas por planta se elevó en casi cinco veces, aunque el cocficiente de variación resultó muy alto. En este grupo de especies, la mayor fructificación se produce durante el otoño La escasa variabilidad estival se traduce en una amplia variación otoñal (1.08% a 60.69%). En menor grado aumentó la variabilidad de longitud de espiga y altura de planta.

En el Cuadro 5 se muestra un comportamiento similar a la producción de forraje del corte estival, en cuanto a los caracteres evaluados. A excepción de la longitud de espiga y la relación entre hoja y tallo, los demás presentaron correlación significativa con el rendimiento de matcria seca.

Los efectos directos e indirectos de los caracteres analizados en el rendimiento de materia seca (Cuadro 6) indican que el volumen de la planta es nucvamente importante (0.798), seguidos por el número de espigas por planta (0.593) y el diámetro de corona (-0.462). El coeficiente de determinación (R2) explica un 77.64% y el efecto residual asciende al 22.35 por ciento.

Cuadro 5. Coeficientes de correlación entre caracteríticas y rendimiento individual de materia seca de B. ischaemun var. ischaemun cv. Ww-Spar en otoño.

Carácler	V	A	LE	H/T	DC	VP	NE
A.	0.546***						
LE	0.069	0.542***					
H / T	-0.047	0.144	0.467***				
DC	0.386***	0.124	-0.181	-0.045			
VP	0.492***	0.199	-0.168	-0.082	0.949***		
NE	$0.766^{* * *}$	0.570***	0.027	-0.115	0.542***	0608***	
R	0.676**	0.489***	0.051	-0.032	0.606***	0.709***	0830***

Notas:	
$\mathrm{n}=76$	
*	$\mathrm{p}=0.05-0.01$
	$\mathrm{p}=0.01-0.001$
	$p>=0.001$

Cuadro 6. Efectos directos e indirectos de las características en la producción de materia seca de plantas de B. ischaemun var. ischaemun cv. Ww-Spar.

Tipo de efecto	Características						
	V	A	LE	H/T	DC	VP	NE
Directos/indirectos	-0.00104	0.01351	0.05286	005417	-0.46209	0.79804	0.59314
V		-0.00056	-0.00008	0.00004	-0.00040	-0.00005	-0.00079
A	0.00737		0.00732	0.00194	0.00167	0.00268	0.00770
LE	0.00454	0.02865		0.02468	-0.00956	-0.00888	0.00142
H/T	-0.00254	0.00780	0.02529		-0.00243	-0.00444	0.00622
DC	-0.17836	-0.05729	0.08364	0.02079		-0.43852	-0.25045
Vp	0.39263	0.15881	-0. 13406	-0.06543	0.75734		0.48520
NE	0.45434	0.33809	0.01602	-0.06821	032148	0.36063	
	0676***	0.489***	0.050	-0.032	0606***	0.709***	0.842***

Determinación del sistema

$$
\begin{aligned}
\mathrm{R}^{2}= & (-0.00104 * 0.676)+(0.01351 * 0.489)+ \\
& (0.05286 * 0.0509)+(0.5417 *-0.032)+ \\
& (0.46209 * 0.606)+(0.79804 * 0.709)+ \\
& (0.59314 * 0.842)=0.77648 \\
\mathrm{P}_{\mathrm{n} 2}= & 1-0.77648=0.22352
\end{aligned}
$$

- Si bien se eligieron dos situaciones de análisis: rendimiento de forraje verde en época estival y de materia seca en época de otoño, los diferentes caracteres medidos tuvieron comportamientos semejantes. En el primer caso el orden de importancia fue: volumen de planta, área de la corona y vigor. En el segundo, volumen de la planta, número de espigas y diámetro de corona.

LITERATERA CITADA

1. HARLAN, J.R.; CELARIER, R P.; RICHARDSON, W.L. BROOKS, MH; MEKA, KL 1958. Studics on Old World bluestem. II. Technical Bulletin. Oklahoma Agricultural Experiment Station no T-72 23 p .

2 HARLAN, JR ; CHHEDA, H.R. 1963 Studies on the origin of Caucasian bluestem (Bothriochloa caucasica (Trin) CE Hubbard) Crop Science 3:37-49
3. HARLAN, JR ; RICHARDSON, W,L; DE WET, JM.J 1964. Improving Old World bluestems for the South. In Progress Report 1963 Processed Service P-480. 27 p
4. LI, C C 1964. The concept of path-coefficient and its impacts on population genetics. Biometrics $12: 190-210$
5. MARIOTMI, J.A 1986 Fundamentos de genética biométrica: Aplicaciones al mejoramiento gencético vegetal. Washingıon, D.C, OEA Monografia no 32152 p.
6. MARTIN, G O.; SALVIOLI,L.A; GUYOT, NH.;ROVEL. LA, CA. 1971 Interacción de una población de pasto crespo (Trichloris pluriflora Fourn) Revista Agronómica del Noroeste Argentino 9(2):215-240.

Composición Química y Contenido Energético de la Biomasa de Malezas en Arrozales de Chile Central ${ }^{1}$

C. Ramírez*, J. San Martin**, C. San Martín*, D. Contreras*

Abstract

The coverage, biomass, chemical composition and energetic content of 10 weeds in a rice field of Central Chile were determined. Rice was the pattern of comparison used for the study. According to their life forms, the species were classified into five therophytes, four hemicryptophytes and two cryptophytes. The organs (root, stem, leaves and fruit) of each species were analyzed separately. Material for the analysis were taken after the cultivation of the rice from five $1 \mathrm{~m}^{2}$ plots located in an area excluded from weed control. Rice had a 36% coverage while weeds had 100%, distributed In different layers. The total biomass of the cultivation was $4117 \mathrm{~g} / \mathrm{m}^{2}$, rice contributing only 48% of it. Cryptophytes dominated in cover and biomass. In all the plants stidied, production of organic matter and ash were quite similar. The water plants presented a greater ash content than did the plants with a terrestrial habitat. The hemicryptophytes presented a bigher caloric values than the therophytes. This indicated that the latter was Jow for all species, while the crude fiber content was high. Non-nitrogen extract was also high. These were great variations in the chemical components of the different forms of life and of the plant organs. Ash was found in greater quantities in the roots and leaves and lesser amounts in the stems and fruts. The inverse was true for organic matter. The highest caloric values were found in the fruits and the lowest in the leaves. The results indicate the need for weed control in the rice fields of Central Chile Echinochloa crusgalli was the most efficient of the weeds, surpassing, in many aspects, even rice. The possibility of using this weed as forage is put forward

[^11]
COMPENDIO

Se estudiaron la cobertura, biomasa, composición química y contenido energético de diez malezas en un arrozal de Chile Central, usando el arroz como patrón de comparación. Las especies se clasificaron según su forma de vida en cinco terófitos, cuatro hemicriptofitos y dos criptófitos. Los órganos de cada especie (raíz, tallo, hojas y frutos) fueron analizados por separado. El material para los análisis se recolectó al final del cultivo, en cinco parcelas de metro cuadrado cada una, en un área excluida del control de malezas. El arroz alcanzó un 36% de cobertura y las malezas un 100%, disponiéndose en distintos estratos. La biomasa total del cultivo fue de $4117 \mathrm{~g} / \mathrm{m}^{2}$, y el arroz sólo contribuyó con un 48% de ella. Los terofitos dominaron en cobertura y biomasa. La producción de materia orgánica y ceniza fue bastante similar en las plantas estudiadas Las especies dependientes del agua presentaron mayor contenido de ceniza que aquellas con hábito terrestre. Los hemicriptóntos mostraron mayores valores calóricos que los terófitos, to que indica una mejor adaptación al cultivo de los últimos. El contenido proteinico fue bajo en todas las especies, mientras que el de fibra cruda fue alto, igual que el del extracto no nitrogenado. Se constataron grandes variaciones de esta composición química en las distintas formas de vida y organos vegetales. La ceniza fue mayor en raices y hojas, y menor en tallos y frutos. Los mayores valores calóricos se presentaron en los frutos y los menores en las hojas. Los resultados señalan la necesidad de controlar las malezas en los arrozales de Chile Central y muestran que Echinochloa crusgalli es la más eficiente de ellas, ya que incluso supera al arroz en muchos aspectos. Se propone un posible uso como forraje para esta maleza.

INTRODUCCION

En la depresión intermedia de la Zona Central de Chile, entre las ciudades de Santiago y Chillán, se cultiva la variedad Oro de Oryza sativa L. (31). Como esta región es de clima mediterránco, el anegamiento del cultivo se realiza con agua de riego. Esto hace que el nivel del agua en las áreas sembradas presente grandes oscilaciones, favoreciendo el enmalezamiento. Hasta la fecha se ha constatado la presencia de más de un centenar de especies de malezas en estos arrozales de Chile Central, algunas de las cuales suelen provocar grandes problemas al cultivo, malogrando la cosecha (28). De estas malezas, importantes por su agresividad, se han realizado estudios taxonómicos, ecológicos y fenológicos ($12,20,27,28$, 29).

El presente trabajo da cuenta de los resultados de un estudio realizado en arroz y en diez especies de malezas asociadas a él, sobre la composición química y el contenido energético de los distintos órganos, para determinar su eficiencia ecológica (17).

Fig. 1. Ubicación del estudio en la Séptima Región del Maule, Chile.

El estudio se realizó en el predio arrocero denominado "San Francisco", situado a 3 km al norte del poblado de Pelarco ($35^{\circ} 21^{\prime} 48^{\prime \prime}$ de latitud Sur y 71° 52 ' 54 " de longitud Oeste) en la provincia de Talca, Séptima Región del Maule, Chile (Fig. 1). En ese lugar, la rotura del terreno para el cultivo se realiza a fines de agosto o inicios de setiembre, según las condiciones climáticas. En la segunda quincena de setiembre se nivela el terreno y se confeccionan los pretiles (diques) que separan las superficies de cultivo. A fines de octubre se inundan éstas y en el mes de noviembre se siembra la semilla del arroz, que previamente se ha hecho germinar al sumergir los sacos que la contienen
en canales de regadios. El cultivo se cosecha a fines de marzo, drenándolo una semana antes de iniciar la cosecha (Fig. 2).

Fig. 2. Fases del cultivo y fenología del arroz en Chile Central.

MATERIALES Y METODOS

Se trabajó con diez malezas y arroz, el que se usó como patrón de comparación (Cuadro 1). La forma de vida de las especies fue determinada en la clave de Ellenberg y Mueller-Dombois (11), y la nomenclatura usada se basa en el catálogo de Marticorena y Quezada (19). Se trabajó sólo con especies herbáceas: cinco terófitos (plantas anuales, capaces de completar su ciclo de vida en una estación), cuatro hemicriptófitos (hierbas perennes, con yemas de renuevo a nivel del suelo y que pierden parte de su biomasa aérea en la época desfavorable) y dos criptófitos (un helófito o planta palustre y un hidrófito o planta acuática, hierbas con

Cuadro 1. Caracterización botánica de las especies investigadas.

Especie	Autor	Familia	Nombre común	Forma de vida
. lanceolatum	L.	Alismataceae	Hualtata	Hemicriptófito
A. coccinea	Roth.	Lythraceae	No conocido	Terófito
C. canescens	L.	Cyperaceae	Cortadera	Hemicriptófito
C. haspan	(Nees.) Kük.	Cyperaceae	Cortadera	Terófito
E. crusgalli	(L.) Beauv.	Poaceae	Hualcacho	Terófito
E. macrostachya	Britton	Cyperaceae	Quilmén	Hemicriptófito
L. peploides	(H.B.K.) Raven	Onagraceae	Clavito de agua	Hidrófito
O. sativa	L.	Poaceae	Arroz	Terófito
P. distichum	L.	Poaceae	Chépica	Hemicriptófito
P. persicaria	L	Polygonaceae	Duraznillo	Terófito
T. angustifolia	L.	Typhaceae	Vatro	Helófito.

yemas protegidas en el fango o bajo el agua). El primero con un rizoma reservante y el segundo, con hojas natantes (Cuadro 1).

El lugar de muestreo correspondió a una superficie de $162 \mathrm{~m}^{2}(18 \mathrm{mx} 9 \mathrm{~m})$, separada del resto del arrozal por pretiles y alimentado directamente por un canal de regadio. Esta superficic fue sembrada simultáneamente con el resto del predio y sometida al mismo manejo que el agricultor dio a todo el cultivo, y sólo fue excluida del control químico de malezas, aplicado a fines de diciembre.

El periodo de cultivo se extendió entre agosto de 1982 y marzo de 1983, mes en que se efectuó la cosecha. Durante la cosecha se realizó el siguiente trabajo en el área experimental: Primero se determinó la cobertura de las especies en cinco parcelas de $1 \mathrm{~m}^{2}$ cada una; para ello se apreció a simple vista el cubrimiento de los individuos de cada especie, expresando el resultado del porcentaje (16). Esta cobertura se determinó por separado en los distintos estratos, por lo que la suma de ella supera el 100 por ciento. Posteriormente se procedió a cosechar la parte aérea y subterránea de las plantas que crecían en las parcelas. En el laboratorio se sortearon las especies y se lavaron con agua corriente. El material obtenido, y separado por órganos, se colocó en bolsas de papel y fue secado a $80^{\circ} \mathrm{C}$ durante 5 d , en una estufa con circulación de aire. Después de ser enfriado se determinó su peso seco.

Este mismo material vegetal fue luego pulverizado en un molinillo de martillos, teniendo la precaución de limpiar el instrumento entre las moliendas de los distintos órganos y especies. El material molido se guardó en bolsas selladas de polietileno, para usarlo en análisis posteriores. El valor calórico de cste material fue determinado quemándolo en un calorimetro adiabático, siguiendo las instrucciones de Long (18), Licth y Pflanz (17) y Runge (26).

Para cada muestra se hicieron dos determinaciones y sólo cuando la diferencia entre ellas superaba las 20 cal, se procedió a realizar una tercera. Los valores calóricos presentados en este trabajo corresponden a promedios de esas mediciones y se expresan en calorias por gramo de peso seco, incluida la ceniza. Aunque hoy se tiende a usar otras medidas (35), se ha preferido usar ésta por ser más conocida. De la misma manera, se incluyó la ceniza por ser un factor importante en plantas acuáticas, alcanzando generalmente valores muy altos (25). De la misma determinación calorimétrica se obtuvo el contenido de ceniza total y, por diferencia, el porcentaje de materia orgánica de la muestra (26).

Muestras del material vegetal pulverizado fueron enviadas al Laboratorio de Nutrición Animal del Instituto de Producción Animal de la Facultad de Ciencias Agrarias de la Universidad Austral de Chile (Valdivia), para efectuar los siguientes análisis: determinación de proteína cruda, fibra cruda, extracto etéreo y extracto no nitrogenado, usando las técnicas tradicionales (32). Por la gran cantidad de muestras, sólo se realizaron dos determinaciones para cada una, siendo los valores presentados en este trabajo, los correspondientes promedios. El material de algunas muestras no fue suficiente para practicar los análisis, y en otros casos no se contó con él, como sucedió, por cjemplo, con los frutos de T angustifolia, ya que esta planta no alcanzó a florecer en el corto período que duró el cultivo (29)

RESULTADOS

Cobertura

Las cinco especies de terófitos presentaron un 101.6% de cobertura en promedio total. El mayor valor se encontró en E. crusgalli (52%), que superó la cobertura del arroz en un 16 por ciento. Los otros terófitos presentaron valores bajos de cobertura, reuniendo un total de 13.6\% (Cuadro 2).

Cuadro 2. Cobertura y biomasa de las especies estudiadas.

Forma de vida y especie	Cobertura $(\%)$	Biomasa $\left(\mathrm{g} / \mathrm{m}^{2}\right)$
Terófitos:		
P. persicaria	4.30	46.00
C. haspan	4.00	334.00
A. coccinea	5.30	98.40
O. sativa	36.00	1998.00
E. crusgalli	52.00	1120.00
Hemicriptófitos:		
E. macrostachya	3.00	57.00
A. lanceolatum	18.00	39.25
C. canescens	4.30	37.20
P. distichum	3.30	282.00
Helófito:		
T. angustifolia	3.60	62.00
Hidrófito:		
L. peploides	2.30	43.00
Total	136.10	4116.85

Los hemicriptófitos sólo alcanzaron a cubrir un 28.6% del cultivo, ocupando los estratos más bajos. De éstos, el mayor valor lo presentó Alisma lanceolatum con un 18 por ciento. Los dos criptofitos reunieron en total un 5.9% de cobertura.

La cobertura total del cultivo con malezas alcanzó a 136%, lo que indica que las diferentes formas de vida se disponen ocupando distintos estratos. El arroz, es decir, la planta cultivada, sollo presentó un 36% de cobertura, mientras que las malezas ocupaban el 100 por ciento.

Biomasa

La mayor productividad en biomasa correspondió también a las plantas anuales, pero en este caso el mayor peso seco por unidad de superficie fue presentado por el arroz ($1998 \mathrm{~g} / \mathrm{m}^{2}$). Los otros tres terófitos tenian bajos valores y entre ellos sólo destaca Cyperus haspan, con $334 \mathrm{~g} / \mathrm{m}^{2}$ de peso seco. En este caso, el arroz superó la productividad de E crusgalli, que la habia superado en cobertura (Cuadro 2).

Los hemicriptófitos mostraron baja productividad ($415 \mathrm{~g} / \mathrm{m}^{2}$, en conjunto), y de ellos únicamente Paspalum distichum tuvo un valor destacado (282 $\mathrm{g} / \mathrm{m}^{2}$). El peso seco de A lanceotum fue uno de los más bajos en esta forma de vida, a pesar de que su cobertura fue alta, lo cual señala un gran contenido de agua en sus órganos. Los dos criptófitos (T angustifolia y L. peploides) presentaron bajos valores de biomasa.

La productividad total del área cultivada fue de 4117 $\mathrm{g} / \mathrm{m}^{2}$; de ésta biomasa, al arroz sólo le correspondieron $1998 \mathrm{~g} / \mathrm{m}^{2}$, es decir, un 48% del total

Materia orgánica

Los terófitos presentaron un promedio de 83.13% de materia orgánica, con un valor máximo de 88.45% en E. crusgalli y uno minimo del 79.03% en C. haspan (Cuadro 3). El valor del arroz es muy cercano al de E. crusgalli, mientras que el de Ammannia coccinea se aproxima más al de C. haspan. Polygonum persicaria presentó un valor intermedio, entre ambos extremos.

Los hemicroptófitos presentaron un promedio de 86.95% de materia orgánica, superando a los terófitos. La variación de los valores fue minima en las diferentes especies, presentando A. lanceolatum el valor mínimo (84.32%) y P. distichum el más alto (88.71%). Los criptófitos exhibieron el valor promedio más bajo de materia orgánica (83.43%).

Considerando todas las especies investigadas, el mayor porcentaje de materia orgánica se presentó en P.
distichum (88.72%) y el menor en A. coccinea (80.20%)

En general, se puede afirmar que la producción de materia orgánica no presentó grandes diferencias entre las plantas estudiadas, y que la especie cultivada se ubicó entre aquellas que poseian el mayor porcentaje.

Contenido en ceniza

Los valores de ceniza son inversamente proporcionales a la materia orgánica y pueden observarse en el Cuadro 3. Los más altos aparecicron en los criptófitos, mientras que los más bajos en los terófitos.

Cuadro 3. Composición de la materia seca y valores calóricos de las especies trabajadas.

Forma de vida y especie	Materia orgánica (\%)	Ceniza total (\%)	Valor calórico ($\mathrm{cal} / \mathrm{g}$)
Terofitos:			
P. persicaria	84.65	14.82	3655
C. haspan	79.03	20.97	3596
A. coccinea	80.20	19.80	3562
O. sativa	87.36	12.63	3727
E. crusgalli	88.45	11.55	3790
Hemicriptofitos:			
E. macrostachya	86.33	13.63	3700
A. lanceolatum	84.32	15.68	3862
C. canescens	88.48	11.51	3982
P distichum	88.71	11.28	3806
Helófito:			
T. angustifolia	82.68	17.31	3613
Hidrófito:			
L. peploides	84.25	15,75	3636

Esto está de acuerdo con el grado de adaptación de las plantas al medio acuático; en efecto, las especies măs dependientes del agua presentaron altos valores de ceniza, y aquéllas con carácter terrestre los más bajos.

Valores calóricos

Los valores calóricos guardan estrecha relación con el contenido en materia orgánica de cada forma de vida. Los hemicriptófitos presentaron el mayor valor promedio, $3837 \mathrm{cal} / \mathrm{g}$ (Cuadro 3). Dentro de ellos, el más alto correspondió a Carex canescens ($3982 \mathrm{cal} / \mathrm{g}$), y el más bajo a E macrostachya ($3700 \mathrm{cal} / \mathrm{g}$) .

En los terófitos el valor calórico promedio descendió a $3666 \mathrm{cal} / \mathrm{g}$, con una variación parecida a la de la forma de vida anterior. El mayor valor se midió en E crusgalli ($3790 \mathrm{cal} / \mathrm{g}$), y el menor en A coccinea ($3562 \mathrm{cal} / \mathrm{g}$). En esta forma de vida, sólo E. crusgalli superó el valor calórico del arroz, que alcanzó a 3727 cal por gramo. Los criptófitos presentaron los menores valores calóricos, con un promedio de 3624 cal por gramo.

Sólo cuatro de las diez malezas trabajadas superaron el contenido energético del arroz: E. crusgalli, A lanceolatum, P. distichum y C. canescens. Casi todas, también, presentaron altos valores de cobertura y biomasa, lo que indica una alta agresividad y capacidad de competencia.

Variación en los órganos

Los contenidos en materia orgánica, ceniza y energía presentaron fuertes variaciones en los distintos órganos de las plantas, en todas las formas de vida. En general, la materia orgánica aumentó de las raices al tallo, para luego descender nuevamente en las hojas (Fig. 3). En los frutos se incrementó nuevamente, superando los valores de las hojas en los terófitos, con la única excepción de $A_{\text {. coccinea. En } I \text {. angustifolia, }}^{\text {cos }}$ los valores del tallo y las hojas fueron muy parecidos. Las mayores variaciones se presentaron en L peploides.

El contenido de ceniza tuvo un comportamiento similar, aunque inverso, presentando valores altos en las raíces y más bajos en los tallos, para luego subir y alcanzar su valor máximo en las hojas y bajar nuevamente on los frutos (Fig. 4).

En general, el contenido energético fue mayor en tallos y frutos, y menor en raíces y hojas (Fig. 5). Esta diferencia fue mucho más marcada en los terófitos. En esta misma forma de vida se encontró una gran similitud en las variaciones del valor calórico en los distintos órganos del arroz y de E. crusgalli, maleza perfectamente adaptada al cultivo, y que, a menudo, malogra las cosechas.

Composición química por forma de vida

La proteína cruda fue mayor en los hemicriptófitos (6.38%) , y menor en los terófitos (5.01%), ocupando los criptófítos una posición intermedia (5.8\%). El arroz y E. crusgalli presentaron valores bajos, mientras que L. peploides y A lanceolatum, los mayores. En general, el contenido proteínico de todas las plantas estudiadas fue reducido, alcanzando un promedio de sólo 5.65% (Cuadro 4).

Fig 3. Porcentaje de materia orgánica en el peso seco de los distintos órganos de A coccinea (Ac), C. haspan (Ch), P persicaria (Pp), O sativa, E crusgalli (Ec), A lanceolatum (AI), E macrostachya (Em), C canescens ((c)), P distichum (Pp), T angustifolia (Ta) y L peploides (Lp), agrupadas en las siguientes formas de vida: terófitos (Ter), hemicriptólitos (Hem) e hidrófitos (Hid)

Fig. 4. Porcentaje de ceniza en el peso seco de los órganos de plantas de arrozales de Chile Central, agrupadas por fommas de vida (véanse abreviaturas en Fig. 3)

El extracto etéreo ofreció bajos valores en todas las plantas, y sin diferencias significativas entre ellos, aunque el arroz y E crusgalli, presentaron los más altos. El promedio de todas las especies fue del 1.06 por ciento.

Fig. 5. Valor calórico en kilos de calorias por gramo de peso seco de los órganos de plantas de arrozales de Chile Central, agrupadas por formas de vida (véanse abreviaturas en Fig.3).

La fibra cruda acusó valores altos en todas las plantas, con un promedio del 24.52% y \sin grandes oscilaciones. El grupo con mayor cantidad de fibra cruda fue el de los terófitos (25.64%), y cl con menor cantidad, el de los criptófitos (22.29%), ocupando los hemicriptófitos la posición intermedia (24.23\%). El valor más alto recayó en E. crusgalli y el menor, en L. peploides. Esto último está de acuerdo con el carácter de hidrófito natante de esta especie.

Cuadro 4. Composición quimica (\%) de la materia orgánica de las especies investigadas.

Forma de vida y especie	Proteína cruda	Extracto etéreo	Fibra cruda	Extracto no nitrogenado
Terófitos:				
P. persicaria	6.66	0.87	2312	54.40
C. haspan	5.06	0.98	24.46	48.52
A. coccinea	5.16	1.20	25.31	48.52
O. sativa	4.75	1.25	24.50	56.86
E. crusgalli	3.44	1.40	30.81	52.80
Hemicriptófitos:				
E. macrostachya	553	1.25	23.28	56.23
A. lanceolatum	9.56	1.26	23.28	50.21
C. canescens	5.90	0.49	22.62	59.47
P. distichum	4.54	0.99	27.75	55.43
Helófito:				
T. angustifolia	460	095	2368	53.45
Hidrófito:				
L. peploides	7.01	102	20.91	55.30

El extracto no nitrogenado representó el mayor porcentaje de la materia orgánica en todas las plantas investigadas, alcanzando su promedio a 53.74%, con un valor maximo del 59.47% en C canescens y, uno mínimo, de 48.52%, en C. haspan y A coccinea En este caso, los mayores valores se presentaron en los hemicriptófitos (55.33%) y los menores, en los terófitos (52.22%). El de los criptófitos estuvo más cerca del valor superior. El extracto no nitrogenado del arroz (56.85%) superó al de E crusgalli (52.8%).

Composición química por órganos

Los contenidos promedios descritos presentaron grandes variaciones en los diferentes órganos de las plantas. En los terófitos, el contenido en proteina bajó de la raiz al tallo, y, luego, volvió a subir en las hojas, alcanzando el máximo valor en los frutos (Fig, 6). En los hemicriptófitos solo dos especies presentaron un comportamiento similar al descrito, y en las otras el valor más alto se presentó en el tallo. Las curvas de T. angustifolia y de L peoploides presentaron un recorrido similar al de los terólitos.

El contenido en lípidos (extracto etéreo) tuvo un comportamiento bastante errático en las distintas especies y formas de vida (Fig. 7). Los mayores valores se presentaron en el tallo de C. haspan, en las hojas de arroz y de A coccinea, y en los frutos de E crusgalli y de P. persicaria. En los hemicriptófitos, la raíz
presentó siempre el valor más bajo, y los otros órganos, los más altos.

Las curvas de los contenidos de fibra cruda en los distintos órganos, presentan recorridos similares según forma de vida. Así en los terófitos, los mayores valores se presentaron en el tallo, y los menores, en las hujas o en los frutos (Fig. 8). En los hemicriptófitos, los valores más pequeños aparecieron en las hojas y los más altos, en las raíces, hojas y frutos. Un comportamiento parecido presentó el helófito T. angustifolia; mientras que la curva de L peoploides coincidió mejor con la de los terólitos.

Los contenidos en hidratos de carbono (extracto no nitrogenado) fucron más altos en los frutos de los terólitos, y en el tallo de los hemicriptófitos (Fig 9). Esto está de acuerdo con la necesidad de almacenar reservas en las semillas en el primer caso, y en órganos caulinares, en el segundo. El cuerpo vegetativo de los terófitos desaparece junto con el arroz, mientras que en las otras formas de vida, durante la época de rezago del terreno, permanece en el suelo de los paños y pretiles.

Comparación entre órganos

En las plantas de los arrozales, las hojas y las raices muestran los más bajos porcentajes de materia orgánica, mientras que el tallo y los frutos los más altos (Cuadro 5). La ceniza tiene un comportamiento inverso, con los mayores valores en las hojas y raices, y los

Fig. 6. Variación del porcentaje de protệna cruda en los órganos de las plantas estudiadas, agrupadas por formas de vida (vecanse abreviaturas en Fig 3)
menores, en el tallo y los frutos. Los mayores valores calóricos medidos corresponden a los frutos, seguidos por el tallo y la raíz. El menor contenido energético se presentó en las hojas.

La proteina cruda fue alta en los frutos y baja en los tallos; raices y hojas presentaron valores intermedios. La fibra cruda exhibió poca variación entre los distintos órganos, oscilando entre un 27.23% como valor más atto, en el tallo, y un 24.15\% como valor más bajo, en las hojas El extracto etéreo presentó, en general, valores muy bajos, pero siempre mayores en hojas y frutos.

Fig. 7. Variación del porcentaje del extracto etéreo en los órganos de las plantas estudiadas, agrupadas por formas de vida (véanse abreviaturas en Fig 3)

El extracto no nitrogenado tuvo su mayor valor en los tallos (incluyendo rizomas reservantes) y en los frutos. Las hojas presentaron el menor contenido en hidratos de carbono, lo que está de acuerdo con la época de cosecha, realizada cuando los productos de reserva se depositan en los rizomas y semillas, que son órganos perdurantes, con yemas de renuevo. En el tallo se incluyeron aquellos aéreos normales, rizomas subterráneos y escapos florales, cuyos contenidos químicos y, por ende, energéticos, son muy variables, como lo muestra el Cuadro 6. Aunque el porcentaje de materia orgánica no presentó mucha variación, fue superior en los rizomas. El contenido de ceniza fue alto

Fig 8. Variación del porcentaje de la fibra cruda en los órganos de las plantas estudiadas, agrupadas por formas de vida (véanse abreviaturas en Fig. 3).
en los tallos normales y muy bajo en los rizomas. El contenido energético fue superior en los escapos, aunque este valor sólo se obtuvo de A. inceolatum. Los rizomas presentaron un valor cercan), y los tallos normales valores más bajos.

Cuadro 5．Composición quimica（\％）y valor calórico（ ca / g ）de los diferentes órganos en las plantas de arrozales de Chile Central．

Variable／Organo	Raiz	（ $\mathrm{n}=11$ ）	Tallo	（ $\mathrm{n}=15$ ）	Hojas	（ $\mathrm{n}=11$ ）	Frutos	（ $\mathrm{n}=9$ ）
Materia orgánica	81．78土	3.67	$89.56 \pm$	4.78	$79.21 \pm$	7.74	$89.59 \pm$	3.83
Ceniza total	18．21土	3.67	$10.64 \pm$	4.78	$20.78 \pm$	7.74	10．46土	3.83
Valor calórico	$3635.45 \pm$	204.99	$3830.55 \pm$	198.08	$3416.00 \pm$	335.72	$4052.50 \pm$	17732
Proteína cruda	$535 \pm$	1.18	$4.22 \pm$	2.44	$5.73 \pm$	235	7．72	1.84
Fibra cruda	$25.68 \pm$	4.48	27．23土	11.57	24．15士	9.09	$24.78 \pm$	6.05
Extracto etérco	0．77	0.37	0．89\＃	0.60	1．41土	0.43	1．14＊	0.83
Extracto no nitrogenado	49．97土	5.83	56．97土	12.18	$47.90 \pm$	4.32	55．82：	6.71

Nota：Se agrega la desviación estándar．

Cuadro 6．Composición quimica（\％）y valor calórico（ $\mathrm{cal} / \mathrm{g}$ ）de los diferentes tipos de tallos presentes en las plantas de arrozales de Chile Central．

Variable／Organo	Rizoma	（ $\mathrm{n}=4$ ）	Tallo	（ $\mathrm{n}=10$ ）	Escapo（ $\mathrm{n}=1$ ）
Materia orgánica	$92.08 \pm$	3.14	$88.12 \pm$	4.76	90.85
Ceniza total	$7.91 \pm$	3.14	$1188 \pm$	4.76	9.15
Valor calórico	$3942.50 \pm$	169.00	$3756.00 \pm$	179.44	4045.16
Proteina cruda	$6.87 \pm$	285	3．11土	1.28	4.75
Fibra cruda	$14.22 \pm$	6.26	$29.80 \pm$	6.45	53.55
Extracto etéreo	$1.37 \pm$	0.88	$0.71 \pm$	0.34	0.85
Extracto no nitrogenado	$69.62 \pm$	566	$54.44 \pm$	8.70	31.70

Nota：Se agrega desviación estándar
siempre con un valor alto．El extracto etéreo fue en general muy bajo y su representatividad más alta apareció en los rizomas．El extracto no nitrogenado tuvo grandes variaciones，con un valor muy alto en los rizomas y otro muy bajo en los escapos florales， ocupando los tallos normales la posición intermedia

DISCUSION

Los terófitos，es decir las plantas anuales，dominaron en cobertura y biomasa en el cultivo de arroz．Esto era de esperar，porque en esta forma de vida se incluye la planta cultivada，y porque las malezas anuales adaptan fácilmente sus fenofases al laboreo del cultivo y al ciclo de vida del arroz（29）．La cobertura y biomasa de las malezas superaron las del arroz，lo cual indica que consumen más de la mitad del potencial productivo del suelo，y pone de relieve la importancia de un adecuado control de ellas en los arrozales de Chile Central，como lo plantearan San Martín y Ramirez（28）．

Los contenidos en materia orgánica y ceniza fueron muy semejantes en todas las especies．La ceniza presentó valores altos en comparación con las plantas terrestres leñosas，lo que corresponde a lo planteado en la literatura $(25,34)$ ．Se encontró que las especies más
dependientes del agua tenian mayores contenidos de ceniza que aquéllas con carácter terrestre．

El valor calórico promedio de todas las especies investigadas alcanzó a $3720 \mathrm{cal} / \mathrm{g}$ ，bastante superior a los presentados por hidrófitos y helófitos de zonas templadas（34）．Además del clima mediterránco，que puede inducir este valor más alto，en el cultivo es－ tudiado dominan hemicriptófitos y terófitos，que no son plantas hidrófilas estrictas（24），y，como lo demostraron San Martin y Ramirez（28），ellas colonizan preferente－ mente los pretiles y no las superficies inundadas

El valor calórico promedio más alto correspondió a los hemicriptófitos，hierbas perennes que crecen， preferentemente，en los perfiles．Estas hierbas tienen un ciclo de vida más largo y necesitan acumular mayor cantidad de energía，sobre todo cuando se ven some－ Lidas al brusco cambio de su hábitat por la denudación del suclo en cada temporada．El menor valor calórico promedio de los terófitos indica que están mejor adap－ tados a las condiciones del cultivo．Las especies más eficientes resultaron ser cl arroz y E crusgalli，incluso esta última supera a la planta cultivada．Los valores calóricos más bajos los presentaron A．coccinea y T ． angustifolia．La primera es un neófito de vida muy corta y de reciente introducción al pais，y la segunda，
una planta de vida larga que requiere una mayor estabilidad del hábitat y un bajo nivel de anegamiento para completar su ciclo de vida (23). Esta especie sólo prosperó en forma vegetativa en el cultivo, sin llegar a florecer (29)

Dada la gran productividad y eficiencia de e orusgalli, sería interesante buscar una aplicación practica para esta maleza, como se ha hecho en otros lugares para otras plantas (2,8, 14). Podría ser útil en la fabricación de alimentos concentrados para animales, ya que los grandes problemas parael uso de las plantas acuáticas como forraje, como son ius allos contenidos en agua y ceniza, parecen no tener mayor relevancia en E crusgalli, que casi se comporta como una planta terrestre. De hecho crece mejor cuando baja el nivel del agua en los paños (29). El uso de E crusgalli como alimento para animales está respaldado por las observaciones de Drouilly et al. (9), quienes demostraron que los patos silvestres consumen arroz y esta mateza en grandes cantidades, durante los primeros meses del cultivo.

Los valores de proténa encontrados son menores que los indicados en la literatura para plantas acuáticas (7,21). En todo caso, los valores de la literatura incluyen plantas acuáticas sumergidas y flotantes libres, que en los arrozales de Chile Central no tienen mayor importancia. Los bajos valores proteínicos pueden también tener su explicación en el alto contenido de cenizas, como lo demostraron Jabbar et al. (15).

Los terólitos presentaron los mayores valores calóricos en los frutos. Como el cuerpo vegetativo de estas plantas muere anualmente, la mayoria de los productos de la fotosintesis se destinan a la formación de semillas y frutos, para asegurar la permanencia de la especie en el arrozal. Algunas incluso producen dos fructificaciones, antes de que se coseche el arroz (29). Los hemicriptófitos investigados, a pesar de ser plantas perennes, muestran una tendencia semejante a la de los terófitos, desviando sus esfuerzos hacia la formación de semillas Este comportamiento no es normal para una hicrba perenne y, seguramente, refleja ciento grado de adaptación a la poca duración del cultivo y al laborco del suclo, que dificulta la supervivencia del cuerpo vegetativo.

Con excepción de T angustifolia, todas las otas malezas estudiadas tienden a tener un mayor valor calórico en los frutos y semillas El rizoma de I. angustifolia presentó un alto valor energético, y como esta planta invirtió sus fotosintátos en ello, no alcanzó a formar frutos en el período de cultivo del arroz Esto podría indicar condiciones poco favorables para esta planta en el cultivo estudiado (3).

Los contenidos de ceniza fueron siempre altos en las raíces, lo cual es un comportamiento comuin en las especies palustres y acuáticas. Altos contenidos de ceniza en raíces y hojas de plantas acuaticas han sido expuestas por Barrera (1) y plantcados como una desventaja para el aprovechamiento de ellas por la Academia Nacional de Ciencias de Estados Unidos de América (21). Esto se debe a que la absorción de minerales es más cficiente en el agua que en el suclo, donde hay fijación de ellos (30).

El alto contenido energético de los frutos corresponde a la época del año en que se recolectó el material. En efecto, el valor calórico de los órganos reproductivos aumenta hacia el verano y es máximo en otoño (5,6), mientras que en las hojas este punto máximo se presenta en primavera La composición química y los valores calóricos de has plantas varían con la época de recolección, el lugar, la edad de la planta, el clima y las condiciones nutricias del medio (10). Todos estos factores cran similares para las especies trabajadas y, por lo tanto, los resultados encontrados reflejan el grado de adaptación y de effecencia ecológica de cada una de cllas en el cultivo (4)

Los mayores valores calóricos de las semillas y los menores de las hojas, corresponden a los citados en la literatura para plantas terrestres (13). Sin embargo, a nivel de tallos y raíces existe una diserepancia, ya que en las plantas acuáticas y palustres cstudiadas, el mayor valor calórico se presentó en el tallo y no en las rafes. Seguramente este resultado se debe a que, generalmente, los valores calóricos citados en la literatura no incluyen la ceniza, que sí se tomó en cuenta en este trabajo. Steubing el al. (34) sostienen que un alto contenido en ceniza reduce el valor calórico; eso es lo

Cuadro 7. Valores calóricos promedios (cal/g) de las especies investigadas, incluyendo y excluyendo el contenido en ceniza.

Especic	Con ceniza	Sin ceniza	Diferencia
P. persicaria	3655	4318	663
C. haspan	3596	4550	954
A. coccinea	3562	4441	879
O. sativa	3727	4266	539
E. crusgalli	3790	4285	495
E macrostachya	3700	4286	586
A. lanceolafum	3862	4580	718
P. distichum	3806	4290	484
T. angustifolia	3613	4370	757
L. peploides	3636	4316	680
Promedio	372081	438200	661.18

que sucede en los vegetales acuáticos, donde el porcentaje de ceniza es muy alto, precisamente en las raices (25). Por otro lado, las plantas anuales, que dominan entre las trabajadas, tienen un valor calórico menor que las perennes, pero producen mayor biomasa en el mismo periodo de tiempo (33)

El Cuadro 7 muestra que al considerar sólo la materia orgánica, excluyendo la ceniza, los valores calóricos de todas las plantas se elevan en un promedio de $661 \mathrm{cal} / \mathrm{g}$, con un mínimo de $484 \mathrm{cal} / \mathrm{g}$ y un máximo de 954 cal por gramo. De manera que todos los valores calóricos se sitúan ahora sobre $4000 \mathrm{cal} / \mathrm{g}$. demostrando que, al considerar la ceniza, se reducen las diferencias en los contenidos energéticos entre especies y formas de vida (34). Sin embargo, hay que tomar en cuenta que aunque para el cálculo no se considere la ceniza, ella estará siempre presente en el material vegetal, dificultando su aprovechamiento como alimento para el ganado (22).

LITERATURA CITADA

1. BARRERA, J 1986 Autcecologia de Aponogeton distachyon L f. (Aponogetonaceac, Liliatac) en la laguna de Santo Domingo (Valdivia, Chile). Tesis Valdivia, Universidad Austral de Chile, Escuela de Biologia y Quimica. 116 p.

2 BATES, R ; HENIGES, J. 1976. Aquatic weeds: Erradicate or cultivate? Economic Botany 30(1):39-50.
3. BLISS, L. C. 1962 Caloric and lipid content in Alpine undra plants Ecology 43:753-757
4. BOYD, CE 1970. Amino acid, protcin and caloric content of vascular aquatic macrophytes. Ecology 52:902-906.
5. BRZOSKA, W. 1971. Energiegehalte verschiedener Organe von nivalen Sprosspflanzen in Laufe einer Vegetationsperiode. Photosynthetica 5(3):183-189
6. BRZOSKA. W. 1973. Stoffproduktion und Energichaushah von Nivalpflanzen. Oekosystemforschung 1:225-233

7 CUMMINS, K.W.; WUYCHECK, J.C. 1971. Caloric cquivalents for investigations in ecological energetics Mitt Int Verein Limnol 18:1-153
8. DATTA, SC: BANERIEE, AK 1978. Useful weeds of west Bengal rice fields Economic Botany 32:297-310

9 DROUILLY, P ; MONTECINOS, R; MUÑOZ. C. 1979. Acción depredadora de aves silvestres en cultivos de arroz de la provincia de Talca. Santiago, Museo Nacional de Historia Natural v. 28 p 3-11
10. DYKYJOVA; D ; PRIBIL, S. 1975 Energy content in the biomass of emergent macrophytes and their ecological efficiency. Arch Hydrobiol 75(1):90-108
11.ELLENBERG, H; MUELLER-DOMBOIS, D. 1966. A key to Raunkiaer plant life forms with revised subdivisions Berlin, Geob. Inst. ETH, Stuftung Rubel Zürich v. 37 p. 56-73.
12. FINOT, L,: BRAVO, J. 1985. Clave para identificar las malezas gramíneas (Poaceac) de la provincia de N̄uble (Chile). Agro-Ciencia 1(2):161-170
13. GOLLEY, FB. 1961. Energy values of ecological materials Ecology 42:581-584.

14 GOPAL, B. SHARMA, K.P. 1979. Aquatic weed control versus utilisation Economic Botany 33(3):340-346
15. JABBAR, A ; SLINGER, SI ; BURTON, H. 1978. Chemical composition of aquatic macrophytes. I Investigation of organic constituents and nutritional potential Canadian Journal of Plant Science 58:829-841
16. KNAPP, R. 1984. Sampling methods and taxon analysis in vegelation science La Haya, W. Junk Pub 370 p.
17. LIETH. H: PFLANZ, B 1968 The measurement of calorific values of biological material and the determination of ecological efficiency. UNESCO, Nat Resource Symp Ser v 5 p. 233-242
18. $10 N \mathrm{ON}, \mathrm{F}$. 1934 Application of calorimetric methods of ecological rescarch Plant Physiology 9:323-337

19 MARTICORENA. C.; QUEZADA, M. 1985. Catálogo de la flora vascular de Chile Gayana Botánica 42(1-2):5157.
20. MATMEI, O. 1963 Manual ilustrado de las malezas de la provincia de Nuble Tesis. Chillán, Escucla de Agronomia, Universidad de Concepción 115 p

21 NATIONAL ACADEMY OF SCIENCE 1976. Making aquatic weeds useful: Some perspectives for developing countries. Washington 174 p
22. RAMIRE7, C ; BECK, S 1981. Makrophytische Vegetation und Flora in Gewaissern der Umgebung von La Paz, Bolivien Archiv fur Hydrobiologie 91(1):82-100.
23. RAMIREZ, C ; STEGMAILR, E 1982 . Formas de vida en hidrófitos chilenos Medio Ambiente 6(1):43.54
24. RAMIREZ, C: SAN MARTIN, J. 1984. Hydrophilous vegetation of a coastal lagoon in Central Chile. International Joumal Ecol. Environ. Science 10:93-110.
25. RAMIREZ, C ; STEUBING, I.. 1984. Composición quirmica y aptitud forrajera de plantas acuáticas valdivianas Arch Med Vei No. Exi 4:137.
26. RUNGE, M. 1973. Energieumsätze in den Biozönosen terrestrischer Ockosysteme Scripta Geobotanica 4:1-77.
27. SAN MARIIN, J. 1983. Influencias reciprocas entre malezas y arroz en cultivos de Chile Central Tesis. Valdivia, Universidad Ausiral de Chile, Escuela de Graduados. 181 p.

28 SAN MARIIN, J: RAMIRE:\% C 1983 . Fora de malezas en arrozales de Chile Central Ciencia e Investigación Agraria 10(3):207-222
29. SAN MARIIN, J.; CONTRERAS, D ; RAMIREZ, C 1988. Estudios fenológicos en malczas de arrozales de Chile Central. Tumialba 38(1):23-30.
30. SCHWABE, G. H. 1968 Das Binnengewässer als Glied der L.andschaft Natur und Landschaft 43(7):160-166.
31. SIMS, G ; AL.VARADO, R. 1972. Manual del arroz. Instituto Agropecuario de Chile, Servicio Agrícola y Ganadero (SAG), División Técnica Boletín Técnico no. 54
32. STEUBING, L. 1965 Pflanzenökologisches Praktikum Hamburg, Paul Parey. 262 p.
33. STEUBING, L ; RAMIREZ, C. ; ALBERDI, M. 1979. Ar-tenzusam-mensetzung, Lichtgenuss und Energiegehalt der Krautsehicht des valdivianischen Regenwaldes bei St Marún Vegetatio 391:25-33
34. STEUBING, L ; RAMIREZ, C; ALBERDI. M. 1980 Energy content of water- and bog-plant associations in the region of Valdivia (Chile). Vegetatio 43:153-161.

35 SIEUBING. L ; SCHWANTES, HO. 1987. Oekologische Botanik Heidelberg, Quelle \& Meyer 408 p

Biología Poblacional del Gramón. III. Bases Genéticas y Ambientales de la Productividad y Arquitectura ${ }^{1}$

R. Sarandon*

Abstract

ABSTRACI

An experiment was performed with the aim of studying the genetic and environmental components of productivity and architecture of Bermuda grass (Cynodon dactylon) (L.) Pers, Gramineae) in the Pampean area. The response of five populations, geographically isolated, growing in six different environmental conditions, in a factor design of two climatic and three edaphic conditions, was tested. 'The results show that: 1) Climatic and edaphic conditions significantly influenced biomass production and allocation to aereal, subterranean and reproductive tissues; 2) the populations responded differently to similar environmental conditions, indicating genetic differences among them; 3) differences among populations are related to climatic and edaphic conditions at the original sites; 4) populations showed a different norm of reaction and a clear population-environment interaction; 5) the dependent variables with a high variation among population showed also high heretability values. This suggest that the source of genetic variability for productivity and architecture is large at the population level and, consequently, that Bermuda grass, in the Pampean area, has a high potential for response to selection.

Key words: Cynodondactylon, ecology, genetics, herctability, productivity.

COMPENDIO

Con el objeto de determinar las bases genéticas y ambientales de la productividad y arquitectura del gramón, Cynodon dactylon (L). Pers., Gramineae, en las poblaciones del área pampeana, se evaluó la respuesta de cinco poblaciones, separadas geográficamente, creciendo en seis condiciones ambientales distintas, en un diseño factorial (dos condiciones climáticas x tres edáficas). Los resultados indican que: 1) tanto las condiciones climáticas como edáficas modificaron significativamente la producción y la asignación de biomasa a los tejidos aéreos, subterráneos o reproductivos; 2) las poblaciones respondieron en forma diferente ante condiciones ambientales similares; 3) las diferencias entre las poblaciones están relacionadas con las condiciones edáficas y climáticas de sus localidades de origen; 4) las poblaciones mostraron una norma de reacción distinta y una interacción poblacional ambiente marcada; 5) los caracteres que más variaron entre poblaciones denotaron altos valores de hereditabilidad, lo que indica que, a nivel poblacional, la reserva de variabilidad genética para la productividad y la arquitectura es grande. Por lo tanto, el gramón, en el área pampeana, tiene aún una gran capacidad de respuesta a la selección.

Palabras claves: Cynodon dactylon, ecologia, genética, hereditabilidad, productividad.

[^12]
INTRODLCCION

En un estudio extensivo sobre el patrón de variación intraespeciffica en la morfologia, abundancia y arquitectura del gramón, C dactylon (L.) Pers., en relación con las características ambientales presentes en el árca pampeana, se idenlificaron ciertas correlaciones entre variables morfológicas y fisiológicas con variables climáticas y, además, o en su defecto, edáficas (18, 19). Sin embargo, el patrón de variación intracspecifico no podia ser explicado totalmente por el patrón de heterogeneidad ambiental (climálica, edáfica) de la región. Se proponia, entonces, que las poblaciones deberian presentar respucstas genćticas diferentes a condiciones ambientales similares. Siguiendo las premisas de Turesson (9), una vez determinada la existencia de variación correlacionada con el ambiente, quedan por analizar sus causas.

La variación de un carácter (cualitativo o cuantitativo) puede deberse a causas genéticas o ambientales. La magnitud relativa de una u otra causa es importante para caracterizar las propiedades genéticas de la población o especic y entender, así, su adaptación al medio (5,10). La técnica usual, para determinar la magnitud relativa de una u otra causa, consiste en hacer crecer las plantas en condiciones uniformes (3,9). Debido a que las normas de reacción pueden ser diferentes para cada genótipo o población, y que esto puede ocasionar distintos resultados, segun el ambiente en que se realice la prucba, conviene utilizar una serie de condiciones ambientales diferentes que permitan tener un conocimiento más claro del patrón de respuesta de la población $(10,20)$.

En este trabajo se presentan los resultados de un experimento en que se evalua la respuesta de cinco poblaciones, separadas geográficamente, creciendo en seis condiciones ambientales distintas provistas en un diseño factorial El análisis de la respuesta se ha centrado en el crecimiento o producción de biomasa y en la asignación de recursos a distintos compartimientos, debido a que estas características son importantes componentes de la estrategia adaptativa de una planta $(6,21)$ y de la agresividad de una malera (1), sintetizando, además, la interacción planta-ambiente (24).

MATERIALES Y METODOS

Se recolectó material vivo (rizomas y estolones) en cinco de las poblaciones de gramón del área pampeana argentina. Las caractorísticas generadas de cada localidad se presentan en el Cuadro 1. (La población 5 es originaria de Pergamino (núm. 1), trasplantada en 1982 a la localidad de La Plata, por lo que no se incluye en el Cuadro 1).

Las cinco poblaciones citadas se cultivaron en la Chacra Experimental de Gorina (La Plata, Arg), en dos condiciones climáticas y tres cdáficas siguicndo un diseño experimental de tipo factorial (12). Las condiciones climálicas fueron: 1) aire libre (AL) y 2) invernáculo (I) (condiciones más cálidas y secas). Las edaficas fueron: 1) testigo (T): con suelo de la estación experimental (primeros 20 cm); 2) fertilizado (F): suelo testigo con urea al 26% en una cantidad de $100 \mathrm{~kg} / \mathrm{ha}$ (50 mg de urea en 100 ml de agua en cada maceta), aplicada 30 d despućs de haberse iniciado el experimento; y 3) textura grucsa (G): suclo testigo mezclado con un tercio de arena.

Se utilizaron macetas de aproximadamente $50 \mathrm{~cm}^{2}$ de superficie y 41 de capacidad. En cada maceta se colocaron tres trozos de rizomas de tres nudos cada uno. Se realizaron cuatro repeticiones por tratamicnto,
haciendo un total de 120 macetas (factorial de cinco poblaciones x dos condiciones climáticas x tres edáficas x cuatro repeticiones $=120$ macetas). El cxperimento fue visitado periódicamente hasta su finalización (150 d de crecimiento).

Al finalizar el experimento se obtuvo el peso seco ($80^{\circ} \mathrm{C}, 48 \mathrm{~h}$) de cada uno de los compartimientos (subterránco, aérco y reproductivo) presentes en cada maceta expresados en gramos por metro cuadrado. Con estos datos se calcularon el peso seco total, los porcentajes relativos correspondientes y la relación aérea/subterránca. También se midicron la altura de las inflorescencias (antes del corte) y el número de escapos florales en cada maceta. El análisis de los datos se realizó mediante un ANOVA de tres factores $(12,22)$. El análisis estadístico se efectuó sobre las variables con y sin transformación logarímica (para las biomasas) o angular (para los porcentajes), dando los mismos resultados en ambos casos, por lo que se presentan los resultados \sin transformación.

Para cada una de las variables se estimó la importancia relativa del componente genético y ambiental mediante el cálculo de la hereditabilidad sensu lato $(2,5,10)$, Para cada carácter se estimó:

$$
\begin{equation*}
h^{2}=\tau g \tau f=V g /(V g+V e) \tag{1}
\end{equation*}
$$

utilizándose, como estimadores de las τ, las variancias respectivas:

$$
\mathrm{Vg}_{\mathrm{g}}=(\mathrm{CM} 1-\mathrm{CM} 8) / \mathrm{rsc} \text { y } \mathrm{Vc}=\mathrm{CM} 8 / \mathrm{rsc} \text { Fórmula }(2)
$$

donde:

h^{2}	hereditabilidad.
$\tau \mathrm{g}$	variancia genética.
$1=$	variancia fenotípica.
Vc	variancia ambiental
CM1 $=$	cuadrado medio población en ANOVA
CM8 =	cuadrado medio error en ANOVA.
r $=$	número de repeticiones (cuatro)
$\mathrm{s}=$	número de condiciones edáficas (suelo $=$ tres).
c $=$	número de condiciones climáticas $($ clima $=\mathrm{dos})$.

Rescltados

Las macetas sometidas a condiciones de invernáculo (I) no llegaron a reproducirse, debido fundamentalmente a las condiciones de sequedad en que crecieron: elevada temperatura ambiente y bajo suministro de agua. Aquellas al aire libre (AL) crecieron mejor tanto en biomasa vegetativa como en reproductiva -lodas llegaron a reproducirse.

Cuadro 1. Características generales de las localidades de origen de las poblaciones utilizadas. Biomasa del gramón en cada una de ellas, según muestreo realizado en enero de 1983.

Variable	Población			
	Pergamino	Junín	Rufino	Vdo. Tuerto
Clima				
Temperatura promedio	16.2	16.0	16.33	16.25
Precipitación	895	920.5	848.67	858
Suelo				
pH (1)	6.3	6.9	4.7	6.0
Materia orgánica (\%) (2)	3.8	4.9	3.81	4.3
Nitrógeno (\%) (3)	0.169	0.261	0.191	0.187
Sales (4)	3.8	2.25	0.01	150
Fósforo (5)	70	140	24.3	47.1
Arena (\%)	14.9	18.5	44.9	41.8
Limo grueso (\%)	41.3	24.6	28.8	26.9
Limo fino (\%)	235	30.2	13.7	15.1
Arcillas (\%)	203	26.7	12.6	162
Biomasa (g/m)				
Total	3552.95	2854.99	4049.02	2669.59
Aérea	1286.94	823.93	12272	949.2
Subterránea	2264.18	1952.39	2751.75	1629.82
Reproductiva	1.834	78.67	70.07	90.57
Observaciones				
Usos	Pastura	Cultivo	Descanso	Pastoreo
Altura (cm)	5-10/30-40	30	30-40	5-10
Hábito	postrado/erecto	erecto	erecto	postrado
Distribución	agrupada	agrupada	uniforme	uniforme

Notas:
(1) Potenciómetro $1: 2.5$
(2) Walkley \& Black I
(3) Semimicrokjeldal
(4) mmhos $/ \mathrm{cm}$, en pasta
(5) ppm, Bray \& Kurtz I

Todos los factores (variables independientes o fuentes de variación) influenciaron en uno u otro de los caracteres (o variables depentientes) considerados en el experimento, excepto en el número de inflorescencias o escapos florales (Cuadro 2). El clima fue, en general, el que más influyó en todo el conjunto y sobre todos los caracteres considerados en el experimento (Cuadro 2). La producción total de biomasa vegetativa fue significativamente menor en las macetas dentro del invernáculo (promędio de 447.19 $\mathrm{g} / \mathrm{m}^{2}$) que al aire libre ($\left.779.42 \mathrm{~g} / \mathrm{m}^{2}\right)_{2}$ Lo mismo sucedió con la biomasa aérea ($291.69 \mathrm{~g} / \mathrm{m}^{2}$ en I, contra $413.07 \mathrm{~g} / \mathrm{m}^{2}$ en AL) y la subterránea (154.55 en I contra $245.88 \mathrm{~g} / \mathrm{m}^{2}$ en AL), mientras que sólo llegaron a
reproducirse las crecidas al aire libre (promedio 17.09 $\mathrm{g} / \mathrm{m}^{2}$)

Las poblaciones mostraron una marcada similitud en la cantidad de biomasa aérea absoluta producida (promedio $352.38 \mathrm{~g} / \mathrm{m}^{2}$), aunque mostraron diferencias significativas en la biomasa total, variando desde $516.65 \mathrm{~g} / \mathrm{m}^{2}$ hasta $690.11 \mathrm{~g} / \mathrm{m}^{2}$, debido a una diferente producción de biomasa subterránea que varió entre $209.33 \mathrm{~g} / \mathrm{m}^{2}$ y $317.73 \mathrm{~g} / \mathrm{m}^{2}$ (Fig. 1). Las poblaciones mostraron, además, diferencias en las proporciones relativas de biomasa en cada compartimento, indicando así una diferente estrategia general de asignación de recursos (Cuadro 2). La relación entre biomasa

Cuadro 2 Resumen ANOVA para cada variable dependiente del experimento factorial.

Fuente variación	Aéreo	Subte	Repro.	Total	Aéreo (\%)	Subte. (\%)	Repro. (\%)	Ae/Sub	Alt.	N.Int.
Población	1.94	6.06	6.17	4135	2.92	2.83	3.55	1.08	14.61	2.41
(P)	N.S.	***	***	***	*	*	*	N.S.	***	N.S.
Suelo	5.36	1.84	3.86	3.844	7.28	7.37	0.30	6.74	5.26	3.10
(S)	**	N.S.	*	*	**	**	NS.	**	**	N.S.
Clima	28.74	140.90	-	107.37	47.60	29.75	-	35.30	-	-
(C)	***	***		***	***	***		***		
Interacciones dobles										
Px S	1.00	0.94	0.47	0.753	1.47	1.53	0.726	158	3.97	0.84
	N.S.	**	NS.							
$\mathrm{P} \times \mathrm{C}$	2.49	0.54	-	0.756	3.03	2.82	-	1.45	-	-
	*	N.S.		N.S.	*	*		N.S.		
SxC	1.30	3.42	-	2.579	3.72	3.42	-	3.38	-	-
	N.S.	*		N.S.	*	*		*		
Interacciones triples										
PxSxC	0.58	1.00	-	1.00	0.82	0.78	-	0.96	-	-
	N.S.	N.S.		N.S.	NS.	N.		N.S.		

Notas:

Valores de P y su significancia (N.S.: no significativo; * $\mathrm{P}<0.05$; ** $\mathrm{P}<0.01$ y ${ }^{* * *} \mathrm{P}<0.001$

Fig. 1 a) Biomasa total; b) aérea; y c) subterránea producida $\left(\mathrm{g} / \mathrm{m}^{2}\right)$ por cada población al aire libre e invernáculo, con suelo testigo (T), fertilizado (F) y de textura gruesa (G)
aérea:subterránea, sin embargo, no alcanzó a mostrar diferencias significativas entre poblaciones (promedio general $A: S=1.71$). Hubo diferencias significativas entre poblaciones en la biomasa reproductiva (de 11.01 $\mathrm{g} / \mathrm{m}^{2}$ a $23.89 \mathrm{~g} / \mathrm{m}^{2}$) y en la altura de los escapos florales (de 18.92 cm a 25.33 cm). El número de inflorescencias, \sin embargo, se mantuvo constante (promedio de 16.79 por maceta) (Cuadro 2, Fig. 2).

Fig. 2. a) Biomasa reproductiva ($\mathrm{g} / \mathrm{m}^{2}$); b) número de escapos florales; y c) altura de las inflorescencias (cm) de cada poblaciôn por condición experimental (véanse referencias en Fig. 1).

El suclo (testigo, fertilizado o de textura gruesa) influyó significativamente en la biomasa aérea, variando desde $385.38(\mathrm{~T}), 371.15(\mathrm{~F})$ y $300.61(\mathrm{G}) \mathrm{g} / \mathrm{m}^{2}$; en la biomasa reproductiva, variando desde 20.78 (T), 17.19 (F) y $13.30(\mathrm{G}) \mathrm{g} / \mathrm{m}^{2}$; y en la total, variando de 666.67 (T), 615.40 (F) y 557.85 (G) g por metro cuadrado. También fueron influenciados significativamente el porcentaje de biomasa aérea, el de biomasa subterránea, el cociente aéreo: subterránco y la altura de las inflorescencias (Cuadro 2). No hubo diferencias significativas en la cantidad de biomasa subtertánea producida (promedio general: $250.22 \mathrm{~g} / \mathrm{m}^{2}$), en el porcentaje de biomasa reproductiva (2.28\%) ni en el número de escapos florales (17.56 inflorescencias por maceta) bajo las distintas condiciones edáficas (Figs 1 y 2).

En general, hubo una disminución (7.69%) en la biomasa total acumulada en condiciones de suelo fertilizado respecto del suelo testigo, independiente de la población o del clima. Esto pudo deberse a que la fertilización se realizó únicamente al inicio del experimento, generando un desbalance en la relación fuente-destino que afectó negativamente la producción de biomasa al final del ciclo. Tambićn, se notó un aumento de la biomasa aćrea porcentual, una disminución de la biomasa subterránca porcentual y un consiguiente aumento de la relación aćrea:subterránea en las condiciones de suelo fertilizado con respecto al suelo testigo. Se observó una tendencia a la disminución de la biomasa producida bajo condiciones de suelo, desde la condición de testigo a fertilizado y, por último, a la de textura gruesa.

El Cuadro 3 resume los valores de hereditabilidad sensu lato, calculados para cada uno de los diez caracteres estudiados. La mayoría de los caracteres muestra valores allos de h^{2} (cercanos a 1), que coinciden con diferencias significativas entre poblaciones según el ANOVA respectivo entre poblaciones Los caracteres que mostraron valores bajos de h^{2} (cercanos a 1) coinciden con diferencias significativas entre poblaciones, según el ANOVA respectivo entre poblaciones. Los caracteres que mostraron valores bajos de h^{2} fueron: número de inflorescencias, biomasa aćrea y relación biomasa acrea/subterránea (diferencias entre poblaciones no significativas en el ANOVA).

DISCUSION Y CONCLUSIONES

Los resultados de la correlación biomasa-ambiente (19) indican que la textura y la fertilidad del suelo, asi como las condiciones climáticas (temperatura y humedad) del sitio, se correlacionan positivamente con la biomasa presente en un lugar y con las proporciones relativas en cada compartimiento. En este experimento

Cuadro 3. Estimaciones de hereditabilidad "seasu lato". Significancia del ANOVA entre poblaciones (ver Cuadro 2).

Carácter	Vg	Ve	n^{2}	Sign. (ANOVA)
Biomasa total	397	1.267	0758	***
B. aćrea	0.59	0.630	0.484	N.S.
B sublerrínea	1.62	0.319	0.835	***
B. reproductiva	0.514	0.006	0.988	***
B. aérea (\%)	6.757	3.525	0.657	*
B. subterránea (\%)	6.622	3.614	0.647	*
B. reproductiva (\%)	0.314	0.123	0.720	*
B. aćrea/subterráneo	0.002	0026	0072	NS.
Núm. inflorescencia	7.808	5.534	0.585	N.S.
Allura	6.368	0.468	0.939	***

se variaron artificialmente las condiciones edáficas y climáticas, a fin de estimar su efecto en la respucsta de cada población. El objetivo del mismo ha sido cuantificar si las poblaciones responden de manera diferente a las mismas. Los resultados gencrales del análisis de los datos indican que:

- Tanto las condiciones climáticas como edáficas modificaron o influenciaron significativamente la producción y la asignación de biomasa. Esto indica que el rango de variabilidad ambiental del experimento fue suficientemente amplio como para poner en evidencia las diferencias genéticas entre poblaciones. Se encontraron mayores diferencias en las condiciones climáticas que en las cdáficas, así ninguna población floreció en el ambiente de mayor estrés hídrico (invermáculo).
- Las poblaciones respondieron de forma distinta ante las mismas condiciones ambientales, lo que indica diferencias genéticas entre ellas. Algunas poblaciones produjeron de un 20% a un 30% más de biomasa total que otras, hecho que pone de manifiesto que las diferencias estadísticas tienen, tambión, un importante valor biológico.
- Las diferencias entre poblaciones parecicran estar relacionadas con las condiciones cdaficas y climáticas de sus localidades de origen. Por ejemplo, las poblaciones originarias de ambientes de suelos con texturas gruesas: Pergamino, Rufino y Venado Tuerto (Cuadro 1), respondieron mejor a las condiciones de textura gruesa que a las otras dos condiciones (Fig. 1). Lo mismo sucedió con respecto al suelo fertilizado, ya que las poblaciones de Junín (núm. 2), Pergamino (núm. 1) y La Plata (núm. 5), originarias de condiciones de alta fertilidad
(mayor cantidad de materia orgánica, nitógeno, fósforo y pH más neutro) en sus localidades de origen (Cuadro 1), respondicron positivamente al tratamiento con urea, aumentando su biomasa en relación con la condición de suclo-testigo.
- Las poblaciones respondieron, además, en forma diferente ante distintas condiciones ambientales, lo que indica una norma de reacción distinta y una interacción población ambiente marcada. Por ejemplo, la población de Junín (núm. 2) sufrió más las condiciones de sequedad que la de Rulino (núm. 3), al mismo tiempo que respondió mejor a las condiciones de fertilización que ésta última, proveniente de condiciones más secas (suclo de textura más gruesa y menores precipitaciones) y menos fértiles que aquella (Cuadro 1).

Estos resultados permiten inferir que las poblaciones presentes en cada localidad poseen una norma de reacción diferente unas de otras (al menos en cuanto a su productividad o tasa de crecimiento y a la asignación de biomasa), que puede relacionarse con las condiciones reinantes en sus respectivas localidades. Estos resultados coinciden con los hallados por otros autores que han trabajado con C dactylon. Rochccouste $(16,17)$ realizó cxpericncias con "biótipos" de Cynodon caracterizados por una peculiar distribución de pelos en la lamina y vaina foliar, encontrando diferencias en el crecimiento, la fenología y la arquitectura. Las poblaciones mostraban además diferencias en el numero de cromosomas ($2: 2 \mathrm{n}$ y $2: 4 \mathrm{n}$). Maroder et al (11) reportan resultados similares para tres biótipos (con un numero de cromosomas diferente) de C. affinis. Ramakrishnan y Singh $(13,14)$ trabajaron con "ecótipos edáficos", provenientes de
poblaciones ubicadas en ambientes que presentan valores extremos de Caen el suclo, encontrando que la productividad y la respuesta a la competencia interespecifica de los mismos cran afectadas por las condiciones experimentales en relación con las condiciones edáficas de sus localidades de origen.

En este caso, también, existe variación en el contenido de nitrógeno, materia orgánica, sales y fósforo entre las localidades de origen de las poblaciones (Cuadro 1). Si bien se ha encontrado correlación biomasa:ambiente, y las diferencias en la respuesta de las poblaciones con las condiciones probadas (climáticas o edáficas) parecieran corresponder a las características de sus localidades de origen, cualquier interpretación del valor adaptativo de dichas características podria tener algún grado de especulación (7,8). Una forma de comprobar si estas diferencias en la productividad y arquitectura son una respuesta adaptativa (producto de la selección natural) es a través de un experimento de trasplante reciproco a campo $(2,15)$. Idealmente deberia evaluarse la respuesta a lo largo de varios ciclos de crecimiento. Esto resulta técnicamente muy dificil en especies con propagación vegetativa como el gramón, ya que podria producir resultados dudosos (15)

A pesar de existir un gradiente climático de mayor a menor "oceanidad" desde el NE al SE (4), el patrón de distribución espacial de los ambientes en el área pampeana está muy influenciado por cl uso de la tierra (agricultura, ganaderia, otros). Esto no permite visualizar tendencias claras de variación en la morfologia, arquitectura y productividad (18). La habilidad del gramón para responder plásticamente a las condiciones ambientales, impide, en parte, la observación de discontinuidades en la respuesta de cada población. No parece que existan ecólipos de gramón en el área pampeana, ya que las poblaciones muestran, aparentemente, un continuo de situaciones intermedias (18).

En este contexto, es interesante destacar el trabajo de Wu y Antonovics (25) en cuanto a la respuesta de las plantas a la presencia de metales pesados en el suelo. A tal fin se compararon dos especies (C. dactylon y Plantago lanceolata) presentes en la misma localidad caracterizada por presentar un gradiente de condiciones de un bajo a un alto contenido de Cu en el suclo. Wu y Antonovics (25) hallaron que genótipos de $P_{\text {. }}$ lanceolata, provenientes de zonas de alta y baja contaminación con metales pesados, respondian diferencialmente a la presencia de ellos en condiciones experimentales: los genótipos provenientes de las áreas más contaminadas presentaban mayor resistencia a una alta concentración de metales pesados (Cu) en el medio
de cultivo. Sin embargo, no sucedia lo mismo con los genótipos de C dactylon de una y otra zona, ya que ambos crecian normalmente en las condiciones de alto contenido de Cu en el suclo. Es decir, a pesar de que las condiciones edáficas eran lo suficientemente diferentes como para producir diferenciación en el caso de P. lanceolata, los genótipos de C. dactylon podian sobrevivir y crecer normalmente en ambos gracias a su comportamiento más plástico.
-- Los caracteres que más variaron entre poblaciones mostraron altos valores de hereditabilidad sensu lato. Este valor mide la contribución de los factores genéticos al valor de un carácter en la población, en relación con el resto de los factores o causas de variación (5,10). Debe quedar claro que la h^{2} es una propiedad no sólo del carácter en si, sino también de la población y de las circunstancias ambientales a que están sujetos los individuos, pues h^{2} depende de las magnitudes relativas de unas y otras causas de variación. La magnitud de la variancia ambiental dependerá, por ejemplo, de las condiciones experimentales; condiciones más variables la aumentan y condiciones experimentales más uniformes la disminuyen (5,10). Valores típicos de h^{2} para distintos caracteres en animales domésticos indican que aquellos caracteres seleccionados (artificialmente) por los productores, presentan bajos valores de h^{2} (cercanos a cero), mientras que las caracteristicas que nada tienen que ver con la supervivencia o reproducción muestran valores de h^{2} cercanos a 1 (5:167). Puede interpretarse, en consecuencia, que la h indica la cantidad de variación genética disponible para la selección natural: a mayor h de un carácter, mayor es su potencialidad para cambiar por efecto o en respucsta a la selección natural $(2,5,23)$.

En este sentido, llama la atención que variables relacionadas estrechamente con la productividad (como la biomasa total acumulada y su patrón de asignación) exhiban valores tan altos dc h^{2}. Indica que la reserva de variabilidad genética para estos caracteres es grande a nivel poblacional y que, por lo tanto, el gramón en el área pampeana tiene aún una gran capacidad de respuesta a la selección. Los valores de h^{2} sensu lato, obtenidos en este trabajo, confunden en realidad los efectos aditivos (Va), de dominancia (Vd) y cpistáticos (Vi) (3,5), que determinan la variancia genćtica total $(\mathrm{Vg}=\mathrm{Va}+\mathrm{Vd}+$ V). El cálculo de h^{2} sensu stricto se basa en el cociente Va/Vf. Si los efectos de dominancia (Vd) y, además, o en su defecto, cpistáticos (Vi) son importantes, los valores de h^{2} obtenidos en este trabajo pueden estar sobreevaluando el efecto aditivo y, en consecuencia, la potencialidad para responder a la selección natural puede que sea mucho menor que la indicada.

LITERATURA CITADA

1. BAKER, H G. 1965. Characteristics and modes of origin of weeds. In The genetics of colonizing species. HG Baker, G.L. Stebbins (Eds) New York. Academic Press p. 147-168
2. BRADSHAW, A D. 1984a. The importance of evolutionary ideas in ecology and vice versa In Symposium of the British Ecological Socicty: Evolutionary Ecology (23) B. Sharrocks (Ed.) Oxford, Blackwell p. 1-25
3. BRADSHAW, A.D. 1984b Ecological significance of genetic variation between populations. In Perspectives on plant population ecology. R. Dirzo. J. Sarukhăn (Eds) Massachusetts, Sinaucr Ass p 213-228
4. BURGOS, J J, 1968. El clima de la provincia de Buenos Aires en relación con la vegetación natural y el suelo. In Flora de la Provincia de Buenos Aires. A.L. Cabrera (Ed) Buenos Aires. Colección Cientifica INTA Tomo 4, pt. 1a, p. 33-39.
5. FALCONER, D.S. 1960. Intoduction to quantitative genetics. New York, The Ronald Press.

6 GOULD, SJ.; LEWONIIN, RC 1979. The sprandels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Socicty ofL ondon. Series B:Biological Sciences 205:581598.
7. GRIME, J.P. 1979 Plan strategies and vegetation processes. New York, John Wilcy. 222 p.
8. HARPER, JL. 1982 After description. In The plant community and a working mechanism E.I. Newman (Ed). Blackwell, Oxford, British Ecological Society Special Publication No. 1
9. HESLOP-HARRISON, J. 1964 Forty years of genecology In Advances in cological rescarch J.B. Cragg (Ed) New York, Academic Press. v. 2 p 159-247
10. MARIOTHI, J.A. 1986 Fundamentos de genética biométrica: Aplicaciones al mejoramiento genético vegetal Monografias de la OEA. Scrie Biológica no. 32
11. MARODER, HL ; PETETIN, C A.; PREGO, 1 A ; CAIROLI, MA. \& SUAREZ, E. 1985. Caracteristicas de biótipos de Cynodon affinis: Diferencias en el comportamiento de herbicidas. In Reunión Nacional de Fisiología Vegetal (16, La Plata, Arg). Resûmenes no. 20.
12. PIMENTEL GOMES, F. 1978 Estadistica experimental Buenos Aires, Hemisferio Sur
13. RAMAKRISHNAN, P.S.; SING. V.K. 1966 Differential response of the edaphicecotypes in Cynodon dactylon (L.) Pers to soil calcium New Phytologist 65:100-108
14. RAMAKRISHNAN. P. S; GUPTA. U. 1972. Ecolypic differences in Cynodon dactylon (L..) Pers related to weedcrop interference. Journal of Applied Ecology 9:333-339.
15. RAPSON, G.L: WIL SON, JB 1988 Non-adaptation in Agrostis capillaris L. (Poaceac). Functional Ecology 2:479-490
16. ROCHECOUSTE, E 1962a. Studies on the biotypes of Cynodon dactylon (L.) Pers. 1. Botanical investigation. Weed Rescarch 2:1-23
17. ROCHECOUSTE, E 1962b. Studies on the biotypes of Cynodon dactylon (L) Pers II. Growth response to trichloroacetic and 2-2-dichloropropionic acid. Weed Research 2:136-145

18 SARANDON, R. 1988 . Biología poblacional del gramón. I. Variabilidad morfológica y ambiente. Revista de la Facultad de Agronomia de la Plata 64 (En prensa)

19 SARANDON, R. 1989 Biología poblacional del gramón II. Biomasa: Asignación de recursos y ambiente Revista de la facultad de Agronomía de La Plata Tomo 65 (En prensa)
20. SCHLICHIING, CD. 1986 The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematic 17:667-693

21 SCHUL ZE, ED: CHAPIN, F.S 1987. Plant specialization to environments of different resource availability In E.D. Schulze, H Zwolfer (Eds). Ecological Studies 61:120148.

22 SOKAL, RR; ROHLF, FJ. 1969 Biometría Madrid, Blume.
23. SOL BRIG, O T.; SOLBRIG, DJ. 1979. Introduction to population biology and evolution. Massachusetts. Ad-dison-Wesley.
24. TOWNSEND, CR.; CALOW, P 1981 Physiological ecology: An evolutionary approach to resource uses. Massachusetts, Sinaucr Ass.

25 WU, I. : AN TONOVICS, J. 1976 Experimental genetics in Plantago lanceolata and Cynodon dactylon from a road side. Ecology 57:205-208

Evaluación de Cacao Híbrido Bajo Dos Sistemas de Sombra en Turrialba, Costa Rica ${ }^{1}$

I. Morera*, A Mora*

Abstract

Two shade systems for higher yield in cocoa hybrids were compared: poro (Erythrina poeppigiana) and laurel (Cordia alliodora). After eleven years of data for cocoa yield had been completed with each shade system, three cocoa hybrids were evaluated for some traits. No significant differences between the treatments were noted for the eleven-year average. Although there were no significant differences between the shade systems; the poro system resulted in slightly improved yields of cocoa compared with the laurel system, which was inferior in yield by $10.7 \mathrm{~kg} / \mathrm{ha}$. These results and others previously reported for both systems suggest that the poro system is apparently more effective for improving cocoa yield and other traits.

INTRODCCCION

En Centroamérica y el Caribe, los agricultores tradicionalmente han manejado el cultivo de dcacao en forma muy variada, utilizando diversos modelos y/o sistemas ccológicos de gran sostenibilidad.

El hábitat natural del cacao corresponde a las zonas en que predominan los bosques tropicales bajos. En estas condiciones vive en asociación biológica con otras especies como palmeras, árboles y arbustos pequeños; por esta razón se dice que el cultivo de cacao es umbrófilo, por lo que se establece tradicionalmente bajo sombra $(3,9)$.

[^13]
COMPENDIO

Con el propósito de medir el rendimiento y otras características de hibridos de cacao, se compararon dos sistemas de sombra: poró (Erythrina poeppigiana) y laurel (Cordiaaliodora). Después de 11 años de tomar datos en cada sistema de sombra, fueron evaluadas algunas características de tres hibridos de cacao.. No hubo diferencias significativas entre los tratamientos para el promedio de 11 años. Sin embargo, aunque no existió diferencias significativas entrelos sistemas de sombra, en poró hubo un ligero incremento de $10.7 \mathrm{~kg} / \mathrm{ha}$ en rendimiento de cacao comparado con el sistema de laurel. Estos resultados, y otros reportados, para ambos sistemas sugieren que el sistema de poró es un poco más efectivo para incrementar el rendimiento y otras características del cacao.

El cultivo de cacao sin sombra pucde presentar varios problemas. Dependiendo de la fertilidad natural del suclo, la creciente exuracción de nutrimentos conduce con el liempo a una disminución de la producción y a la senescencia temprana de los árboles (2). Se menciona que la climinación completa de la sombra en cacaotales en producción produce un rápido incremento del rendimiento, pero pronto se deteriora la plantación con la muerte regresiva por enfermedades, ataque de insectos y, finalmente, la muerte de los árboles (12).

Una sola especie árborea rara vez reúne todas las características descables que deberia tener elárbol ideal de sombra del cacao. Sin embargo, se debe tratar de seleccionar aquella(s) especie(s) con mejores cualidades $(7,8,10)$.

La utilización de algunas especies para sombra varia ampliamente dentro de regiones y entre paises (9).. Por cjemplo, Vinha y Mattos (11) describen 131 especies de árboles nativos recomendados como sombra permanente para cacao, en el estado de Bahía y norte del estado de Espíritu Santo en Brasil.

Entre las especies recomendadas como sombra permanente se mencionan frutales (citricos; anonáceas,

Anarcardium occidentale, Calocarpum mammosum y otros; leguminosas, principalmente de los géneros Gliricidia, Inga y Erythrina; árboles maderables como Cedrela toona (cedro rojo) y Cordia alliodora (laurel); palmáceas y otras especies, como Cocos nucifera y Hevea brasiliensis (5, 7, 8).

Las leguminosas presentan la ventaja de incorporar nitrógeno al suelo, y algunas producen madera para leña $(5,11)$.

Se menciona que la especie $E_{\text {, poeppigiana incor- }}$ pora alrededor de $224 \mathrm{~kg} / \mathrm{ha}$ de sulfato de amonio por año, y se reproduce fácilmente por medio de estacas y semillas (9).

En el caso de C. alliodora (laure), se considera especie prometedora como arbol de sombra por su rápido crecimiento, fuste recto y sistema radical aparentemente profundo; la copa, que ocupa poco espacio, presenta una alta producción de hojas y se autopoda. Además, su madera tiene mucha demanda para la construcción de pisos, ciclo rasos, puertas, ventanas y gabinetes (9).

Alpizar et al. (1) estudiaron en el CATIE, Costa Rica, dos sistemas agroforestales: cacao bajo laurel (C. alliodora) y cacao bajo poró (E. poeppigiana). No se presentaron diferencias en el cacao con respecto a la acumulación de nitrógeno, fósforo y calcio, pero el potasio y el magnesio fucron superiores bajo sombra de laurel. La biomasa total fue más alta en el sisterna con C alliodora y, prácticamente, no hubo diferencia en la producción de biomasa aéreà de cacao bajo los dos sistemas de sombra.

Heuveldop et al (6) compararon los sistemas anteriores y encontraron que la producción de almendras de cacao y cáscara fue ligeramente superior bajo sombra de Erythrina. La producción natural de residuos vegetales bajo E. poeppigiana fue de 8.91 t . ha ${ }^{-1} \cdot \mathrm{a}^{-1}$ más que bajo C alliodora ($7.07 \mathrm{t} \cdot \mathrm{ha}{ }^{-1}$ a^{-1}). Fassbender et al. (4) estudiaron modelos de los ciclos de materia orgánica y nutrimentos ($\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Ca}$, Mg) para estos sistemas agroforestales.

Los objetivos del presente trabajo fueron: comparar dos sistemas de sombra para el cultivo de cacao y evaluar la respuesta en rendimiento y de algunos factores inherentes al cultivo.

MATERIALES Y METODOS

El experimento fue sembrado en 1977 en el CATIE en Turrialba, Costa Rica, a una altura de $602 \mathrm{msnm}, 83^{\circ}$ 38^{\prime} de longitud Oeste y $9^{\circ} 53^{\prime}$ de latitud Norte. La
temperatura promedio anual es de $21.5^{\circ} \mathrm{C}$ con una máxima en promedio de $26.5^{\circ} \mathrm{C}$, y una precipitación promedio anual de 2630 mm con una humedad relativa de 87 por ciento.

Los tratamientos por comparar incluyen sombra de poró (E. poeppigiana) y laurel (C. alliodora) y el hibrido de cacao.

La siembra de los dos sistemas de sombra se hizo a $6 \mathrm{~m} \times 6 \mathrm{~m}$ entre plantas y se analizó como un diseño irrestricto al azar con dos repeticiones. El cacao se sembró a $3 \mathrm{~m} \times 3$ metros. La unidad experimental ("Catongo" $\%$ "Pound 12") estuvo formada por 32 plantas de cacao de un total de 72 por parcela.

Se discuten los datos para el cultivo de cacao que comprendió tres híbridos: UF $29 \times$ IMC 67, EET 400 y SCA 12 y Catongo x Pound 12. Los dos primeros cruces fueron sembrados como borde de la parcela neta y como donadores de polen; sin embargo, también, se incluyen con el objeto de compararlos, debido a que se conoce su identificacién bajo los sistemas de sombra.

El manejo de las parcelas en los dos sistemas de sombra ha sido uniforme. El poró se poda dos veces al año: La primera, cerca del 100%, en mayo (al inicio de las lluvias) y la segunda, cerca del 50%, en novicmbre.

El suelo es de textura francay de buena profundidad; el pH osciló entre 5 y 6 .

Al momento de la siembra se aplicaron 100 g pos plantade la formula 10-30-10, o cl equivalente de 111.1 kg por hectárea. Posteriormente se usó una fertilización de $666.6 \mathrm{~kg} / \mathrm{ha}$ de la fórmula $18-10-6-5$, a razón de 600 g por planta, en cuatro aplicaciones por año. A partir del cuarto año, la fertilización se repartió desigualmente en cuanto al número de aplicaciones y el tipo de fórmula disponible en el mercado.

Para el control de malezas se aplicó glifosato al momento de la siembra, y luego se dio mantenimiento a la plantación experimental mediante "chapias" manuales.

A los diez meses de haberse sembrado el cacao, se inició la poda de formación, la cual se prolongó durante un año hasta que se logró la arquitectura adecuada de las plantas de cacao.

Cuando aparecieron las primeras mazorcas, se inició el registro quincenal de producción hasta completar once años de cosechas continuas. Con excepción de 1981, por espacio de seis meses, fue suspendida la toma de datos y tan sólo se contó el número de mazorcas por árbol, de los cuales se estimó la producción para ese periodo.

Las variables evaluadas en este estudio incluyen el rendimiento promedio de cacao seco en kilogramos por hectárea, el número de mazorcas promedio por árbol, el número de mazorca con Cherelle Wilt y el número de chupones por árbol. También se calculó el índice de mazorca para cada hibrido y año en particular. Una vez analizada la información, se determinó la diferencia entre medias mediante la prueba de Duncan.

RESULTADOS Y DISCUSION

El análisis para el promedio de los once años no presentó diferencias entre los tratamientos de sombra evaluados (Cuadro 1); sin embargo, el análisis estadistico para cada año indicó que existen diferencias significativas entre tratamientos para algunos años.

No se estudiaron los datos de monoliasis y mazorca negra debido a que prácticamente hubo ausencia de enfermedades en el experimento. Este se encuentra localizado en un área relativamente aislada de plantaciones de cacao, por lo que no existen fuentes do inóculo cercanas que infecten el ensayo.

La producción y el registro de datos se inició en 1979, o sea a los dos años de la siembra. Durante este año el rendimiento para el híbrido Catongo \times Pound 12 fue bajo, ya que con laurel se obtuvieron $97 \mathrm{~kg} /$ ha de cacao seco y $71.2 \mathrm{~kg} / \mathrm{ha}$ con poró (Fig. 1). La producción aumentó en 1980 hasta $421.3 \mathrm{~kg} / \mathrm{ha}$ con sombra de laurel y $477.4 \mathrm{~kg} /$ ha con el sistema de poró.

Durante 1985 el rendimiento fue de $469.4 \mathrm{~kg} / \mathrm{ha} \mathrm{y}$ $422.2 \mathrm{~kg} / \mathrm{ha}$ para laurel y poró respectivamente, promedio que corresponde únicamente al primer semestre del año, ya que el resto de los datos por falta de mano de obra durante el segundo semestre fue descontinuado. Se supone que, para este año, la producción estaria entre $700 \mathrm{~kg} / \mathrm{ha}$ y $900 \mathrm{~kg} / \mathrm{ha}$, de acuerdo con la observación del resto de años.

Fig. 1. Cantidad de cacao seco ($\mathrm{kg} / \mathrm{ha}$) del hibrido Catongo x Pound- 12 evaluado según dos sistemas de sombra (Turnialba, CR. 1979-1989).

Nota: \quad * $=$ diferencia estadistica al 5 por ciento.

En 1989, los rendimientos del hibrido Catongo x Pound 12 disminuyeron en ambos sistemas, sobre todo con sombra de poró, donde se obtuvieron $571.5 \mathrm{~kg} / \mathrm{ha}$ de cacao seco. Esto posiblemente se debe a una baja fertilización durante los dos últimos años y a un mal manejo de la sombra del poró. De 1986 a 1988 los rendimientos se mantuvieron arriba de $900 \mathrm{~kg} /$ ha de cacao seco.

Aunque el promedio anual no mostró significado para el peso seco por hectárea, en 1981, 1986 y 1989 si se presentaron diferencias estadisticas significativas entre las sombras. En 1981, la producción fue mayor con la sombra de poró, peroen 1986 y 1989 fue superior con la de laurel (Fig. 1). Posiblemente un manejo irregular de la sombra del poró, las diferencias climáticas y la fertilización inadecuada incrementaron la producción bajo sombra de laurel en el último año.

En seis de los once años los rendimientos bajo sombra de poró fueron ligeramente superiores que bajo laurel, lo que se refleja en el promedio por año, donde

Cuadro 1. Promedios por año y coeficiente de variación (C.V.) de las variables anatizadas para el hibrido Catongo \times Pound 12 bajo dos sistemas de sombra (Turrialba, C.R).

Tratamiento (sombra)	Peso seco (kg/ha)	Mazorca/árbol		Cherelle Wilt

la diferencia es de $10.7 \mathrm{~kg} /$ ha más alto con poró. Existe la posibilidad de que esta diferencia haya sido mayor debido a que, en algunos años, no se manejó apropiadamente la sombra de los árboles de poró, por lo que hubo un exceso de sombra.

Los híbridos UF 29 x IMC 67 y EET 400 x SCA 12 presentaron una mayor producción que "Catongo" x "Pound 12", debido a que la mayoría de los árboles son de bordes y no tenían competencia completa. El comportamiento de estos híbridos a través de los años es similar a "Catongo" x "Pound 12", y el promedio de cacao seco de once años también fue ligeramente superior en el sistema con poró, con una diferencia de 141.5 kg por hectárea.

El promedio de mazorcas sanas por año fue prácticamente igual en ambos sistemas de sombra; sin embargo, existió significancia estadística en 1989, año en que se obtuvieron 6.6 mazorcas más con sombra de laurel (Fig. 2).

Fig. 2. Número promedio de mazorcas sanas por árbol de cacao bajo dos sistemas de sombra (Turrialba, C.R., 19791989).

Nota: \quad * $=$ Diferencia estadística significativa al 5 por ciento.

El número promedio de mazorcas sanas fue superior para la combinación o suma de los híbridos UF 29 x IMC 67 y EET $400 \times$ SCA 12 con respecto a "Catongo" x "Pound 12 ", lo cual repercute de la misma manera en la producción en peso seco. Esto es de esperar pues varios investigadores $(3,12)$ han mencionado una correlación positiva entre estas variables. La variación en el número de mazorcas sanas a través de los once años es similar a la variación preseniada por la variable "cacao seco".

La variable "mazorcas afectadas con Cherelle Wilt" únicamente mostró diferencia estad stica significativa en 1987. El mayor número de mazorcas se observó en el sistema con sombra de poró; sin embargo, los valores
son relativamente bajos en ambos sistemas en relación con otros años (Fig. 3).

Fig. 3. Número de mazorcas por árbol de cacao con Cherelle Wilt en dos sistemas de sombra (Turrialba, C.R. 19791989).

Nota: ** $=$ Diferencia estadística al 1 por ciento.

La variable "Cherelle Wilt" muestra más diferencia entre años en comparación con las características anteriores: en el sistema cacao ("Catongo" x "Pound 12") con laurel varió de 13 mazorcas afectadas por árbol en 1980 hasta 0.2 mazorcas en 1987. Los valores más altos se observan en el sistema de cacao con poró, lo cual se manifiesta en los promedios, especialmente con los híbridos UF 29 x IMC 67 y EET 400 x SCA 12, donde la diferencia en promedio en relación con el sistema con laurel es de 3.5 mazorcas (Fig. 3). Estas variaciones se pueden explicar con base en la condición fisiológica de los árboles de cacao, la cual está muy influenciada por las condiciones ambientales. Diferencias climáticas y una fertilización desuniforme de un año a otro, posiblemente, ocasionaron las variaciones observadas.

En los primeros cinco años de producción los valores de mazorcas con Cherelle Wilt son altos y más bajos en los años siguientes. Esto se debe a que los árboles en los primeros años no han alcanzado su desarrollo completo, por lo que presentan una adecuada condición fisiológica para soportar un alto número de mazorcas hasta su madurez; en consecuencia abortan por marchitamiento prematuro.

En relación con el número de chupones se presentó un promedio más alto con la sombra de laurel y con diferencias significativas en 1984 y 1985 (Fig. 4).

El tipo de sombra de los árboles de poró y el exceso de sombra por mal manejo en algunos años, probablemente disminuyó la cantidad de luz y, por lo tanto,

Fig. 4. Número de chupones por árbol de cacao en dos sistemas de sombra (Turrialba, C.R. 1979-1989).

Nota: * = diferencia estadística significativa al uno por ciento.
el estímulo a la producción de chupones fue menor en el sistema con poró. El efecto de la luz se confirma cuando se comparan híbridos: la combinación de los híbridos UF 29 x IMC 67 y EET $400 \times$ SCA 12 superó en 15 chupones al híbrido Catongo x Pound 12 bajo sombra de laurel y en 21.3 chupones bajo poró. Esta situación puede deberse a diferencias genéticas entre los materiales evaluados, pero es importante considerar que los híbridos de borde estuvieron más estimulados a la producción de chupones por recibir mayor luminosidad que el híbrido Catongo \times Pound 12 , el cual tenía competencia completa por luz y otros factores.

El índice de mazorca no se analizó estadísticamente; no obstante, se observa muy poca diferencia entre sistemas para un mismo año y el promedio por año es similar en ambos sistemas, especialmente para "Catongo" x "Pound 12" (Fig. 5).

El sistema de cacao con laurel presentó el índice de mazorca más bajo de 18.4, en 1979, y el más alto de

Fig. 5. Indice de mazorca por año del híbrido Catongo x Pound 12, evaluado bajo dos sistemas de sombra (Turrialba, C.R. 1979-1989).
31.2, en 1985. Lo anterior significa que, para ese último año, se necesitan 12.8 mazorcas más para obtener un kilogramo de cacao seco. Desde el punto de vista de selección los valores bajos en el índice de mazorca son los adecuados.

Se observa variación de un año a otro en el índice de mazorca, lo que parece indicar cierta influencia ambiental y nutricia sobre el tamaño de la mazorca y otros factores relacionados con el índice. Esta variación también se puede originar por la segregación observada entre árboles dentro de un mismo híbrido. Sería conveniente evaluar este sistema con genótipos de cacao propagados vegetativamente, a fin de lograr mayor uniformidad en la población y, así, poder obtener mayor información sobre el comportamiento de cacao bajo sombra de laurel y poró.

LITERATURA CITADA

1. ALPIZAR, L.; FASSBENDER, H. W.; HEUVELDOP, J.; FOLSTER, H.; ENRQUEZ, G. 1986. Modelling agroforestry systems of cacao (Theobroma cacao) with Cordia alliodora and Erythrina poeppigiana in Costa Rica. I. Inventory of organic matter and nutrients. Agroforestry Systems 4:175-189.
2. DOMINGUEZ, M.A. 1985. Efectos de grados de luminosidad y fertilizantes en la producción de cacao (Theobroma cacao L.) en cuatro años acumulados. In Conferencia Internacional de Investigación en Cacao (9., 1984, Lomé, Togo). Actas. Lagos, Nigeria, Cocoa Producers Alliance. p. 177-182.
3. ENRIQUEZ, G.A. 1985. Curso sobre el cultivo del cacao. Turrialba, C.R., Centro Agronómico Tropical de Investigación y Enseñanza. 240 p .
4. FASSBENDER, H. W.; ALPIZAR, L.; HEUVELDOP, J.; FOLSTER, H.; ENRIQUEZ, G. 1988. Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) and poro (Erythrina poeppigiana) in Costa Rica. III. Cycles of organic matter and nutrients. Agroforestry Systems 6:49-62.
5. GUTIERREZ, Z.G.; SOTO, B. 1976. Arboles usados como sombra en café y cacao. Revista Cafetalera (Gua.) 159:27-32.
6. HEUVELDOP, J.; FASSBENDER, H.W.; ALPIZAR, L.; ENRIQUEZ, G; FOLSTER, H. 1988. Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia. alliodora) and poro (Erythrina poeppigiana) in Costa Rica. II. Cacao and wood production, litter production and descomposition. Agroforestry Systems 6:37-48.
7. JIMENEZ V., G. 1980. El sombreamiento del cacao. Turrialba, C.R., CATIE. 26 p.
8. MANUAL DE CULTIVO DE CACAO. 1987. Carmen Suárez C. (Ed.). Quevedo, Ec., Estación Experimental Tropical "Pichilingüe". 109 p .

9 MARTINEZ. A, ENRIQUEZ, G. 1984 La sombra para el cacao: Revision de literatura y bibliografia anotada. Turrialba. C.R, CATIE 64 p
10. SANTOS, OM: VIERIA P., DE 1982 Sombramiento definitivo do cacanciro Bahia, Bra. Centro de Pesquisas do Cacau, CEPLAC 136 p
II. VINHA, S G: MATHOS S., L.A. 1982. Arvores aproveitadas como sombreadoras de cacauciros no sul da Bahia e norte do Espirito Santo Bahia, Bra. Centro de Pesquisas do Cacau, CEPLAC. 136 p
12. WOOD. GAR. I ASS, RA. 1985. Cocoa 4 ed London. Longman. 620 p (Tropical Agriculture Scrics)

RESENA DE LIBROS

BOLLAG, J.M. STOTZKY, Y G. (EDS.). 1990. Soil biochemistry. New York, Dekker, v. 6.565 p.

Este volumen da continuidad, despućs de casi diez años, a una serie muy valiosa. A cargo de veinte especialistas curopeos y estadounidenses se discuten once tópicos de gran actualidad en el campo de la biologia del suelo Ellos están dedicados a problemas actuales y de documentación, esta úlima difícil de obtener. Todos los capitulos tienen amplias biblio-grafias que permien al lector interesado profundizar los tópicos discutidos

El primer capítulo estudia las interacciones de enzimas con arcillas y de complejos de arcillas con materia orgánica. Se examinan las interacciones entre las enzimas y la gran variedad de cosistemas en el suclo, tanto referente a mecanismos básicos, como su aplicación en sistemas normales y contaminados.

El papel que desempenan los minerales en el suclo y que influyen sobre las transformaciones en las sustancias orgánicas naturales o artificiales, es el tópico del segundo capítulo. Este tema ha sido mís estudiado en cuanto a los procesos de descomposición como de síntesis de las sustancias orgánicas, en función de las propiedades de los componentes inorgánicos

El tercer capítulo se dedica al examen de las transformaciones microbianas anaeróbicas de compuestos orgánicos no-oxigenados aromáticos y alicíclicos en suelos, subsuclos y sedimentos de agua dulee. Estos procesos son importantes porque el grupo de sustancias, antes indicadas, incluyen muchos contaminames potenciales especialmente entre los productos de petróleo y varios plaguicidas de uso común.

La producción microbiana de citocininas es el icma del cuarto capítulo, donde se examinan las considerables dificultades en el estudio de estos problemas. Se analizó también la importancia de estas hormonas en el crecimiento de plantas y microorganismos.

El quinto capítulo estudia las pseudomonas como enemigas de los patógenos vegetales en el suclo. Se dedica atención tanto al modo de acción de cllos como a su genética, ya experimentaciones recientes indican su considerable potencial para reducir enfermedades de muchos cultivos. Este capítulo es de gran interés para los microbiólogos de suelo y los fitopatólogos

El sexto capítulo se dedica al examen de la importancia ccológica de la actividad biológica del suclo Este enfoque importante y novedoso permite una introducción a este campo. La biografía recoge mucha información proveniente de Europa, y que no es de fácil acceso.

El significado de la estimación de la biomasa bacteriana en suclo es el tópico del sétimo capítulo. Se examinan las lécnicas para estimar la biomasa y sus limitaciones Se estudian los flujos de nutrimentos y de energia en estos sistemas.

El capítulo octavo estudia los lipides en suclos Se examinan el origen, la naturaleza, el contenido y la descomposición de estos compuestos y su efecto sobre las propiedades físicas del suclo Este es uno de los capítulos más cortos, pero aun así ofrece una introducción a este campo poco analizado.

En el noveno capítulo se estudian las interacciones entre las comunidades microbianas del suelo y los compuestos organométalicos; así como los procesos que llevan a la Cormación y degradación de compuestos organometalicos y las respuestas de los microorganismos en el suelo ante la presencia de derivados organometálicos, y el manejo de estos derivados.

En el décimo capítulo se analiza el efecto de los microorganismos sobre la movilidad de sustancias radiactivas. Se examina aqui la adsorción y el movimiento de sustancias radiactivas libres y como partes de complejos orgánicos.

Los virus en el ambiente del suclo son el tópico del úlimo y más breve capitulo. Se estudian st delección, adsorción, transporte y persistencia en suclos y, también, su comportamiento en aguas subterráneas

El volumen es una obra de referencia de ato nivel para la actualización de los investigadores en los diferenles topicos discutidos. Se resume una vasta y valiosa de información, y por ello este el volumen debe estar en las bibliotecas de ciencias agrícolas y ambientales.

Comparación de 56 Cruces Interclonales de Cacao en Pococí, Costa Rica ${ }^{1}$

J. Morera*, A. Mora*

Abstract

Fifty-six crosses of cacao (Theobroma cacao L.) were evaluated to obtain additional information on the effectiveness of hybrid selection for production. Dry weight, healthy pod number and pods affected by diseases were the main selection criteria. After one year of evaluation for yield with each of the 56 crosses, 16 hybrids were selected. Significant differences among hybrids and replications were noted. The 'EET 376' \times 'Pound 7' were the highest yielding (estimated value $1451 \mathrm{~kg} / \mathrm{ha}$); followed by the 'CC 210 ' x 'PA 169 ' (estimated value $1423 \mathrm{~kg} / \mathrm{ha}$). The 'UF 29 ' x 'UF 613 ' (estimated value $470 \mathrm{~kg} / \mathrm{ha}$) produced the lowest yielding cross. These results and others previously reported for cocoa hybrid selection suggest that 'Pound 7' and some other clones are effective for improving general as well as specific combining ability, and that it is possible to include such clones in a cocoa breeding program. Selection by precocity is of great relevance in perennial crops because it enables faster recovery of invested capital by the farmer.

INTRODUCCION

En los últimos cuatro años se ha distribuido gran cantidad de semilla de cruces interclonales de cacao en zonas de Costa Rica, ecológicamente aptas para este cultivo. Sin embargo, pocos trabajos se han presentado recientemente sobre nuevos materiales mejorados.

1 Recibido para publicación el 22 de abril de 1992.
Los autores agradecen el financiamiento otorgado por el Proyecto Red Regional de Generación y Transferencia de Tecnologia en Cacao (PROCACAO), para la ejecución de este estudio; al Ing. Jorge H Echeverri por brindar su finca para el establecimiento del ensayo; a los señores Juan Granados y Carlos Castillo por su ayuda en el mantenimiento y registrode datos; y a la Srta Lilliam Tortós por el apoyo mecanográfico.

* Programa de Mejoramiento de Cultivos Tropicales, Centro Agronómico Tropical de Investigación y Enscñanza (CATIE), Turrialba, CR.

COMPEVDIO

Se evaluaron 56 cruces interclonales de cacao (Theobroma cacao L.) de alto rendimiento con el objeto de obtener información adicional sobre la efectividad de su selección. Los principales criterios de selección en este ensayo fueron el pesoseco y el número de mazorcas sanas y enfermas. Después nueve meses de evaluacion del rendimiento y otras caracteristicas, 18 de los 56 cruces alcanzaron más de 1000 kg de cacao seco por hectarea. Diferencias significativas entre cruces y repeticiones fueron anotadas durante el período de evaluación. El cruce 'EET 376' x 'Pound 7' alcanzó el rendimiento más alto, seguido del cruce 'CO 210 ' x 'PA 169'; el cruce 'UF 29' x 'UF 613' obtuvo et menor rendimiento de cacao. Estos resultados y otros, reportados en la literatura sobre selección de cruces interclonales de cacao, sugieren que los clones Pound 7, CC 210 y PA 169 son cfectivos para mejorar la habilidad combinatoria, general y especifica, y que es posible incluir tales clones en un programa de mejoramiento genético de cacao. En el caso anterior, lo más deseable sería seleccionar los árboles promisorios dentro de los mejores cruces para aislarlos como clones y promover nuevas posibilidades de cruzamiento. Se observó que la precocidad que muestran algunos cruces puede tener gran relevancia para el agricultor, ya que iniciar la cosecha en forma temprana significa comenzar a recuperar el capital invertido más rápidamente.

La evaluación de nuevos cruces interclonales en zonas aptas se justifica por la necesidad de los agricultores de nuevos materiales genéticos con mejor adaptación y comportamiento (resistencia a enfermedades) en las regiones de cultivo.

La gran aceptación de los cruces interclonales en varios países se debe a su precocidad y alta producción $(1,7)$.

La alta producción de cruces hibridos interclonales se relaciona con la presencia de un buen porcentaje de individuos de alta producción desde temprana edad; para lo cual existe una gran variabilidad on la plantación como resultado de que uno o ambos cultivares padres son bastantes heterozigotos para los factores genćticos que controlan la producción (1).

Esta variabilidad es muy importante para la selección de germoplasma de alta precocidad y producción, el cual podría utilizar el agricultor para mejorar la capacidad productiva y su rentabilidad.

En la región de Bahía, Brasil, se evaluaron varios cruces en diferentes experimentos. Se presentaron altos rendimientos, pero las diferencias halladas en el material local fueron pequeñas, hecho que confirma la hipótesis de que las poblaciones cacaoteras en el sur de Bahía presentan una variabilidad restringida debido a su estrecha base genética (4).

Los resultados de un estudio comparativo de seis cruces de cacao en la zona de Urabá, Colombia, indicaron que el cruce 'PA 46' x 'IMC 67' fue el mejor en cuanto a producción y tolerancia a enfermedades. El cruce de mejor producción, pero de menor tolerancia a Moniliophthora roreri, fue 'Pound 7' x ' ICS 6', mientras que los cruces con influencia de Scavina mostraron ser los de menor rendimiento (5).

Batista (1) evaluó scis cruces en República Dominicana durante dos años consecutivos. El cruce triple de más alta producción en peso seco promedio fue el 'SHB-3', ('IMC-67' x 'SCA-6') x 'SB' (Sclección Barranca) con $1356 \mathrm{~kg} / \mathrm{ha}$, y el de más baja producción fue el 'SHB-4', ('TSA-644' x 'IMC 67') x 'SB' con 874 kg por hectárea. El testigo, una selección local, alcanzó un promedio de 143.1 kg por hectárea.

Esquivel y Soria (2) mostraron datos sobre varios cruces interclonales. Aseguran que la producción está relacionada principalmente con el número de mazorcas por árbol.

Varias pruebas realizadas en Ghana indican que los rendimientos de los cruces varían mucho de un sitio a otro y de un año a otro (3).

El objetivo de este experimento consistió en evaluar y comparar el comportamiento de 56 cruces interclonales en las condiciones de la zona atántica de Costa Rica, y realizar una selección preliminar de los mejores genótipos con base en el rendimiento.

MATERIALES Y METODOS

La evaluación se llevó a cabo durante 1989 cn un experimento de cacao de tres años en la finca Dulcec localizada en la población de San Luis de Anita Grande, Cantón de Pococí, Limón, La zona esta incluida dentro de la formación ecológica Bosque Tropical Muy Húmedo a 100 metros sobre el nivel del mar.

La estación meteorológica más cercana se encuentra localizada a tres kilómetros de la fir:ca a una latitud de $10^{\circ} 13^{\prime}$ y longitud $83^{\circ} 46^{\prime}$. Registros de la temperatura durante 20 años indican una medi:: de $23.7^{\circ} \mathrm{C}$ en los meses de noviembre, diciembre, erero y febrero y de $25.3^{\circ} \mathrm{C}$, para los meses de mayo, iunio y setiembre.

Datos registrados durante 30 años muestran un promedio de precipitación anual de 4421.6 milímetros. El promedio anual de brillo solar es de aproximadamente 1500 horas de luz y la humedad relativa alcanza al 89 por ciento.

El ensayo se sembró bajo un diseño de bloques al azar con 56 tratamientos y 40 repeticiones, y una planta por repetición sembrada a $3 \mathrm{~m} \times 2$ metros. La sombra temporal estuvo constituida por plátano sembrado a 8 $\mathrm{m} \times 8 \mathrm{~m}$; como sombra permanente se usó poró (Erythrina pocppigiana) a $12 \mathrm{~m} \times 12$ metros.

El factor de conversión utilizado de cacao humedo a cacao seco fue de 0.40, y para el cálculo de rendimiento por hectárea se usó el número 1666; es decir el número de plantas por hectárea a una distancia de 3 m $\times 2$ metros.

La cvaluación de este material se realizó con base en los siguientes parámetros: número de mazorcas, peso seco por hectárea, indice de mazorca y número de mazorcas enfermas.

Las labores realizadas en el ensayo han sido las recomendadas para una plantación comercial de cacao, con excepción de la aplicación del fungicida benomil, empleado con mucha frecuencia para el control de la antracnosis.

RESULTADOS Y DISCUSION

El análisis de variancia para el número de mazorcas sanas y el peso seco indicó que existen diferencias altamente significativas entre los cruces y las repeticiones. No se realizó anălisis para el número de mazorcas con monilia o mazorca negra, debido a que la incidencia de estas enfermedades fue muy baja durante el estudio.

El mayor peso seco en promedio en todas las repeticiones fue del cruce 'EET 376' x 'Pound 7' con $1451.0 \mathrm{~kg} / \mathrm{ha}$ de cacao seco, mostrando diferencia altamente significativa en relación con 38 cruces de los estudiados. El rendimiento promedio más bajo fue el hibrido UF $29 \times$ UF 613 con $470 \mathrm{~kg} / \mathrm{ha}$ (Fig. 1).

Es probable que los cruzamientos (Fig. 1) con cl clon Pound 7 resulten en descendencias de mejores rendimicntos, debido a que cuatro de los ocho cruces, utilizando este padre, se encuentran entre los primeros dicz lugares, y cl más bajo ocupó la posición trigésima ('UF 654' x 'Pound 7'). También se presentaron cuatro cruces con 'UF 613', pero éstos dieron producciones muy bajas, incluyendo los últimos dos lugares ('UF 613' x 'UF 713' y 'UF 29' x 'UF 613').

Fig. 1. Comparación de las variables peso seco por hectárea y número de mazorcas por árbol en 56 híbridos de cacao, evaluados en la zona de Pococí, Limón, C.R. (1992).

Nota: \quad P.D. $=$ Prueba de Duncan $(P=0.05)$
I.M. $=$ Indice de mazorca.

El más alto promedio de mazorcas por árbol correspondió al cruce 'Pound 7' x 'UF 273', scguido de 'Pound 12' x 'UF 613'. La última posición fuc para 'EET 399' x 'IMC 67' con un promedio de 5.6 mazor-cas, una diferencia de 10.8 mazorcas en relación con el primer lugar.

Los cruces 'IMC 67' x 'UF 613', 'Pound 7' x 'EET 75 ' y 'UF 654' x 'Pound 7' ocuparon posiciones intermedias respecto al númerode mazorcas, a pesar deestar entre los primeros en cuanto a la producción de peso seco. Esto se explica por los bajos indices de mazorca que presentaron. El valor más alto de 29 mazorcas correspondió al hibrido EET $59 \times$ UF 273.

Se puede observar, en los resultados de la Fig. 1, que los mayores pesos secos correspondicron a los cruces con mayor número de mazorcas, lo mismo que para los valores inferiores. Esto concuerda con varios investigadores que han encontrado correlación positiva entre estas variables.

La correlación entre peso seco y número de mazorcas es de gran valor para el agricultor, ya que le permitiria estimar, con base en el número de mazorcas en las primeras cosechas, árboles sobresalientes para la injertación de otros árboles con menor capacidad de producción.

Un examen cuidadoso de algunos cruces recíprocos mostraron diferencias entre ellos para el peso seco:
'Pound 12' x 'UF 613' ocupó la tercera posición; el recíproco 'UF 613' x 'Pound 12 ' se ubicó en el vigésimo lugar; el cruce 'UF 296' x 'Pound 12' fue octavo y el 'Pound 12' x 'UF 296' fue vigésimo primero. Además, el cruce 'UF 296' x 'UF 613' presentó diferencia estadística significativa para peso seco y número de mazorcas con respecto a su recíproco. Esto sugiere que uno de los progenitores puede tener mayor influencia en el comportamiento de la progenie sobre una o varias características.

Los árboles de mayor productividad de cacao seco se presentan en el Cuadro 1. Entre ellos, seis de los árboles son progenies con 'Pound 7'. El árbol más productivo fue el número 1775 ('PA. 121' x 'EET 400') que produjo 4.32 kg de cacao seco; sin embargo, presentó el inconveniente de mostrar dos mazorcas con monilia. El cruce 'CC $210^{\prime} \times$ 'PA 169' parece ser muy promisorio, ya que además de ubicarse en el segundo lugar en peso seco promedio, dos de sus árboles estuvicron entre los 16 mejores con rendimientos superiores a los 2.5 kg de cacao seco.

El desarrollo de cultivares precoces es esencial en cultivos perennes (6), pues facilitan rápida y eficazmente el rescate del capital invertido, de tal manera que el agricultor pueda cumplir con los compromisos bancarios originados de la actividad.

La Figura 2 muestra la frecuencia de producción de los 1846 árboles del experimento. De ellos, la mitad

Cuadro 1. Rendimiento y número de mazorcas sanas y con monilia de árboles con peso seco superior a 2.0 kg (Limón, C.R.)n

Número de árbol	Cruce			Peso seco (kg)	Mazorcas		
				Sanas	Monilia		
1775	'PA 121'	X	'EET 400'		432	83	2
194	${ }^{\prime} \mathrm{CC} 210^{\prime}$	X	'PA 169'	3.34	47	0	
381	${ }^{\prime}$ EET 399'	X	'UF 296'	2.74	60	0	
245	'CC 210'	x	'PA 169'	2.70	39	0	
1980	'POUND 7'	x	'CC 138'	2.54	33	0	
1326	'POUND 12'	X	${ }^{\prime}$ EET 400'	2.48	66	0	
1497	'EET 399'	X	'EET 75'	2.42	43	0	
389	'SPA 9'	x	'IMC 67'	2.42	43	0	
156	'UF 296'	X	'EET 400'	238	31	0	
1323	${ }^{\prime}$ POUND 7'	X	${ }^{\prime} \mathrm{CC} 138{ }^{\prime}$	2.26	36	1	
462	'IMC 67'	X	'UF 613'	2.23	30	0	
1426	'POUND 7'	X	'EET 75'	220	34	0	
1102	'UF 713'	X	'POUND 7'	216	51	0	
493	'POUND 12'	X	'UF 613'	2.07	44	0	
1228	'POUND 7'	X	'UF 667'	2.06	38	0	
324	' POUND 7'	X	'UF 273'	2.03	37	1	

(47.7%), a los tres años de cultivo, no habían alcanzado producciones arriba de los $0.4 \mathrm{~kg} /$ árbol. Esta distribución indica la precocidad de algunos de estos cruces, algunos con diferencias significativas sobre el resto.

Fig. 2. Distribución de frecuencias para cacao seco por árbol (1846 árboles), (Limón, C.R., 1992).

En una plantación de cruces interclonales es posible observar un 15% de árboles con muy escasa producción. Este número de árboles improductivos dependerá de la mezcla de cruces en la plantación. Hoy es posible reemplazar estos árboles improductivos a través de injertos (yemas vegetativas) de clones debidamente probados y validados y además, o en su defecto, mediante resiembras.

El mayor peso seco fue del cruce 'EET 376 ' x 'Pound 7' con $1451 \mathrm{~kg} / \mathrm{ha}$, y el menor peso correspondió al cruce 'UF 29 ' x 'UF 613' con 470 $\mathrm{kg} / \mathrm{ha}$, que indica una alta variabilidad genética en la población estudiada. Dentro de los cruces también hubo alta variabilidad; así, por ejemplo, el cruce 'CC 210 ' x 'PA 169 ' mostró árboles con producciones desde 60 g hasta 3340 g de cacao seco.

Esta gran heterogeneidad de los descendientes indicó la necesidad de someter a prueba un gran número de cruces para buscar mejores posibilidades de habilidad combinatoria. Gran variación en el ren-
dimiento fue observada entre árboles de un mismo cruce. Esto permitirá la selección e injertación de genótipos mejor adaptados a la zona en estudio.

Algunos cruces recíprocos mostraron diferencias entre ellos para peso seco. Esto sugiere que uno de los progenitores pudo tener mayor influencia en el comportamiento de la progenie sobre una o varias características.

En resumen, es recomendable continuar la evaluación de los árboles de los mejores cruces para comprobar la estabilidad en el rendimiento y otros caracteres de intẹrés agronómico.

LITERATURA CITADA

1. BATISTA, L.P. 1982. Evaluación de la capacidad productiva de 6 híbridos de cacao en República Dominicana. In Conferencia Internacional de Investigación en Cacao (8., 1981, Col.). Actas. Lagos, Nigeria. Cocoa Producers Alliance. p. 713-717.
2. ESQUIVEL, O.; SORIA V.J. 1967. Algunos datos sobre la variabilidad de algunos componentes del rendimiento en poblaciones de híbridos interclonales de cacao. Cacao (C.R.) 12(4):1-8.
3. LOCKWOOD, G. 1977. Reflections on yields from hybrid cocoa varieties in Ghana. Cocoa Growers Bulletin 26:410
4. MARIANO, A.H.; BARTLEY, B.G. 1981. Comportamento das selecoes baianas na producao de híbridos de investigación en cacao (7., 1979, Douala, Cameroun). Actas. Lagos, Nigeria, Cocoa Producers Alliance. p. 527-533.
5. MEJIA P., V.E.; RONDON C., J.G. 1982. Estudio comparativo de seis híbridos de cacao en la zona de UrabaColombia. In Conferencia Internacional de Investigación en Cacao (8., 1981, Col.). Actas. Lagos, Nigeria, Cocoa Producers Alliance. p. 689-693.
6. SORIA V.; J., ESQUIVEL, O. 1970. Relationship between precocity, growth and yield in cacao. Turrialba 20(2):193-197.
7. WOOD, G.A.R.; LASS, R.A. 1985. Cocoa. 4 ed. London, Longman. 620 p. (Tropical Agriculture Series).

Caracterización de una Población de Cacao "Nacional" en el CATIE, Costa Rica ${ }^{1}$

J. Morera*, A. Mora*, A. Paredes*

Abstract

The typical "Nacional" cacao tree is generally taller than either the "Criollo" or the "Trinitario" tree. "Nacional" is the name given to the Ecuadorian traditional cacao cultivar. This study was carried out using data on the princlpal pod and bean characteristics of 50 trees from a population conserved at the Tropical Agriculture Research and Training Center (CATIE) collection. The recorded variables were: pod weight, length and width, pod wall thickness at ridge and at the secondary furrow, number of beans per pod, and seed and pod index. The results showed that the largest or heaviest pod weight came from "Nacional 4" group, while the smallest come from "Nacional 2." The greatest mean number of pods was found in "Nacional 1" with 122.5 pods. "Nacional 4 " group had the smallest pod index with 17.5 . The least variable measurement was the seed index; however the "Nacional 3" had 1.3 g in mean weight. The variables studied may be useful in distinguishing genotypes within a given population.

ANTECEDENTES

En 1928, James B. Rorer, a través de la United Fruit Company, introdujo en Costa Rica varias Amazorcas de cacao "Nacional" procedentes del Ecuador, específicamente del cantón Quevedo en la provincia de Los Rios (George F. Bowman, Centro Interamericano del Cacao, comunicación personal).

[^14]
COMPENDIO

Abstract

El nombre "Nacional" es dado al cacao tradicional del Ecuador, de aroma muy agradable. El árbol típico de este cacao, por lo general, es más alto que el "Criollo" o "Trinitario". Este estudio se reallzó usando registros de las características de la mazorca y de la semilla de una población de 50 árboles de cacao "Nacional", conservados en la colección del Centro Agronómico Tropical de Investigación y Ensen̄anza (CATIE). Las variables registradas fucron: peso de mazorca, longitud y diámetro de mazorca, grosor máximo y mínimo de mazorca, número de semillas por mazorca e indice de semilla y mazorca. Los resultados mostraron que el mayor peso de mazorca correspondió al grupo "Nacional 4 ", mientras que el menor al grupo "Nacional $2^{2 "}$. El promedio más alto en número de mazorcas fue de 122.5 en el "Nacional 1". El grupo"Nacional 4" obtuvo un indice de 17.5 mazorcas necesarias para producir un kilogramo de cacao seco. El índice de semilla mostró poca variación; sin embargo, el "Nacional 3" alcanzó 1.3 g en peso promedio. Las variables estudiadas pueden ser útiles para distinguir genótipos dentro de una población particular.

El fin primordial de la United Fruit Company en ese entonces era introducir cacao con sabor y aroma adecuados para chocolate de primera calidad y agregar estas cualidades al cacao de Costa Rica. Científicos residentes en el CATIE, interesados en la calidad de estos matcriales, han enviado semillas frescas a Montpellier, Francia, para evaluar el sabor y el aroma que caracterizan al cacao "Nacional" de Ecuador (Marc Berthouly, comunicación personal). La calidad, en sentido amplio, es un conjunto de diversas características que pueden ser identificadas de conformidad con sus aspectos físicos, químicos y organolépticos, incluidos el sabor y el aroma (1).

En 1966, Soria introdujo mazorcas de cacao "Nacional" sembrado en Bataán, para continuar con los estudios de observación y selección en el CATIE, Turrialba, Costa Rica.

En ese momento, la United Fruit Company había seleccionado dentro de la población establecida en Bataán el clon UF-29. Además, en el CATIE se habían
identificado y seleccionado otros árboles de la población con los nombres de clones CC-258, CC-259, CC-260, CC-261, CC-262 y CC-263.

En 1978-1979, el rendimiento de los clones CC-260 y CC-261 fue de $1550 \mathrm{~kg} / \mathrm{ha}$ y $1529 \mathrm{~kg} / \mathrm{ha}$ de cacao seco. Los árboles madres que dieron origen a los seis clones mencionados tenian crecimiento normal, parecido al del cacao "Matina" de Costa Rica.

INTRODUCCION

El cacao "Nacional", descrito por varios autores como el cacao "Arriba", es un tipo Forastero Amazónico, pero con sabor y aroma especiales que lo colocan en primer lugar en cuanto a calidad, según los manufactureros de chocolate (2).

En 1964 se obtuvo autorización de la United Fruit Company para hacer nuevas selecciones en la plantación de cacao "Nacional" de Bataán, Limón, Costa Rica, para luego transferirlas al Centro de Cacao de Turrialba, CostaRica, y continuar con experimentos en genética vegetal.

A partir de 1950, las plantaciones de Ecuador se han establecido con base en cruces entre clones amazónicos y clones locales con genes de "Nacional". Los clones obtenidos en la población "Nacional", cuando crecen en áreas sin Escoba de Bruja (Crinipellis perniciosus), han mostrado mucho vigor, altas producciones y alguna resistencia a Phytophthora palmivora (4).

Durante la segunda década de este siglo, los doctores Harlan y Pound del Colegio Imperial de Trinidad realizaron expediciones para recolectar cacao silvestre en la Cuenca del Amazonas y en las riberas de los ríos tributarios. Al finalizar sus expediciones, concluyeron que el centro que mostraba mayor variabilidad en características morfológicas, especialmente relacionadas con el fruto y la semilla, estaba en el triángulo formado entre los ríos Caquetá, Putumayo y Napo. También propusieron que esta región constituia el posible centro de origen de la especie, pues allí encontraron los más diversos tipos de frutos: algunos parecidos al "Criollo", llamado Criollo de montaña; amelonados grandes como el "Nacional" ecuatoriano; angoletas parecidos a los clones Parinaris y otros tipos de amelonados. El cacao "Nacional" pudo haber pasado del Amazonas a la costa oeste de Ecuador cuando era ya un negocio sembrar cacao, lo más probable es que se origine de frutos traídos de Gualaquiza o Méndez, transferidos por Loja o Cuenca, respectivamente. Allî se encuentran tipos silvestres similares al cacao "Nacional" (4).

Quedan pocas plantaciones de cacao "Nacional" en estado puro: sólo las que están localizadas en las provincias de Guayas y Los Rios en la costa occidental del Ecuador. La mayoría del actual cacao calificado como "Arriba" procede de plantaciones híbridas de "Nacional" y "Trinitario".

La variedad Nacional pertenece a los forasteros amazónicos con las siguientes características físicas: mazorcas amelonadas, grandes, casi ovales, con un ligero estrangulamiento en el cuello; cáscara gruesa, verde, con surcos profundos y notoriamente rugosa; punta roma; semillas de medianas a gruesas y de color violeta o morado; árboles altos y robustos, con troncos gruesos y hojas grandes; flores con el pedicelo del estambre rosado.

Esta variedad aparentemente proviene de los declives orientales de la cordillera de los Andes en la hoya amazónica del Ecuador. Soria (3) ha observado el mismo tipo de mazorcas y semillas en plantas nativas de las regiones de Tena, Archidona y Macas. El cacao "Nacional" comenzó a cultivarse en la costa oeste de Ecuador a principios del siglo XVIII; es muy posible que sus frutos fueron transportados de un lado a otro de los Andes en el mismo país, originando de pocas mazorcas la nucva variedad, que hasta 1930 tuvo un lugar prominente en el mercado mundial debido a su calidad. Su susceptibilidad a la Escoba de Bruja ha hecho que esté su cultivo en camino de extinción (3).

Los objetivos de este estudio fueron: caracterizar una población de cacao "Nacional", medir su potencial para realizar selecciones clonales y usarla como fuente progenitora de futuros cruces entre y dentro de poblaciones de cacao.

MATERIALES Y METODOS

La presente caracterización se realizó en el CATIE, ubicado en Turrialba, Costa Rica, a $602 \mathrm{msnm}, 83^{\circ} 38^{\prime}$ longitud Oeste y $9^{\circ} 53^{\prime}$ latitud Norte. Esta zona se caracteriza por presentar un clima tropical húmedo con una temperatura promedio anual de $21.5^{\circ} \mathrm{C}$ y una precipitación de 2630 milímetros.

El matcrial experimental consistió en una población de 50 árboles de cacao sembrados originalmente por medio de semillas, las cuales procedian de cuatro mazorcas que identificaban cuatro genótipos de cacao "Nacional" denominados Nacional 1, 2, 3, y 4 .

La población se sembró en hileras al azar. Cada hilera representó cada grupo particular. La distancia de siembra fue de $3 \times 3 \mathrm{~m}$ entre plantas.

La caracterización de los frutos y semillas de cada planta se realizó cada 15 días durante tres años (octubre 1984 a noviembre 1987). Se evaluaron todas las mazorcas producidas por cada árbol durante los tres años de estudio.

Las variables utilizadas en esta caracterización fueron: número total y peso de mazorcas, longitud y diámetro de mazorca, grosor máximo y mínimo de mazorca y número/peso seco promedio de las semillas por mazorca. De los datos de los frutos analizados de cada planta también se obtuvieron el índice de mazorca y el índice de semilla para cada árbol.

RESULTADOS

Las caracteristicas generales de los 50 árboles estudiados se presentan en el Cuadro 1. Las variables que presentaron mayor variación fueron el total de mazorcas, el peso de mazorca y el peso seco de almendras por mazorca.

Con base en los valores mínimos y máximos, se observa que un árbol produjo sólo una mazorca en los tres años de evaluación y otro árbol, un total de 268 mazorcas. El peso de mazorca Muctúa entre 375 g (mínimo) y 787.9 g (máximo).

En el Cuadro 2 se muestran las características estudiadas para cada grupo evaluado. El mejor total de mazorcas fue para los árboles del grupo "Nacional 1" con un promedio de 122.5 mazorcas, y el menor total correspondió al "Nacional 4" con 20.4 mazorcas promedio por árbol. En este uilimo caso el árbol con mayor número de mazorcas produjo 45 de cllas durante los tres años del estudio. Esta característica presentó la mayor variación, ya que los promedios del resto de las características fueron muy similares entre los grupos (Cuadro 2).

El peso de mazorca presentó variación entre grupos; el mayor peso lo obtuvo el "Nacional 4" y el menor el "Nacional 2", El peso seco de almendras por mazorca fue casi igual en los cuatro grupos, excepto para el "Nacional 2" que tuvo el menor peso (34.0 g).

El índice de mazorca más alto fue para el "Nacional $2^{\prime \prime}$ con un promedio de 29.9 mazorcas, aunque el valor más alto fue de 38 mazorcas (máximo) en el "Nacional $4^{\prime \prime}$, que también mostró el índice más bajo (mínimo valor) de 17.5 mazorcas necesarias para obtener un kilogramo de cacao seco y fermentado.

El índice de semilla presentó poca variación, pero sí fue importante porque existen árboles con menos de un gramo, lo cual se considera un tamaño pequeño que disminuye la calidad. El mejor promedio fue del grupo

Cuadro 1 , Resumen de promedios, desviaciones estándar, observaciones minima y máxima, rango y coeffiente de variabilidad de Ias características estudiadas de 50 árboles de cacao "Nacional", CATLE (1992).

Características	Promedio por árbol	Desviación estándar	Observaciones		Rango	Coeficiente de variabilidad entre árboles
			mín.	máx		
Total mazorcas	70.0	64.1	10	268.0	2670	91.6
Longitud						
mazorca (cm)	15.7	1.2	132	18.2	5.0	7.6
Diámetro						
mazorca (cm)	8.6	0.6	7.1	10.1	3.0	7.1
Peso mazorca (g)	526.3	99.3	3750	789.9	412.9	18.9
Grosor máximo						
cáscara (cm)	1.7	0.2	1.4	2.2	0.8	11.3
Grosor mínimo						
cáscara (cm)	1.3	0.1	1.1	1.7	0.6	112
Número semillas						
por mazorca	32.5	2.6	27.8	39.0	11.2	8.1
Peso seco						
almendras/mazorca (g)	38.3	6.7	26.5	57.0	30.5	17.4
Indice mazorca	26.8	4.6	17.5	38.0	20.5	17.3
Indice semilla	1.2	0.2	0.8	1.5	0.7	14.4

Cuadro 2. Resumen de promedios, desviaciones estándar, observaciones mínima y máxima, rango y coeficiente de variabilidad de las características de árboles de cacao "Nacional 1", "Nacional 2", "Nacional 3" y "Nacional 4", CATIE (1992).

Características	Promedio por árbol	Desvinción estándar	Observaciones		Rango	Coeficiente de variabilidad entre árboles				
			mín.	máx.						
Total mazorcas										
Nacional 1	39.6	27.0	4	99	95	68.3				
Nacional 2	94.0	70.0	6	268	262	74.4				
Nacional 3	122.5	66.6	45	261	216	54.3				
Nacional 4	20.4	14.1	1	45	44	693				
Longitud de mazorca (cm)										
Nacional 1	15.8	1.8	132	18.2	5.0	11.1				
Nacional 2	15.7	0.6	14.5	16.5	2.0	3.8				
Nacional 3	15.2	0.8	13.3	16.3	3.0	5.2				
Nacional 4	16.0	1.2	13.7	17.4	37	7.4				
Diámetro mazorca (cm)										
Nacional 1	8.4	0.6	7.1	9.5	24	7.5				
Nacional 2	8.3	0.2	7.7	8.6	0.9	31				
Nacional 3	8.6	0.5	7.8	9.4	1.6	5.4				
Nacional 4	9.1	0.7	7.7	10.1	2.4	7.3				
Peso mazorca (g)										
Nacional 1	512.0	98.4	375.0	712.5	337.5	19.2				
Nacional 2	477.6	47.0	3780	546.6	167.7	9.8				
Nacional 3	499.2	57.5	412.7	607.3	194.6	11.5				
Nacional 4	629.7	116.3	378.3	787.9	409.6	18.5				
Grosor máximo de cáscara (cm)										
Nacional 1	17	0.1	1.4	1.9	0.5	8.8				
Nacional 2	1.7	0.1	1.5	1.8	0.3	5.3				
Nacional 3	1.6	0.1	1.5	18	03	6.6				
Nacional 4	1.9	0.2	1.6	22	0.6	9.5				
Grosor minimo de la cáscara (cm)										
Nacional 1	13	0.1	1.1	1.4	03	6.0				
Nacional 2	1.2	0.1	11	1.3	0.2	6.3				
Nacional 3	1.2	0.1	1.1	13	0.2	8.1				
Nacional 4	1.4	02	1.1	1.7	0.6	14.3				
Número semillas por mazorca										
Nacional 1	32.4	2.4	27.8	36.4	8.6	7.5				
Nacional 2	32.3	23	28.5	36.7	8.2	7.1				
Nacional 3	32.0	23	27.9	36.4	8.5	7.1				
Nacional 4	33.4	3.6	28.4	39.0	10.6	10.8				
Peso seco almendras (g)										
Nacional 1	39.2	6.6	29.8	50.1	20.2	16.9				
Nacional 2	34.1	4.7	28.2	42.8	14.7	14.0				
Nacional 3	40.4	37	33.9	46.3	12.4	93				
Nacional 4	40.0	9.4	26.5	57.0	30.5	23.8				

Continuación del Cuadro 2.

Características	Promedio por árbol	Desviación estándar	Observación		Rango	Coeficiente de variabilidad entre árboles
			mín.	máx.		
Indice de mazorca						
Nacional 1	26.2	4.4	20.0	33.7	13.7	16.9
Nacional 2	29.9	4.1	23.4	35.8	12.4	13.6
Nacional 3	25.1	2.3	21.7	29.6	7.9	9.4
Nacional 4	26.4	6.2	17.5	38.0	20.5	23.5
Indice de semilla						
Nacional 1	1.2	0.2	0.9	1.5	0.6	13.4
Nacional 2	1.0	0.1	0.8	1.3	0.5	10.4
Nacional 3	1.3	0.1	1.1	1.5	0.4	9.8
Nacional 4	1.2	0.2	0.8	1.5	0.7	18.2

Nota:
Nacional $1=14$ árboles
Nacional $2=12$ árboles
Nacional $3=13$ árboles
Nacional $4=11$ árboles
"Nacional 3" (1.3 g), en que todos los árboles superaron el gramo.

En la Figura 1 se observa que 23 árboles produjeron menos de 45 mazorcas. La mayoría de los árboles se encuentran en las clases de menor número total de mazorcas; dos árboles se clasificaron con más de 226 mazorcas en los tres años de evaluación, o sea 75.3 mazorcas por año.

Respecto del peso de mazorcas, el mayor número de árboles (19) se ubicó entre 445 g a 513 g de peso. Solamente dos árboles superaron los 720 g de peso de mazorca (Fig. 1).

Fig. 1. Distribución de frecuencias para el número total y el peso de las mazorcas.

En cuanto a la longitud y diámetro de mazorca (Fig. 2), la mayoría de los árboles se ubican en las clases intermedias. La mayor parte de los árboles superaron los 150 mm de longitud de la mazorca; seis árboles resultaron con mazorcas pequeñas (menos de 141 mm) y otros seis, con mazorcas que superaron los 172 milímetros. El diámetro de mazorca presentó una distribución similar a la variable anterior: tres árboles con diámetro inferior a 76 mm ; cuatro árboles con diámetro arriba de 95 mm ; el resto de los árboles ocupó las clases intermedias (Fig. 2).

El grosor de la cáscara, tanto máximo como mínimo, mostró que la mayoría de los árboles están en las clases más bajas, o sea de menor grosor (Fig. 3).

Fig. 2. Distribución de frecuencias paralalongitud y el diámetro de mazorcas.

Fig 3. Distribución de frecuencias para el grosor máximo y grosor minimo de cáscara.

En la Figura 4 se presenta el número de semillas y peso seco de las almendras por mazorea; solamente dos árboles, en ambos casos, superaron las 36.9 scmillas y los 51 g , respectivamente.

La mayoria de los árboles presentaron indices de mazorca relativamente altos; solamente seis árboles mostraron un indice inferior a 21.6 En relación con el tamaño de la semilla, 32 árboles supcraron el peso de un gramo y nueve árboles tuvieron un peso superior a 1.37 g (Fig. 5)

Fig. 4. Distribución de frecuencias para el número de semillas y el peso seco de las almendras por mazorca

Fig 5 Distribución de frecuencias para el indice de mazorca y de semilla.

Esto significa que es posible, dentro de la población estudiada, seleccionar algunos genótipos con alto indice de semilla.

LITERATLRA CITADA

1 BARTLEY, B 1990. La calidad en el mejoramiento genćtico del cacao. In Seminario Manejo de Germoplasma de Cacan (1989, Turrialba, C R.). J. A. Morera, A Paredes (Eds.). Memoria San José, C R., IICA/PROCACAO-CATIE. p. 1-30.

2 RUSSELL., C; MEURSING, E H 1982. Chocolate production and use New York, Harcourt Brace Jovanovich p $28-50$.
3. SORIA, J. 1967 Notas sobre las principales variedades de cacao cultivadas en América Tropical. In Conferencia Internacional de Cacao (1965, Abidjan) París, Jouve. p. 247-253

4 SORLA, J. 1987. Informes sobre los hallazgos de plantas de cacao silvestre en la Amazonia y cacao criollo en Centroamérica y México. In Foro Interamericano de Cacao (1., 1987, San José, C.R.). Informe final. FUPAD, IICA, CATIE, ACRI(USAID/ROCAP) p 1.6

Efecto de Coberturas en la Base del Arbol de Cacao en la Diseminación de Phytophthora ${ }^{1}$

VH.Porras*. IA Sánchez**

ABSTRACT

The effect of five treatments on the incidence of Phytophthora on the pods was evaluated on three cocoa farms in the department of Atlantida, Honduras during the summer of 1989 and the winter of 1989-1990. The treatments at the base of the trunk were: rice husk muleh, cocoa leaves, sawdust, free of vegetable matter and the control. With the exception of the control, a sticky insect band was attached to the base of the tree trunks. The information differed at levels below and above 1.5 m from soil level. The bighest incidence of Phytophthora ocurred in winter (up 1090%, wilh an average of 10%, There was practically no significant pathological difference between the treatments. The first level (below 1.5 m) presented a greater pod loss (8 f more than the second). The farms which presented a greater incidence of the fungus were la Cnion and Montevideo, and in third place, Orotina.

INTRODCCCION

Desde 1956 las pérdidas por el hongo Phytophhora palmivora, en los frutos de cacao, son del orden del 10% de la producción mundial Paracse entonces, se desconocia la existencia de otras especies y los daños causados a otros órganos del árbol (2).

En Costa Rica (1), investigaciones llevadas a cabo en algunos cultivares de cacao en la linea "La Lola" han determinado que el complejo de hongos de Phytophihora puede ser responsable hasta de un 22% de la perdida de mazorcas, y que, on ocasiones extremas, ciertos cultivares han presentado infecciones, durante algunos años, en sus mazorcas que sobrepasan el 80 por ciento.

[^15]
COMPENDIO

Abstract

Lin tres fincas cacaoteras del departamento de Attántida, Honduras, se evaluo el efecto de cinco tratamientos sobre la incidencia de Phytophthora en las mazorcas, durante el verano de 1989 y el invierno de 1989-1990. Los tratamientos fueron: cobertura ("mulch") en la base del tronco con granza de arroa; con hojas de cacao; con aserrín; árbol libre de materia vegetat; y testigo normal A excepcion del testigo, los arboles fueron cubiertos en la base del tronco con un adberente para insectos la informacion se dilerenció en los niveles menor y mayor a 1.5 m desde el ras del suclo. $1 . a$ mayor incidencia de phytophthora ocurrio en invierno (hasta 40%, con un promedio del 10%). Prácticamente no hubo diferencia de signiffeancia patologica entre los tratamientos. El primer nivel (menor de 1.5 m) presentó más pérdida de mazoreas (8% mas que el segundo). La finca que presentó mayor incidencia del hongo fue 1 a Cnion, Montevideo, y, en tercer lugar, Orotina, Atlántida; sucediólo contrario cuando existió un manejo agronómico adecuado.

En algunas fincas del departamento de Alláaida, Honduras, en el bienio 1986-1987, la FHIA (5) regiseró una incidencia de Phytophthora del 24 por ciento.

En Brasil, Medeiros, citado por Rodriguez (6), indica que existen zonas dentro de la plantación de cacao, denominadas "arreas-foco", que, por su humedad y poca circulación de aire, son inicialmente susceptibles al desarrollo de la enfermedad.

También se tienen informes de que el hongo puede diseminarse hasta un metro de altura por salpique del agua de lluvia (3). Además de ser el principal medio para la diseminación del hongo, el agua es requerida para la formación de esporas (zoosporas), la cual se da más efictentemente con temperaturas bajas. Estos factores clímaticos deben considerarse al planear el combate contra la enfermedid (3).

Por logeneral, la Phytophithora no es un hongo con buena capacidad saprofítica. En 1965, Turner encontró que P palmivora tiene un crecimiento limitado desde su fuente de alimentación hacia el resto del suelo, fuese estéril o no (7).

En suclos con cacao hay mucha competencia entre saprólitos, ya que la condición de "bosque" (rico on
materia orgánica en descomposición) en que se desarrolla el cultivo, permite la proliferación de diversos organismos animales y vegetales. "La fase epidémica de la enfermedad está condicionada también por cantidad de frutos dentro de la plantación y con el grado de susceptibilidad o resistencia del material" (6).

En las plantaciones de Honduras, el material de cacao es susceptible y produce frutos prácticamente todo el año La enfermedad es endémica, influyendo en la producción a consecuencia de las condiciones climáticas. Como actualmente se desarrollan plantaciones de cacao con base en material hibrido, debido a su mayor capacidad de producir frutos, siempre se tendrá la presencia de tejido susceptible, y serán inevitables algunas pérdidas por Phytophthora, sobre todo, en áreas con largos períodos de humedad (4).

Los objetivos de esta investigación son los siguientes:

- Determinar la eficacia de diferentes materiales usados como "mulch" paracvitar la diseminación de Phytophthora.
- Cuantificar la diseminación de la enfermedad (mazorca negra) en dos épocas de clima diferente y en fincas de cacao con distinto mancjo agronómico.
- Determinar la efectividad de un adherente (Stikem) para insectos en la diseminación de Phytophthora.

MATERIALES Y METODOS

Localización y clima

El trabajo de investigación se llevó a cabo en tres fincas de cacao ubicadas en los sectores de Orotina, La Unión y Montevideo, en el departamento de Atántida, Honduras (Fig. 1), lat. 16° Norte, long. 87° Oeste, elevación 15-20 metros sobre el nivel del mar.

Para La Masica, sector cercano a los anteriores, se tienen los siguientes datos de clima: $25.5^{\circ} \mathrm{C}$ en promedio y 3240 mm de lluvia anual.

En el sector de La Unión, y para un registro durante 16 años, la precipitación en promedio asciende a 2926 mm por año (Cuadro 1).

Fig 1 Areas cacaoteras en Honduras
Fuente: Sánchez 1990

Cuadro 1. Registro de lluvias mensuales en la zona de La Unión, Atlántida (1972-1987).

	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	X
Encro	68	286	22	0	616	91	561	287	125	158	154	266	369	448	339	203	250
Febrero	265	330	298	151	200	400	527	532	104	321	55	143	586	368	70	26	274
Marzo	30	85	12	5	0	43	656	930	17	113	256	13	153	105	317	101	177
Abril	88	99	74	0	106	569	38	98	--	81	61	164	183	80	63	61	118
Mayo	80	80	91	6	153	156	420	125	4	69	78	6	195	48	110	10	102
Junio	165	127	199	86	298	558	562	-	100	160	162	146	29	27	89	106	188
Julio	142	85	41	42	68	763	546	-	68	100	178	203	327	82	33	76	184
Agosto	150	222	61	89	26	397	453	--	52	125	165	322	132	51	52	130	162
Setiembre	123	168	731	176	29	499	609	264	547	435	213	117	211	133	74	49	274
Octubre	240	311	694	414	792	398	1501	366	541	464	299	332	155	-	411	427	490
Noviembre	28	184	114	358	1135	990	583	254	332	441	390	309	340	240	99	290	380
Diciembre	-	239	--	-	501	518	595	265	343	510	210	411	112	414	213	247	327
Total		2216	2337		3924	5382	7051			2977	2221	2432	2792		1870	1726	2926

Fuente: Ministerio de Recursos Naturales, C R

Tiempo de estudio

El trabajo se inició en diciembre de 1988 con la búsqueda de las fincas. En enero de 1989 se comenzaron a instalar los tratamientos y a tomar los datos respectivos.

El primer periodo de trabajo fue de febrero a mayo de 1989 (verano), el segundo lo fue de noviembre de 1989 a enero de 1990 (invierno).

Material de cacao utilizado

En todas las fincas (3) se trabajó con cacao hibrido, en su mayoría proveniente del Centro Agrónomico Tropical de Investigación y Enseñanza (CATIE) en Turrialba, Costa Rica, y algunos de procedencia nacional.

La edad de los árboles osciló entre los siete y nucve años. Requisito indispensable para seleccionar el árbol fue que tuviese mazorcas mayores de tres meses en la base del tronco y en las ramas.

Procedimiento y aplicación

En cada tratamiento se ocuparon 13 árboles de las fincas de La Unión y de Orotina y 10 de la finca Montevideo, ubicados al azar dentro de las fincas durante el verano. Para el inviern's se emplearon 20 árboles por tratamiento en cada finca.

Durante el mes de diciembre de 1988, previo al establecimiento del tratamiento, se deshierbaron en forma manual los alrededores de los árboles escogidos (menos el testigo), se podaron y se removieron todos los frutos enfermos. Se colocó "pasta cicatrizante", hecha con base en cobre, en los respectivos cortes de poda. Los árboles vecinos más inmediatos también fucron podados y se limpió el área de malczas.

Los árboles escogidos fueron fertilizados con 200 g cada uno, de la fórmula 18-9-18. Todo lo anterior se repitió en octubre para la época de invierno; para ese entonces se usaron otros árboles pues su clección se basó en la presencia de mazorcas. Para esta ćpoca se usó 15-15-15 como fertilizante.

Tratamientos en estudio

Tratamiento 1: Granza de arroz más adherente para insectos

En la base del tronco de cada árbol se aplicó un adherente para insectos (Fig. 2), desde 3 cm a 5 cm del nivel del suclo hasta una altura de 30 cm alrededor del tronco.

Lucgo se adicionó granza de arroz como cobertura - "mulch", en un radio de 0.7 m alrededor del árbol (Fig. 2). Fue colocada con un grosor tal que no permiticra ver la tierra (0.5 a 1 cm). Antes de colocar la granza, se limpiaron los residuos de hojas de cacao del suclo.

Fig. 2. Esquerna representativo de las distancias de colocación de los tratamientos de mulch (a) y adherente (b), para insectos en el árbol de cacao; nivel de cvaluación (c)

Después, y durante periodos de una semana, se removieron y cuantificaron de cada árbol de cacao las mazorcas enfermas por Phytophthora y las sanas maduras (cosecha). Se suspendieron las lecturas y el mantenimiento del tratamiento, una vez que el total de mazorcas con que se inició el mismo estaba listo para la cosecha.

La información diferenció dos estratos o niveles de árbol, uno de 0 mal .5 m sobre el ras del suelo y el otro a partir de 1.5 m (resto del árbol) (Fig. 2).

Tratamiento 2: Hojas de cacao más adherente para insectos

El procedimiento fue el mismo que se describió para el Tratamiento 1, con la diferencia de que en lugar de colocar granza de arroz, se usaron hojas de cacao como "mulch". Estas se obtuvieron del mismo cacaotal, ya fuesen caídas o removidas a propósito del ärbol.

Tratamiento 3: Aserrin más adherente para insectos

Este tipo de "mulch" fuc evaluado solamente durante la época de invierno. La aplicación del aserrín es similar a la anotada para el primer tratamiento.

Tratamiento 4: Sólo adherente para insectos y suelo limpio

Se empleó una metodologia similar al Tratamiento 1, pero no se adicionó ningún tipo de "mulch", y la zona inmediata al tronco del árbol (radio de 70 cm) se mantuvo libre de material vegetal.

Tratamiento 5: Testigo

Como testigo se empleó un número igual de árboles que en los tratamientos anteriores y no se hizo ninguna modificación a la forma en que los tenia el agricultor. Los árboles-testigo variaron de una época a la otra. Las mazorcas fueron removidas en periodos quincenales.

RESULIADOS Y DISCUSION

Epoca de verano (enero a mayo 1989)
En 1989, la ćpoca de verano se caracterizó por su baja precipitación. A excepción de enero, en los demás meses llovió menos que el promedio obtenido en los últimos 16 años (Fig. 3 y Cuadros 1 al 3).

Lo anterior desfavorece el desarrollo del hongo Phytophthora, de manera que paulatinamente la presión del inóculo se va reduciendo

En consideración con la humedad relativa, ésta se mantuvo relativamente alta (80%, Fig. 3), y el promedio de temperatura mínima fue $18.5^{\circ} \mathrm{C}$; $\sin \mathrm{cm}$ bargo, no fueron sulicientes para ayudar al hongo, pues éste necesita agua liquida, factor escaso para la temporada en mención.

Epoca de invierno

(noviembre 1989 a enero 1990)
Durante csos tres meses llovió un total de 1224 mm , valor mayor al que necesita el cacao en todo el año. La humedad relativa mínima en promedio bajó a tan sólo

Fig 3. Representación de los elementos de clima registrados en CEDEC La Masica, Atántida de enero 89 a encro 90
un 76% y la temperatura media fue de 22° centigrados. Estos datos son caracteristicas de la temporada de invierno (Fig. 2, Cuadros 2 y 3)

Según se explicó arriba, el clima de invierno para el bienio 1989-1990 fue favorable para la enfermedad También existió tejido susceptible para dicha temporada Sin embargo, la presión del inóculo de Phytophthora fue de normal a baja, pues predecia una época seca o de verano muy prolongada

Como puede observarse en la Fig. 3 y Cuadros 1 y 2, de abril a agosto de 1989, sólo hubo 369 mm de Iluvia, prácticamente la mitad de lo llovido en los últimos 16 años en los mismos meses. De manera que, para csas condiciones climáticas, el inóculo primario se reduce a niveles de supervivencia y para incrementarse de nuevo (ćpoca de invierno) se requiere un periodo largo, pero esto no ocurrió; y aunque hubo 1244 mm en tres meses, la lluvia no fue suficiente.

Finca "La Unión" - Verano

Al observar la Fig. 4 es evidente la diferencia significativa que ocurrió en la incidencia de Phytophthora que aparcce para el nivel inferior (m) y para cl superior. Sin establecer diferencia entre tratamientos, la primera supera a la otra en un 8 por ciento.

El testigo prácticamente no se diferenció en los respectivos niveles, el promedio general del árbol fue

Cuadro 2. Registro de los elementos de clima en el CEDEC, La Masica - Atlántida (enero 1989 a enero 1990).

	Luvia (mm)	Humedad relativa (\%)		Temperatura (${ }^{\circ} \mathrm{C}$)		
		Mín.	X	Mín.	Media	Máx
Enero 1989	312	79	84	18.2	227	28.0
Febrero	172	74	82	17.5	222	27.6
Marzo	172	74	82	17.0	22.2	27.5
Abril	100	76	82	19.9	24.7	29.9
Mayo	20	76	81	21.1	258	31.0
Junio	62	75	79	20.8	257	31.1
Julio	78	74	81	20.3	25.2	30.8
Agosto	109	77	83	20.5	25.0	30.4
Setiembre	348	77	86	20.4	24.0	29.0
Octubre	579	77	85	19.0	22.7	27.4
Noviembre	566	80	84	196	23.2	27.9
Diciembre	554	76	85	17.1	206	24.8
Enero 1990	109	73	83	17.4	22.1	27.2
Suma	3181					
X	245	76	83	19.1	235	27.9

Cuadro 3. Registro de los elementos de clima en Finca Thelma, Orotina, Atántida (julio 1989 a enero 1990).

Meses	Lluvia (mm)	$\begin{aligned} & \text { Humedad relativa (\%) } \\ & \text { X } \end{aligned}$	Temperatura (${ }^{\circ} \mathrm{C}$)		
			Mín.	Media	Máx.
Julio		88	20.3	24.7	29.6
Agosto	219	88	22.3	26.4	31.9
Setiembre	169	89	21.8	25.2	29.7
Octubre	486	88	21.6	23.8	285
Noviembre	465	88	20.2	23.8	28.5
Diciembre	784	88	18.5	21.5	24.8
Enero 1990	294	90	190	23.1	27.8
Suma	2417				
X	403	88	20.5	24.1	28.5

del 14% de incidencia, valor que debe considerarse pues supera el 10% que, normalmente, se asigna a las pérdidas mundiales por Phytophthora; y aún más al ser ésta la época en que se espera una menor incidencia. En relación con el testigo y el manejo promedio del cacao en Honduras, éste ofrece un nicho favorable al hongo.

Fig. 4. Incidencia de Phytophthora según tipo de mulch y estrato de evaluación (nivel), en finca La Unión (encro a mayo de 1989)

Para el estrato (1.5 m) no hay diferencia patológica que considerar según tratamiento. En el caso del estrato inferior, el "mulch" del arroz fue el que menos pérdidas presentó (9%), pero su valor no fue favorable para el agricultor (un 17\% en el testigo)

La incidencia tan alta en el tratamiento de las hojas de cacao (20%), para su primer nivel, no tiene explicación cientifica; posiblemente fue un caso fortuito que hubiese variado, al aumentar las unidades de observación. Cabe anotar que las hojas empleadas como "mulch" eran material sano a la vista.

Finca "Orotina" - Verano

En esta finca, en el verano, la incidencia de la enfermedad fue baja. En el tratamiento de arroz llegó a un máximo del 5% (Fig. 5) y se presentó un testigo sin enfermedad alguna.

De las tres fincas, ésta es la que ofrecia el mejor manejo agronómico del cultivo, el cual ayudó a una menor ocurrencia del hongo en el medio.

Fig. 5. Incidencia de Phytophthora según tipo de mulch'y estrato de evaluación (nivel), finca Orotina (enero a mayo de 1989)

Prácticamente no hay diferencia de importancia entre los niveles evaluados; esto lleva a suponer que el suelo de esta finca estaba bastante libro de microorganismos.

En hipótesis se esperaba una incidencia ascendente del tratamiento arroz-hojas de cacao-"limpio"-testigo, Sin embargo, en esta situación, ocurrió lo opuesto.

Finca "Montevideo" - Verano

En esta finca, aparentemente, tuvieron un mejor efecto aquellos tratamientos que contenían el uso de algún tipo de cobertura sobre los otros.

Aunque el testigo no presentó ningún rastro de Phytophthora a más 1.5 m , su nivel inferior se vió atacado en un 10 por ciento. Luego le siguió en pérdida, el cacao "limpio" con un 4%, siempre en el nivel inferior (Fig. 6).

Fig. 6. Incidencia de Phytophthora según tipo de "mulch" y estrato de evaluación (nivel) en finca Montevideo (enero a mayo de 1989).

Se consideró que la finca ubicada en Montevideo tenía un manejo agronómico regular. Está situada en las "faldas" de una montaña, por lo que su microclima es favorable a la enfermedad. También es muy común el que cuando llueve, a través del cacaotal, se formen diferentes corrientes de agua a favor de la pendiente.

En consideración de lo anterior puede suponerse que constantemente, durante los momentos de precipitación, viaja el inóculo de Phytophthora, de ahí el posible buen efecto del uso del "mulch" sobre los otros tratamientos que no lo tuvieron.

Comparación entre las tres fincas (verano)

El mal, regular y aceptable manejo agrónomico de las fincas, con que fueron clasificadas y scleccionadas al principio, les ubica así:

La Unión - Montevideo y Orotina

En cuanto a los resultados obten dos en verano, La Unión presentó la mayor incidencia del hongo (9\%) en general, mientras que las otras finca's alcanzaron como máximo un promedio del dos por ciento.

Al inicio del trabajo, el estado ecológico de la finca de La Unión fue muy favorable para el establecimiento y desarrollo de la "mazorca negra". A su vez, aunque existía tejido susceptible, lo que desfavoreció a la enfermedad fue la merma en la frecuencia y cantidad de Iluvia.

Entre los tratamientos no se presentó una consistente diferencia que permitiera favorecer a alguno de cllos. Es posible que hiciera falta un mayor número de unidades de observación. Dadas las exigencias del experimento en sí, sólo se puḍo contar con 10 y 13 unidades por tratamiento.

Como promedio general, los testigos alcanzaron un valor del 5\% de incidencia y los tratamientos un cuatro por ciento. Ambos valores son menores al 10% mundial.

La diferencia más "fuerte" al "confundir" los tratamientos y compararlos con el testigo, radicó en el manejo agronómico que se hizo a cada árbol en los tratamientos. De manera que, para la época de verano y según la información del año 1989, no habría mayor necesidad de aplicar "mulch" al suelo del cacaotal y sí un mejor manejo técnico para desfavorecer ligeramente al hongo Phytophthora.

El uso del adherente para insectos a partir de sólo la observación en el campo, no dio mayores beneficios. El objetivo de aplicarlo consistió en evitar el acceso y ascenso de los insectos al árbol de cacao, sobre todo de las hormigas que acarrean partículas de suelo y que, posiblemente, transportan ésporas de Phytophthora.

Una vez que el producto fue aplicado, se observó la adherencia de fracciones vegetales con suma facilidad por acción del viento, y la formación de una especie de puente que facilitaba el paso de los insectos.

Finca Montevideo - Invìerno

En invierno fue muy evidente la presencia de Phytophthora en la finca "Montevideo". Todos los casos en estudio (incluyendo el testigo) sobrepasaron el 10% de incidencia en su primer nivel de árbol (Fig. 7).

Estos resultados permiten aseverar sobre la presencia del inóculo que contiene el suelo. Al observar los resultados del tratamiento "limpio", en el cual el suelo se expone y ante la magnitud de la precipitación de la temporada, alcanzó un 41% de pérdidas (Fig. 7).

Debido a la ubicación de esta finca, el sotavento del invierno facilita la dispersión de la enfermedad tanto en
sentido vertical como horizontal; esto permite justificar la incidencia relativamente "alta" en el segundo estrato del árbol a más de 1.5 m de altura (Fig. 7).

Fig. 7. Incidencia de Phytophthora según tipo de "mulch" y estrato de evaluación (nivel) en finca Montevideo (noviembre a diciembre de 1989-1990).

Los resultados del testigo son fortuitos y se esperaría lo contrario. Un indicio importante es la escasa producción de fruta en esos árboles; hubiese sido recomendable la observación de un mayor número de individuos.

Finca Orotina - Invierno

Consistentemente con los tratamientos evaluados, la incidencia de Phytophthora fue mayor en el primer estrato o nivel (m), (Fig. 8).

Fig. 8. Incidencia de Phytophthora según tipo de "mulch" y estrato de evaluación (nivel), finca Orotina (noviembre a diciembre de 1989-1990).

Para esta época de invierno, tanto el "mulch" de arroz como el de aserrín no tuvieron mayor efecto sobre el hongo. Cabe anotar que la fragilidad de ambos
materiales permite su arrastre por medio del agua de lluvia por efectos de escorrentía, perdiéndose así fácilmente su efecto.

Las incidencias ocurridas en los testigos son del 8% y el 4% según estrato (Fig. 8), valores éstos por debajo del 10% internacional.

Era de esperar que en el Tratamiento 4 ("limpio") en la época de invierno, dada la exposición del suelo, que aumentaran las pérdidas por efecto del salpique. Sin embargo, no fue así y es muy posible que en el suelo hubiese un inóculo primario casi nulo debido a los efectos del período prolongado de verano ya anotado.

Comparación entre las dos fincas

Se hace evidente, al observar las Figuras 7 y 8 , una mayor incidencia de Phytophthora en la finca ubicada en Montevideo, a consecuencia de más de 1000 mm de lluvia ocurrida en la temporada. Esto produjo el incremento del inóculo que permanecía en el suelo a tal grado que no hubo "mulch" entre los evaluados que redujera la incidencia a un valor menor que el 10% (primer nivel).

En Orotina tanto los tratamientos con "mulch" de hojas de cacao como en el "limpio" muestran una menor incidencia, incluso en aquellos con "mulch" de arroz y aserrín. En consideración de eso, la finca de Orotina tiene un suelo que en esta temporada mostró una baja presencia de Phytophthora.

En promedio, y por similitud entre tratamientos, tanto el testigo, el "limpio" y con hojas de cacao, sin considerar su nivel, la incidencia de la enfermedad en Montevideo fue de un 17\%; mientras que en Orotina apenas alcanzó cl tres por ciento.

Consideraciones generales de los tratamientos

Ante los resultados en el campo, no es funcional ni práctico el uso del adhcrente en la base del árbol de cacao. Una razón es que durante el invierno, y después de dos meses de aplicado, el producto inicia su degradación. Asimismo, al considerar la labor mecánica que implica su aplicación y las condiciones de cultivo del cacaotero promedio, se estima que no hay ninguna compatibilidad. También ocurrió la muerte de algunos frutos menores de dos meses al haccr contacto el adherente con el pedúnculo de los mismos.

En relación con el "mulch" de arroz, se tiene el inconveniente de que en algunas granzas persiste el
grano, el cual tiende a germinar y, con ello, la aparición de una nueva malcza.

El mantener limpia la superficic alrededor del árbol de cacao, no es una práctica agronómica adecuada, ya que se exponen las raices, se altera la convivencia microbiana y la degradación de la matcria orgánica.

El uso de las hojas de cacao, "como mulch" de menor costo, prácticamente no fue determinante para superar al testigo.

Según los testigos, y sin considerar el nivel y el promedio de Phytophthoradurante la ćpoca de invierno -período de mayor incidencia-, la incidencia del hongo fue del 7%, valor que se modifica al dar a los árboles un manejo agronómico adecuado

El uso de algún tipo de "mulch" on cacao para reducir la incidencia de Phytophthora, prácticamente, no beneficia grandemente al agricultor de cacao en el litoral del Atántico de Honduras.

LITERATLRA CITADA

1. ENRIQUEZ. G A. 1987. Manual del cacan para agricullores San José, C R., EUNED p. 66-67.
2. ERWIN. DC: BARTMICKI. S: TSAO. PH. 1983. Phytophthora; Its biology, taxonomy, ecology and pathological society. St Paul, Minnesota. USA 392 p .

3 IIARDY.F 1963. Manual de cacao Turrialba, CR, IICA 395 p
4. LASS. R A. 1987 Phytophthora pod rot: Discascs. In Cocoa 4 cd Singapore, Longman p. 267-282

5 RIVERA, JM 1988 Enfermedades causadas por Phytophthora spp en el cultivo de cacao: Informe interno San Pedro Sula, Hond, Fundación Hondureña de Investigación Agrícola. 11 p (Mimeo).

6 RODRIGUEZ, G. 1983. Herencia de la reacción del cacao (Theobroma cacao L) a la pudrición de la mazorca causada por Phytophthora palmivora (Bull) But. Tesis Mag. Sc Turrialba C R., Centro Agronómico Tropical de Investigación y Enseñanza. 79 p
7. ZENIMYER, G A ; ERWIN, D C. 1970. Development and reproduction of Phytophthora. Phytopathology 60:11201127

O Papel da Chuva no Fornecimento e Reciclagem de Nutrientes num Agrossistema de Cacau do Sul da Bahia, Brasil ${ }^{1}$

A.C.da Gama*; R.A. Calheiros*

Abstract

The importance of rainfall as source and factor in the nutrient redistribution were evaluated in a plantation of "Catongo" cacaos shaded by Erythrina fusca in Centro de Pesquisas do Cacau (CEPEC) soil (characteristic Tropudalf), during a period of twelve months. The water regim was studied in four compartments: incident precipitation, under shade trees precipitation, throughfall and stemflow. The incident precipitation contributed as $5.74,3.18,5.73,25.58$, $19.88,0.25,0.59$ e $2.88 \mathrm{~kg} \mathrm{ha}^{-1} \mathrm{ano}^{-1}$ of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}$, Cu and Zn , respectively. Under shade trees precipitation contributed as $17.00,6.50,19.52,32.30,20.71,1.90,1.23$ and $9.50 \mathrm{~kg} \mathrm{ha}{ }^{-1} \mathrm{ano}^{-1}$ of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}, \mathrm{Cu}$ and Zn , respectively. Cacao throughfall contributed as $22.10,12.07$, $34.48,32.30,18.05,2.73,1.02$ and $4.35 \mathrm{~kg} \mathrm{ha}^{-1} \mathrm{ano}^{-1}$ of Ca, Mg, $\mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}, \mathrm{Cu}$ and Zn , respectively. Cacao stemflow contributed approachment as $0.41,0.30,0.98,0.40,0.38,0.07$, 0.03 and $0.07 \mathrm{~kg} \mathrm{ha}{ }^{-1}$ ano $^{-1}$ of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}, \mathrm{Cu}$ and Zn , respectively.

Abstract

RESUMO A importância da precipitaçāo pluvial como fonte e fator de redistribuição de nutrientes foi avaliada numa plantação de cacaueiros Catongo sombreado com Erythrina fusca, em solo Typic Tropudalf, durante doze meses. O regime hidrico foi estudado em quatro compartimentos: precipitaçăo incidente, precipitação abaixo da eritrina, throughfall e stemflow do cacauerio. A'precipitacäo incidente contribuiu com 5.74 , $3.18,5.73,25.58,19.88,0.25,0.59$ e $2.88 \mathrm{~kg} \mathrm{ha}^{-1}$ ano ${ }^{-1}$ de Ca , $\mathrm{Mg}, \mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}, \mathrm{Cu}$ e Zn respectivamente. A precipitaçāo abaixo da eritrina contribuiu com 17.00, 6.50, 19.52; 32.30; $20.71 ; 1.90 ; 1.23$ e $9.50 \mathrm{~kg} \mathrm{ha} \mathrm{ano}^{-1}$ de $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}$, Cu e Zn , respectivamente. O throughfall do cacaueiro contribuiu com 22.10, 12.07, 34.48, 32.30, 18.05, 2.73, 1.02 e 4.35 $\mathrm{kg} \mathrm{ha}^{-1} \mathrm{ano}^{-1}$ de $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}, \mathrm{Cu}$ e Zn, respectiva. mente. O stemfow do cacateiro contribuiu aproximadamente com $0.41,0.30,0.98,0.40,0.38,0.07,0.03 \mathrm{e} 0.07 \mathrm{~kg} \mathrm{ha}^{-1}$ ano $^{-1}$ de $\mathrm{Ca}, \mathrm{M}, \mathrm{K}, \mathrm{Na}, \mathrm{N}, \mathrm{P}, \mathrm{Cu}$ e Zn , respectivamente.

INTRODUÇĀO

Aprecipitação pluvial é uma fonte de nutrientes relativamente importante as plantas num ecossistema florestal (24) A chuva também contribui na reciclagem de nutrientes através da remoção de minerais oriundos das folhas, ramos, frutose musgos (8). Essa reciclagem se laz através das gotas que penetram diretamente pelos espaços no interior das copas (throughfall) e pelo escoamento superficial ao longo de tronco (stemflow). O throughfall e o stemflow säo, portanto, importantes compartimentos na dinâmica interna de nutrientes num ecossistema florestal (24), onde os nutrientes estâo dissolvidos c prontamente disponiveis para serem reabsorvidos pelas ratzes (28)

[^16]A intensidade, a distribuição c o volume de precipitação influem na quantidade de nutrientes a serem incorporados ao solo via precipitação incidente, throughfall c stemflow ($2,13,3$). Em studos de modelagem de transferencia de nutrientes, Fassbender (9) enfatiza a importância de se caracterizar o ciclo hidrológico dos ecossistemas florestais dos trópicos.

Miranda (20,21) avaliando o regime hidrico de um agrossistema de cacau (Theobroma cacao L.) sombreado parcialmente com Eryihrina fusca cncontrou que do total precipitado, cm média, 83% chegaram ao solo via throughfalle 2% via stemflow, e que as perdas sazonais de água de chuva por interceptação variam em função de eventos fenológicos e fatores climáticos dependendo do periodo do ano e o manjeo implementado. O throughfall, individualmente, é responsável pela grande variação da quantidade de nutrientes incorporados ao solo num agrossistema de cacau (4, 16,26). A influência do throughfall proveniente do dossel das árvores de sombra, especialmente a E fusca, sobre a quantitade de mutrientes removidos da planta de cacau via throughfall e stemflow não foi ainda devidamente estudado.

O objetivo deste trabalho foi avaliar os compartimentos do ciclo hidrológico de um agrossistema de cacau-eritrina como fontes adicionais de nutrientes para o soloe, consequentemente, para a planta de cacau.

MATERIAL E MÉTODOS

Emárea experimental constituída de 0.5 ha, ocupada por cacaueiros Catongo da 10 anos de idade, plantados em espaçamento $3 \mathrm{~m} \times 3 \mathrm{~m}$, cm solo Typic Tropudalf, e parcialmente sombreados com E, fusca em espaçamento $24 \mathrm{~m} \times 24 \mathrm{~m}$, foram quantificados por 1 ano (Jun/87 a Jun/88) e analisados os nutrientes da vegetação removidos através da chuva.

Caracterização do ciclo hidrológico

No agrossistema de cacau (Fig 1), foram feitas coletas semanais do total de chuva precipitada sobre as árvores de sombra, da chuva abaixo da copa de eritrina, do total precipitado que atinge o solo através de folhagem (i.e. throughfall) e do escoamento superficial ao longo do tronco (i.e. stemflow).

Fig 1. Distribuição de pluviômetros no agrossistema cacaucritrina.

A chuva incidindo sobre o agrossistema, foi medida na estação agroclimatológica do CEPEC, distante 200 m da área experimental.

O total precipitado que chega acima da copa do cacaueiro, foi coletado por um conjunto de funis PVC (12.7 cm de diâmetro) instalados aproximadamente 80 cm acima da copa, distribuidos aleatoriamente sob a projeção da copa de 10 árvores de eritrina.

Sob a copa de dois cacauciros, distribuiram-se 4 pluviômetros de PVC (19) posicionados ortogonalmente a uma distancia fixa de 90 cm do tronco e 70 cm acima da superfície do solo. Na amostragem do throughfall o reposicionamento semanal dos pluviômetros foi alcatório, a fim de observar as variações causadas pela distruição irregular da cobertura foliar no interior do agrossistema apontadas por Miranda (21).

Na quantitade da chuva percolada pelo tronco (i.e. stemflow) usou-se coletores fixados com uma espiral ao redor do tronco de 10 cacauciros. O contato troncocoletor e canaleta interna de escoamento do coletor, foram ambas vedadas e recobertas por massa plástica à base de polictileno. A água coletada foi recolhida em vasos plásticos.

Após aferição do volume de água uma sub-amostra foi recolhida e filtrada para a determinação de N -total pelo método de Kjeldahl, do P por colorimetria, do K e Na por fotômetro de chama, do $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Cu}$ e Zn por espectrofotômetro de absorção atômica (25).

En todos os recipientes coletores da água de chuva foram colocadas 10 gotas de tolueno, antes de cada coleta, para reduzir o desenvolvimento de microorganismos.

RESLLTADOS EDISCUSSĀO

Ciclo hidrológico

A análise do regime pluvial na área experimental, bascada na precipitação incidente, durante os últimos 15 anos, mostra que a precipitação média para o local foi cm tomo de 1800 mm , com desvio padrāo de 338 mm . Oregime pluvial anual se caracterizou por chuvas intermitentes ao longo do ano, apresentando pequenas máximas em feverciro e junho e mínimas cm agosto c dezembro para o numero de dias con chuvas (18) Os totais mensais de chuva são variáveis ano a ano. Cada mês, independentemente do período do ano pode, ocasionalmente, apresentar fortes desvios positivos e negativos em relação aos valores médios mensais.

Na Quadro 1 são apresentados os resultados da precipitação incidente, precipitação abaixo de eritrina, throughfall e stemflow e perdas por intcceptação cm cada commpartimento que compõe a fitomassa do agrossistema de cacau. A precipitação incidente, se caracteriza pela inerente variabilidade espacial e temporal. Sob as copas, as variações de ponto contribuem para a distribuição irregular da chuva (20).

Quadro 1. Quantidade da precipitação de diferentes compartimentos do ciclo hidrológico do agrossistema cacau - eritrina.

Tipo de precipitaçáo	JuL.	Ago.	Set.	Out.	Nov.	Dez. (mm)	Jan.	Fev.	Mar.	Abr.	Mai.	Jun.	Total do ano
Precipitaçăo incidente	137.6	135	118.4	43.6	100.9	288.6	130.0	37.0	247.0	91.1	1330	44.4	13851
Precipitaçăo abaixo da eritrina	121.1	11.9	104.2	38.4	88.8	254.0	114.3	32.5	217.4	80.2	117.0	39.1	1218.9
Throughfall	105.3	9.9	81.2	27.9	77.4	220.6	102.3	29.2	182.6	68.4	1001	34.0	1038.9
Stemflow	12	0.2	10	0.7	0.9	2.5	1.1	0.3	2.2	0.8	13	0.4	12.6
Diferença ${ }^{\text {a }}$	-16.5	-1.6	-142	-5.2	-12.1	-34.6	-15.7	-4.5	-29.6	-10.9	-16.0	-53	-166.2
Diferença ${ }^{2}$	-14.6	-1.8	-220	-9.8	-105	-30.9	-10.9	-3.0	-32.6	-11.0	-156	-4.7	-167.4

1 (Precipitação abaixo do eritrina) - (Precipitação incidente)
2 (Throughfall + stemflow) - (Precipitação abaixo da eritrina).

Influências temporais, que se manifestam principalmente através das alterações estacionais na cobertura foliar e, nas variaçöes meteorológicas (intensidades, duração e recorrencia das precipitações) representam possiveis variaçōes sazonais das perdas por inteceptação (21). Nas árvores de sombra, os valores médios mensais interceptados foram similares, ficando em torno de 12%. Entretanto, o cacaueiro apresentou indices diferenciados de rentenção pluviométrica, tendo, em média, o throughfall contribuido com cerca de 85% da precipitação sob a copa, enquanto que o stemflow apresentou valores em tomo dc 1% (Quadro 1).

Ciclo de nutrientes

Precipitação incidente

A concentração média mensal dos nutrientes está aprescntada nas Figuras 2a e 3a. As concentrações de $\mathrm{Ca}, \mathrm{K}, \mathrm{Na}, \mathrm{Cu}$ e Zn tiveram uma alla variação durante o periodo experimental, enquanto que a concentração de Mg foi relativamente constante no periodo de dezembro a abril. A concentração de N foi também relativamente constante no periodo de setembro a novembro, havendo no mês de julho uma concentração de $3.36 \mathrm{mg} / \mathrm{c}$ e nos meses de agosto e junho valores de

(A) - Pracipitagão incidente $(a-\Delta)$; precipitaço acima do cacaueiro $(x--x)$; throughfall (o....a).
(B) - Stemflow (0 - -a)
Fig. 2. Concentração média mensal de $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ e Na de diferentes compartimentos de ciclo hidrológico do agrossistema cacau-critrina.

Fig. 3. Concentração média mensal de N, P, Cue Zn de diferentes compartimentos de ciclo hidrológico de agrossistema cacau-eritrina.
0.77 e $0.70 \mathrm{mg} / \mathrm{l}$, respectivamente. A concentraçāo de P teve alta variaçāo no periodo de julho a dezembro, ficando constante a partir de janeiro.

Precipitação abaixo de eritrina
As a miores concentraçōes de Ca ocorreram nos meses de setembro e outubro, com decréscimo no periodo de novembro a janeiro a um novo acréscimo no periodo de fevereiro a abril (Fig 2a). A concentração de K foi alta nos meses de outubro e fevereiro, havendo um decréscimo entre esses dois meses. A maior concentraçāo de Mg ocorreu em setembro, com decréscimo no periodo de outubro a janeiro e um novo acréscimo no periodo de fevereiro a junho. A concentração de Na , com exceção em agosto que foi de $6.36 \mathrm{mg} / \mathrm{l}$, pode ser dividida em dois periodos: de julho a janciro e de feverciro a junho, com concentrações médias de $3.76 \mathrm{mg} / \mathrm{le} 1.74 \mathrm{mg} / \mathrm{l}$, respectivamente. Nos meses de julho, agosto e março ocorrcram as maiores concentraçðes de N e no período de setembro a fevereiro a sua taxa de variação foi pequena, com uma concentração média de $1.64 \mathrm{mg} /$ (Fig 3a). A variação da concentração de P foi pequena no periodo de julho a outubro e alta nos meses subsequentes, com um pico em fevereiro. As menores e as maiores concentrações de $\mathrm{Cu}(0.04$ e $0.25 \mathrm{mg} / \mathrm{I})$ ocorreram em julho e agosto, de outubro a junho ocorreu um decréscimo contínuo da sua concentração. Houve uma alta variação da concentração de Zn , com dois picos de incrementos da sua concentração nos meses de setembro e feverciro.

De un modo geral, as maiores taxas de remoção de nutrientes pela água de chuva indicam uma certa relação com a queda de folhas de Erythrina fusca, que ocorre durante todo o ano (26). Os picos de maior abcisão coincidem con finais de periodos secos (26). No presente estudo, os meses em que ocorreram os menores indices pluviométricos foram agosto e feverciro (Quadro 1)

Throughfall

As variações das concentrações dos nutrientes se relacionam, de certa maneira, com os periodos de lançamento foliar do cacaueiro (1), com picos de maior lançamento foliar nos periodos de setembro a outubro e de feveriro a março (Figs, 2a e 3a). Esse comportamento não ocorreu para o Cu que apresentou em agoisto a sua maior concentração ($0.55 \mathrm{mg} / \mathrm{l}$), com decréscimo nos meses subsequentes.

A relação encontrada entre a remoção dos nutrientes pela água de chuva c a queda de folhas de E fusca e do cacaueiro, se deve ao fato de que as folhas maduras próximas ao estágio de sencscência são muito mais susceptiveis a lixiviação do que as folhas jovens (28). Algumas características de folha se alteram com a idade, concorrendo para uma maior taxa de remoção dos nutrientes. Folhas jovens são hidrofóbicas e são umedecidas com mais dificuldades do que as folhas maduras (28). As folhas do cacauciro são umedecidas e mais susceptiveis a lixiviação quando desprovidas da presença de uma espessa e continua camada de cutícula (28)

Stemflow

A variação das concentrações de todos os nutrientes foi alta (Figs. 2 b e 3 b). Contudo, houve periodos em que essa variação foi relativamente pequena, especialmente no período de agosto a autubro, onde de um modo geral, ocorreram as maiores concentrações. No período de fevereiro a maio, de acordo com cada nutriente, houve um pico de incremento das concentraçð̃es.

O stemflow, provavelmente, sofreu a influência dos fluxos provenientes da precipitação abaixo de eritrina e do throughfall, visto que a variação das concentrações dos nutrientes do stemflow durante o periodo experimental foi, de certa maneira, semelhante ao ocorrido naqueles dois compartimentos (Figs. 2 e 3). Em razão disso o composição química inicial do stemflow é muito difícil de se determinar, pois depende de como a água atravassa o dossel antes de pertencer ao próprio stemflow. Thomas (27) amostrando stemflow em "Dogwood" encontrow que após a abcisão foliar a concentração de ${ }^{45}$ Ca foi mais baixa do que quando as árvores estavam com folhagem. Isto indica que a lixiviação da casca provavelmente não contribui tanto para a composição química do stemflow quanto a lixiviação foliar. Carlisle et al. (6) encontraram correlações altamente significativas das concentrações de diversos nutrientes entre o stemflow e o throughfall, concluindo que a composição química de throughfall, ou alguns fatores que influencian nessa composição, influencia as concentrações do stemflow.

No presente estudo, as correlaçães das concentrações dos nutrientes cntre o stemflow e o throughfall, assim como entrc o stemflow e a precipitação abaixo da critrina estão apresentados na Quadro 2. Constata-se que parte de composição do stemflow foi, provavelmente, influenciada simultaneamente pelos fluxos provenientes de precipitação abaixo da eritrina e do throughfall, especialmente para o Ca,
Mg, Na e Cu , que apresentaram correlações significativas e altamente significativas. As concentrações de K e N no stemflow foram significativas e altamente significativas, respectivamente, somente na relação como a precipitação abaixo da eritrina, c a concentração de P foi altamente significativa apenas na relação como o throughfall. Contudo nāo houve significância nas correlaçães entre a concentração de Zn do stemflow com as concentrações da precipitação abaixo da eritrina e o throughfall.

Houve um incremento de concentração média anual dos nutrientes provenientes de precipitação incidente ao passar pelos outros compartimentos que compõem o ciclo hidrológico do agrossistema de cacau (Quadro 3 e Figs. 2a e 3a). Na precipitaçāo incidente as concentraçoes dos nutrientes em ordem decrescente foi de $\mathrm{Na} \mathrm{NK} \mathrm{Ca} \mathrm{Mg} \mathrm{Zn} \mathrm{Cu} \mathrm{P} \mathrm{(Quadro} \mathrm{3)}$. uma concentração muito alta em relação ao Cu. A alta concentração de Na indica que a atmosfera sobre a área do Centro de Pesquisas do Cacau sofre forte influência de massas de ara de origem oceânica. Os valores das concentrações de Na na precipitação incidente de regioes próximas a zonas maritimas pode variar de 1.71 a $4.84 \mathrm{mg} / \mathrm{l}(2.5)$.

Na Quadro 4, a razão de Na e de outros nutrientes na precipitação incidente são comparados com as razäes desses nutrientes na água do mar. A razäo $\mathrm{Mg} / \mathrm{Na}$ da precipitação incidente no CEPEC (0.124) foi igual ao da água do mar (0.120), sugerindo que a principal fonte de Mg é originada de materiais salinos. Diversos estudos demonstram que a água do mar seria a principal fonte de Mg na precipitação incidente (2, 17, 24). As razões de $\mathrm{K} / \mathrm{Na}(0,224)$ e de $\mathrm{P} / \mathrm{Na}(0.009)$ foram muito maiores do que as da água do mar, indicando que essa não seria a principal fonte desses nutrientes. Isso, provavelmente, scria devido a presença acrosóis e partículas em suspensão. Resultados similares foram encontrados por Carlisle et al. (5).

Quadro 2 Correlação da concentração de nutrientes do stemflow em relaçäo a precipitação abaixo de eritrina e ao throughfall do agrossistema cacau - eritrina.

| | Ca | Mg | K | Na | N | \mathbf{P} | $\mathbf{C u}$ | $\mathbf{Z n}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Precipitação abaixo da
 eritrina | 0.60^{*} | $0.86^{* *}$ | 0.66^{*} | $0.78^{* *}$ | $0.76^{* *}$ | 0.42 ns | $0.87^{* *}$ | 0.49 ns |
| Throughfall | 0.61^{*} | $0.82^{* *}$ | 0.18 ns | $0.80^{* *}$ | 0.21 ns | $0.81^{* *}$ | $0.78^{* *}$ | 0.13 ns |

[^17]Quadro 3. Concentração média anual de nutrientes em diferentes compartimentos do ciclo hidrológico do agrossistema cacau eritrinan

| | Ca | $\mathbf{M g}$ | \mathbf{K} | $\mathrm{mg} / \mathrm{Na}$ | N | \mathbf{P} | $\mathbf{C u}$ | $\mathbf{Z n}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Precipitação
 incidente | 0.51 | 0.33 | 0.57 | 2.54 | 1.53 | 0.01 | 0.04 | 0.23 |
| Precipitação abaixo
 da critrina | 1.64 | 078 | 2.00 | 3.08 | 1.90 | 0.20 | 0.13 | 1.10 |
| Throughfall | 2.23 | 1.51 | 4.11 | 3.40 | 1.92 | 0.36 | 0.15 | 0.56 |
| Stemflow | | | | | | | | |

Quadro 4. Razão de nutrientes na precipitação incidente e na água do mar.

Razão	Precipitação incidente (CEPEC)	Água do mar (5)
	0.224	0.039
$\mathrm{Ca} / \mathrm{Na}$	0.124	0.120
$\mathrm{Mg} / \mathrm{Na}$	0.224	0.036
$\mathrm{~K} / \mathrm{Na}$	0.009	0.000005
P / Na		

As concentraçõcs dos nutrientes na precipitação abaixo da critrina variou no ordem de Na K N Ca Zn Mg P Cu , de K Na Ca N Mg Zn P Cu parao throughfall e de K Ca Na Mg N Zn P Cu parao stemflow (Quadro 3). Esses resultados mostram que houveram variações na remoção de nutrientes de um compartimento para outro. Na Quadro 5, observa-se
que, em termos médios, os nutrientes que tiveram os mais baixos incrementos da precipitação incidente para a precipitação abaixo da critrina foram o $\mathrm{Na}(21 \%), \mathrm{N}$ (24%) e $\mathrm{Mg}(58 \%)$, enquanto que o P teve incrementos elevadíssimos (1900\%). Da prccipitação abaixo da eritrina para o throughfall o nutriente que teve o incremento mais alto foi o K (105%). O mesmo ocorreu na precipitação abaixo de eritrina e/ou do throughfall para o stemflow. Em razão desses resultados o K foi o nutriente de maior mobilidade no agrossistema de cacau. O dossel de E. fusca apresentou maior capacidades de liberação de Ca do que Mg , no entanto comportamento inverso ocorreu em relação ao dossel do cacauciro (Quadro 5)

O dossel da E fusca e do cacauciro apresentaram alla capacidade de liberaçāo de P , enquanto que o mesmo não ocorrcu para o Cu , onde somente o dossel da E fusca apresentou alta capacidade de liberação do nutriente (Quadro 5), Em relaçāo ao Zn , o fato de ter ocorrido um incremento ncgativo no throughfall indica que, provavelmente, ocorreu absorção do nutriente

Quadro 5. Incremento percentual de nutrientes da precipitação incidente (PI) para a precipitaçăo abaixo da eritrina (PA), da precipitaçáo abaixo da eritrina para o throughfall (Th) e para o stemflow (ST) e do throughfall para o stemflow do agrossistema cacau critrina.

	Ca	Mg	K	Na	N	P	Cu	Zn	
PI - PA	221	58	250	21		24	1900	225	378
PA - TH	36	93	105	10	1	80	15	-49	
PA - ST	112	264	314	-3	30	200	123	-39	
TH - ST	56	88	102	-12	29	67	93	20	

pelas folhas do cacaueiro (Quadro 5). Resultados similares foram relatados em outras espécies árboreas $(28,30)$. Contudo, a absorção pode ser devido a presença de uma microflora sobre a superfície das folhas e ramos $(6,15)$.

Apesar da E. fusca ser uma planta leguminosa, o seu dossell apresentou uma baixa capacidade de liberação de N , e o dossel do cacaueiro praticamente não proporcionou nenhuma liberação do nutriente (Quadro 5). Resultados similares foram encontrados por Leite e Valle (16) em agrossistemas de cacau, com e sem sobreamento, tendo sido observado efeito de sazonalidade. ON na sua forma inorgânica ou orgânica não é facilmente removido das folhas pela água de chuva (8,24), sendo que com frequência pode ocorrer a sua absorção pelas folhas $(5,29)$. Os incrementos de Na proporcionados pelo dossel de E. fusca e do cacaueiro foram muito baixos, devido a que a principal fonte, na regiảo do presente estudo, seria de origem oceânica. Portanto, em regiães próximas a zonas marítimas, mais de 90% do Na removido do dossel das árvores seria proveniente da deposição seca de sais sódicos (24).

Com exceção para as concentrações de Na e Zn , o stemflow apresentou as maiores concentrações de nutrientes em relaçāo aos outros compartimentos do ciclo hidrológico de cacaueiro (Quadro 3). Diversos estudos demonstram que o compartimento do ciclo hidrológico de ecossistema florestal que possui as maiores concentraçōes de nutrientes é o stemflow (6,8 , 29). A sua contribuição, em termos de quantidade total de nutrientes que chegam ao solo, foi pequena no presente estudo (Quadro 6). Provavelmente isto é devido a que somente 1% da precipitação total que passa através do dossel do cacaueiro foi na forma de stemflow. Todavia, o stemflow pode ser muito importante porque ele é depositado em uma pequena área ao redor da base do tronco. A alta concentração de nutrientes e de material orgânico no stemflow proporciona significativas alterações nas propricdades morfólogicas, físicas e químicas do solo (11, 12). A quantidade de stemflow e a sua composição quimica está relacionada com algumas características do tronco. A casca lis proporciona maior stemflow e menor concentração de nutrientes do que a casca rugosa (22, 13), assim como o menor diâmetro do tronco (14) e a maior inclinação dos ramos (22). No caso de cacaueiro a presença no tronco de almofada floral e frutos, e eventualmente de liquens e musgos, contribuiriam para aumentar substancialmente a concentração de nutrientes no stemflow.

Num ecossistema florestal ofluxo de nutrientes na água de chuva está relacionado como a quantidade precipitada. Contudo, há importantes diferenças entre
a concentração de nutrientes e a quantidade de água: são fluxos de nutrientes são muito variáveis e não podem ser obtidos diretamente do regime hídrico (24). Portanto, o fluxo de nutrientes removidos pela precipitação dependerá dos seus teores nos tecidos da planta, da fenologia e da sazonalidade.

No Quadro 6, observa-se que, apesar das perdas por interceptação, o throughfall foi o compartimento que teve as maiores quantidades de nutrientes, com exceção para o N, Cue Zn. Para todos os nutrientes, o throughfall correspondeu, em média, a 98% da quantidade total (throughfall + stemflow) a serem incorporados no solo. As quantidades de K , em termos liquidos, foram maiores do que a dos outros nutrientes, tanto para a precipitação abaixo da eritrina quanto para o throughfall + stemflow (Quadro 6).

As quantidades de nutrientes incorporados ao solo via throughfall no presente estudo foram similares ao encontrado por outros autores em agrossistemas de cacau de Bahia, sombreados parcialmente com E, fusca. As quantidades de Ca, Mg e K encontrados por Santana e Cabala (20) são da ordem de $18,22,21 \mathrm{~kg}$ ha ${ }^{-1}$ ano ${ }^{-1}$, respectivamentc. No entanto, Leite e Valle (16) encontraram para esses nutrientes valores da orden de $41,21, \mathrm{e} 55 \mathrm{~kg} \mathrm{ha}^{-1}$ ano ${ }^{-1}$, respectivamente. Enquanto que em cacaueiros nâo sombreados as quantidades de Ca, Mg e K são da ordem de 49,29 e $150 \mathrm{~kg} \mathrm{ha}{ }^{-1}$ ano ${ }^{-1}$ (16), respectivamente. As quantidades desses nutrientes encontrados por Boyer (4) em plantação de cacau parcialmente sombreadosem Camarões (Äfrica), são bem superiores as registradas no presente estudo.

Esses resultados demonstram que as caracteristicas da precipitação do periodo de amostragem c o sistema de manejo utilizado numa plantação de cacau (com ou sem sombra) influem nas quantidades de nutrientes removidos pela água de chuva.

Além disso, constata-se que o K ć o nutriente que apresenta a maior mobilidade num agrossistema de cacau. Fassbender et al (10) demonstram que o K, seguramente, é o fator limitante natural de eficiência do cultivo de cacau. Em ecossistemas florestais de clima tropical e temperado o K , normalmente, é o nutriente de maior mobilidade $(7,8,23)$.

A presença de nutrientes na água via throughfall e stemflow (Quadro 6), independentemente de acréscimos líquidos, aumentaria substancialmente a disponibilidade dos nutrientes no solo, e que poderiam, então, ser reabsorvidos pelas raizes do cacaueiro. Desde que não haja perdas consideráveis por lixiviação. Concomitante a isso,, em condições ambientais (solo e clima) identicas ao do presente estudo, Santana c Cabala (26) demonstraram que na produção

Quadro 6. Conteúdo total de nutrientes de diferentes compartimentos do ciclo hidrológico do agrossistema cacau - eritrina.

Tipo precipitação	Ca	Mg		$\begin{gathered} \mathrm{Na} \\ \left.\mathrm{no} \mathrm{O}^{-1}\right) \end{gathered}$	N	\mathbf{P}	Cu	Zn
Precipitaçăo incidente	5.74	318	5.73	25.58	19.88	0.25	0.59	288
Precipitaçăo abaixo da critrina	17.00	6.50	19.52	3230	2071	1.90	1.23	9.50
Throughfall	22.10	12.07	3438	32.30	18.05	2.73	1.02	435
Stemflow	0.41	030	0.98	0.40	0.38	0.07	0.03	0.07
Remoção líquida ${ }^{1}$	5.10	3.32	13.79	6.72	0.83	1.65	0.64	6.62
Remoção líquida ${ }^{2}$	5.51	5.87	15.94	034	-2.28	0.90	-0.18	-5.08

[^18]$1000 \mathrm{~kg} \mathrm{ha}^{-1}$ de sementes secas as quantidades de N, P, K , Ca e Mg removidas não foram significativas em relação aos ingressos de nutrientes, mesmo se forem consideradas as perdas por lixiviação que foram desprezíveis. Outrossim, a capacidades desse tipo de agrossistema em proporcionar relevantes perdas de água de chuva por interceptação (Quadro 1), minimizaria os efeitos da drenagem profunda.

CONCLLSOEES

A metodologia aplicada na tomada das amostras de água via throughfall e stemflow do cacauciro se mostrou adequada, pois os resultados oblidos corroboraram os estudos já realizados sobre a caracterização do ciclo hidrológico de agrossistema de cacau - eritrina do Sul de Bahia

O throughfall e stemflow seriam importantes fontes adicionais de nutrientes para o solo e, consequentemente, para a planta de cacau, considerando para esse tipo de agrossistema as baixas quantidades de nutrientes exportados com a produção de sementes e as pequenas perdas por lixiviação. A estratégia de fertilização, portanto, se deve bascar á adição de elementos apenas em doses de manutenção.

LITERATERACITADA

1. AL VIM. P. DE I ; MACHADO. AD ; VEL.LO. I 1974

Physiological response of cacao to envirommental factors Revista Theobroma (Bra) 4:3-25
2. ATTIWIIL.PM 1966 The chemical composition of rain water in relation to recycling of nutrients in a mature cucalyptos forest Plant and Soil 24:390-406.
3. BERNHARD-REVERSAT, F. 1975 Nutients in throughfall and their quantitative importance in rain forest mineral cycies. In Tropical ecological systems: Trends in terrestial and aquatic rescarch. F.B. Golley, E Medina (Eds) New York, Springer p 153-159
4. BOYER, 3. 1973. Cycles de la matiére organique et des eléments mineraux dans une cacaoyère camaromaise. Café Cacao The 17:3-24

5 CARLISLE, A., BROWN, AHF; WHIIE,EJ 1966 The organic matter and nutrient clements in the precipitation beneah a sessile oak (Quercus petraea) canopy. Joumal of Ecology 54:87-98
6. CARLISIE, A. BROWN, AMF.; WHITE, EJ 1967. The nutrient content of trees stem flow and ground flora liter and leachates in a sessile (Quercus petraea) woodland Journal of Ecology 55:615-627

7 CllAPIN, I.S. 1980. The mineral nutrition of wild plants Annual Review of Ecology and Systematics 11:233-260

8 EAION, J.S., I.IKENS, G.E; BORMANN, FII. 1973 Throughfall and stemflow chemistry in a northern hardwood forest Journal of Ecology 61:459:508.
9. FASSBENDER, II W 1985 Ciclos da matéria orgânica e dos nutrientes em ecossistemas florestais dos trópicos. In Simpósio sobre Reciclagem de Nutrientes e Agricultura de Baixos Insumos nos Trópicos (1984, Mhéus. BA. Bra) Anais llhéus, CEPLAC. p 203-230.

10 IASSBENDER, HW ; ALPIZAR, L.; HEUVELDDP, J; ENRIQUE, G.; FOLSTER, H. 1985. Ciclos de matéria organica e dos nutrientes em agrossistemas com cacauciros. In Simpósio sobre Reciclagem de Nutrientes e Agricultura de Baixos Insumos nos Trópicos (1984, Ihéus, BA, Bra) Anais Hhéus. CEPLAC p. 231-257
11. GESPER, PL. : HOLOWAYCHUCK N. 1970. Effects of stemflow water on a Miami soil under a beech tree I. Morphological and physical properties. Proceedings of the Soil Science Society of America 34:779-786

12 GESPER, PL.; HOLOWAYCHUCK N 1970. Effects of stemflow water on a Miami soil under a beech tree II Chemical properties. Proceedings of the Soil Science Sccicty of America 34:786-794
13. GESPER, PL ; HOLOWAYCHUCK, N 1971. Some effects of stemflow forest canopy trees on chemical properties of soil Ecology 52:691-702
14. JORDAN, CF 1978. Stemflow and nutrient transfer in a tropical rain forest. Oikos 31:257-263.

15 JORDAN CF, GOLLEY, F. HALL, J; HALL, J 1980 Nutrient scavenging of rainfall by the canopy of an Amazonian rain forest. Biotrópica 12:61-66
16. LEITE, J. de O; VALLE, R R. 1990 Nutrient cicling in the cacao ecosystem: Rain and throughfall as nutrient sources for the soil and the cacao tree. Agriculture, Ecosystems and Environment 32:143-154
17. LIKENS, GE.; BORMANN, F.H.; PIERCE, S.R., EATON, S J.; JOHNSON, NM. 1977. Biochemistry of a forested ecosystem. New York, Springer. 146 p.

18 MILDE, L CE.: NITZSHE, MH. 1985 Estudo da precipitação diária: Regimes pluviométricos para a regiäo cacaucira da Bahia. Revista Theobroma (Bra) 15(2):7995

19 MIRANDA, RAC. 1982 Interception of rainfall in an apple orchard and its subsequent evaporation. Thesis Mag. Ph Norwich, England, University of East Anglic 140 p .
20. MIRANDA, R.A.C 1985. Observaçöes iniciais da perda por interceptação de chuva em cacauciro. Revista Theobroma (Bra) 15(2):73-78
21. MIRANDA, R A C. 1987. Interceptação da chuva por cacauciros no Sudeste da Bahia Revista Theobroma (Bra) 17(4):251-259.
22. NHLLGARD, B 1970. Precipitation, its chernical composition and effect on soil water in a beech and a spruce forest in south Sweden. Oikos 21:208-217.

23 NYE. P H. 1961 Organic matter and nutrient cycles under moist tropical forest Plant and Soil 13:333-346
24. PARKER, G.G 1983 Throughfall and stemflow in the forest nutrient cycle. Advances in Ecological Research 13:57-133.
25. SANTANA, M.B M: PEREIRA, GC; MORAIS, FI DE OS 1976 Métodos de análises de solos, plantas e âgua utilizados no laboratório do Setor de Fertilidade do CEPEC Ilhéus, Centro de Pesquisas do Cacau. 33p
26. SANTANA, MBM: CABAIA-ROSAND, P. 1984 Reciclagem de nutrientes em plantações de cacau sombreada com eritrina. In Conference Internationale sur la Recherche Cacaoyère (9., 1984, Lomé, Togo). Actes. Lagos, Nigéria, Cocoa Producers Alliance. p 205-210.
27. IHOMAS, W.A 1969. Accumulation and cycling of calcium by dogwood trees Ecology Monography 39:101120.

28 TUKEY JR. H.B. 1970. The leaching of substances from plants Annual Review of Plant Physiology 21:305-324

29 VOIGI, GK. 1960. Alteration of the composition of rainwater by trees American Midland Naturalist 63:321-326
30. WITI WER, SH: TEUBNER, F G. 1959 Foliar absorption of mineral nutrients. Annual Review of Physiology 10:13-32

Propagación Clonal in vitro de Diferentes Especies de Poró ${ }^{1}$

A Berrios*, J. Sandoval F.**, L E. Müller**

Abstract

Small plantlets raised in vitro from seeds of Erythrina poeppigiana, E. berteroana, E costaricensis and E.fusca were used as starting material. From each plantlet the vegetative apex and cotyledonary node were isolated. Murashige and Skoog (M.S.) medium was used for establishing the cultures. Different concentrations of BA ($0,1,2,4 \mathrm{mg} \cdot \mathrm{I}^{-1}$) and BAP $\left(0,1,2,4,8 \mathrm{mg} \cdot 1^{-1}\right)$ were tested, as well as all possible combinations. For the in vitro layering the same M.S. basal medium was used supplemented by 1 BA (Img " ${ }^{-1-1}$) or BA ($1 \mathrm{mg}{ }^{-1} 1^{-1}$). The survival, oxidation, and contamination percentages, consideringall cultivated explants during establishment varied with the species. The cultured apices produced some roots. The development of the cotyledonary buds took place only in E. berteroana and E.costaricensis; the best treatments were 2 or $4 \mathrm{mg} \cdot 1^{-1} \mathrm{BA}$ for E berteroana, independent of the IBA concentration, and IBA $1 \mathrm{mg}{ }^{-1} I^{-1}$ with $8 \mathrm{mg} \cdot 1^{-1}$ of BA for E costaricensis. In vitro layering produced an adequate number of explants to initiate the multiplication phase.

Key words: micropropagation, Erythrina spp.

INTRODLCCION

El poró (Erythrina spp.) es una leguminosa arbórea usada frecuentemente como sombra en cafetales y cacaotales y, también, como cercas vivas. Es capaz de fijar nitrógeno, lo que contribuye al mejoramiento de la fertilidad del suclo. Generalmente se propaga por estacas, pero este método de propagación asexual tiene varias desventajas: pérdida de la capacidad de enraizamiento a medida que el árbol de origen es más viejo; los árboles portadores de estacas deben estar lo suficientemente maduros como para expresar sus caracteristicas; no se pueden obtencr

[^19]
COMPENDIO

Se usaron plántulas provenientes de semillas germinadas in vitro de Erythrinapoeppigina, E berteroana, E. costaricensis y E. fusca. De cada plántula se aisló el ápice vegetativo y el nudo cotiledonar. En la fase de establecimiento se usô el medio de cultivo de Murashige y Skoog (M.S.). Se probaron diferentes concentraciones de MA $\left(0,1,2\right.$ y $\left.4 \mathrm{mg} \cdot 1^{-1}\right)$ y de BA ($0,1,2,4$ y $8 \mathrm{mg}{ }^{-1}$), en todas sus posibles combinaciones. En la fase de multiplicación y cultivo horizontal (in vitro layering) también se usó el medio M.S. basal más MBA ($\mathrm{Img} \cdot \mathrm{I}^{1}$) Los porcentajes de supervivencia, oxidación y contaminación obtenidos del total de explantes cultivados en la fase de establecimiento, variaron con la especic. Se notóen el cultivo de ápices vegetativos la diferenciación de raíces. El desarrollo de yemas cotifedonares solo ocurrio en E. berteroana y E. costaricensis. Los mejores tratamientos fueron $2 \mathrm{mg} \cdot \mathrm{I}^{-1}$ o $4 \mathrm{mg} \cdot \mathrm{I}^{-1}$ de BA para E. berteroana, independientemente de la concentración de $1 B A$, y $1 \mathrm{mg} \cdot \mathrm{I}^{-1}$ de 1 BA más $8 \mathrm{mg} \cdot 1^{-1}$ de BA para E costaricensis. Por medio del cultivo horizontal se obtuvo un número adecuado de explantes para proseguir con la fase de multiplicación.

Palabras clave: micropropagaciôn, Erythrina spp.
grandes cantidades de ellas a partir de una sola planta. Una opción es utilizar la metodologia del cultivo de tejidos o micropropagación. Su principal ventaja reside en su gran capacidad de multiplicación vegetativa a partir de fragmentos de órganos o tejidos de una planta madre seleccionada.

En la actualidad se reconoce que la multiplicación clonal in vitro o micropropagación tiene su mayor capacidad de aplicación en plantas arbórcas (10, 20). Sin embargo, las investigaciones efectuadas en este campo con árboles tropicales, especialmente con aquellos de la familia Leguminosac, son pocas, si se comparan con las hechas en especies de clima templado (15, 16). En la mayoría de los trabajos se consiguió la propagación clonal in vitro con el desarrollo de yemas adventicias a partir de callos. En pocos casos se usaron árboles adultos como plantas-madre. Rao y L.ee (15) afirmaron que entre más joven sea el tejido, mejor será su crecimiento al cultivarse in vitro. Esta parece ser la principal razón para seleccionar explantes que provengan de plantas jóvenes.

Dhawan y Bhojwani (6) utilizaron nudos cotiledonares y nudos de plántulas de Leucaena leucocephala, y lograron el desarrollo de yemas axilares al cultivarlos en un medio $M S_{\text {. }}$ suplementado con $0.68 \mathrm{mg} \cdot 1^{-1}$ de BA más $58.4 \mathrm{mg}-1^{-1}$ de glutamina. En el cultivo in vitro de ápices vegetativos de L. leucocephala se obtuvo (17) la diferenciación de yemas adventicias en un medio M.S. más $5 \mathrm{mg} \cdot 1^{-1}$ de K (cinetina)

Goyal y Arya (7) informaron del desarrollo de yemas adventicias en Prosopis cineraria a partir del cultivo in vitro de hipocótilos en un medio M.S. más $4.5 \mathrm{mg} \cdot 1^{-1}$ de K y $0.25 \mathrm{mg} \cdot 1^{-1}$ de NAA. En un cultivo in vitro de hipocótilos de Albizzia spp. se diferenciaron callos y yemas adventicias al emplearse un medio de cultivo B5 con $2.3 \mathrm{mg} \cdot 1^{-1}$ de BA (23).

En el presente trabajo, y de acuerdo con el conocimiento actual sobre el tema, se propusieron los siguientes objetivos:

- Establecer las mejores condiciones para el cultivo in vitro de ápices vegetativos y nudos cotiledonares de diferentes especies de Erythrina.
- Lograr, por medio de explantes secundarios, la multiplicación clonal rápida in vitro.

MATERIALES Y METODOS

Se usaron plántulas de cuatro especies de Erythrina. E. poeppigiana, E. berteroana, E. costaricensis y E fusca. Estas plántulas se obtuvieron de semillas germinadas asépticamente, suministradas por el Banco Latinoamericano de Semillas Forestales del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE).

La desinfección de las semillas se hizo en una campana de flujo laminar, sumergiéndolas en etanol al 95% por dos minutos. Se enjuagaron en agua destilada estéril por 5 min ., seguido de una inmersión en hipoclorito de sodio (blanqueador comercial, 5.25% de NaCl) por 20 minutos. Luego se hicieron cuatro lavados con agua destilada estéril, cada uno de cinco minutos.

Las simientes desinfectadas se colocaron en tubos de cultivo de $15 \mathrm{~cm} \times 2.5 \mathrm{~cm}$, que contenian alicuotas de 10 ml del medio basal semisólido (0.7% de agar) de Murashige y Skoog (13) sin sacarosa.

Dos o tres semanas después de sembrar las semillas, yase habían formado plántulas adecuadas para efectuar la excisión de los explantes. La disección se realizó en
la campana de flujo laminar. Los explantes se colocaron en un plato de Petri estéril de 14 cm de diámetro. La operación de disección se efectuó con pinzas y escalpelos previamente esterilizados con la ayuda de un mechero de gas. De cada plántula se aisló el ápice vegetativo y el nudo cotiledonar. Para el cultivo horizontal se usaron tallitos desarrollados in vitro a partir de los ápices vegetativos.

Los explantes se enjuagaron en una solución antioxidante estéril de ácido ascórbico ($100 \mathrm{mg} \mathrm{l}^{-1}$) en combinación con ácido citrico ($100 \mathrm{mg}, 1^{-1}$) durante 20 minutos.

Los medios de cultivo utilizados se fundamentaron en el medio basal semisólido de Murashige y Skoog (13). Para las modificaciones de este medio basal se emplearon dos designaciones: (E) para el tipo usado en la fase de establecimiento y (M) para la fase de multiplicación y cultivo horizontal (in vitro layering).

En la fase E se usaron tubos de cultivo de $9.5 \mathrm{~cm} x$ 2 cm que contenian alícuotas de 10 ml del medio semisólido (0.7% de agar) respectivo (Cuadro 1). En esta fase se cultivó un explante por tubo; para cada uno de los medios se sembraron 25 repeticiones (25 explantes).

En la fase M se emplearon cajitas de plástico marca Magenta (tipo GA 7) que contenían alícuotas de 50 ml de medio M.S. semisólido (0.15% de Gelrite) y $1 \mathrm{mg} \mathrm{r}^{-1}$ de BA (Cuadro 1). Se sembró un eje caulinar en posición horizontal por cada recipiente. El número de ejes caulinares cultivados varió con la especie de Eryithrina, ya que dependió de la cantidad de material vegetal disponible. Las yemas desarrolladas se separaron luego del explante original y se sembraron en medio M.S. semisólido (0.15% de Gelrite) con $1 \mathrm{mg} \cdot 1^{-1}$ de IBA (Cuadro 1) para estimular su crecimiento en longitud.

Los tubos de cultivo inoculados se colocaron en una cámara de crecimiento, con un fotoperíodo de 16 h e iluminancia de 2000 lux a nivel de los estantes. La luz fue proporcionada por lámparas fluorescentes del tipo G.E. Gro y Sho. La temperatura se ajustó a $27 \pm 2^{\circ}$ centigrados.

En la fase de establecimiento (E) sc evaluó: a) El número de explantes supervivientes, contaminados y oxidados; b) la respuesta morfogénica de ápices vegetativos; y c) el número de yemas cotiledonares formadas por nudo cotiledonar.

Esta evaluación se hizo cuatro semanas después de sembrados los explantes en el medio correspondiente.

Cuadro 1. Composición de los medios de cultivo usados en la propagación clonal in vitro de Erythrina spp.

Medio	Reguladores de crecimiento (mg. 1^{-1})
	IBA $\quad \mathrm{BA}$

Fase de establecimiento (E)

E_{1}	0	0
E_{2}	1	0
E_{3}	2	0
E_{4}	4	0
E_{3}	0	1
E_{6}	1	1
E_{7}	2	1
E_{3}	4	1
E_{9}	0	2
E_{10}	2	2
E_{11}	2	2
E_{12}	4	2
E_{13}	0	4
E_{14}	1	4
E_{15}	2	4
E_{16}	4	4
E_{17}	0	8
E_{13}	1	8
E_{19}	2	8
E_{50}	4	8

Fase de multiplicacion (M)

M_{1}	0	1
M_{2}	1	0

Notas:
A todos los medios se adicionó sacarosa al 3% y $30 \mathrm{mg} .1^{-1}$ de cisteina-HCL

En la fase de multiplicación y cultivo horizontal (M) se evaluo: a) el número de yemas axilares brotadas por cada eje caulinar; b) tiempo (en días) transcurrido para el brote de las yemas axilares del eje caulinar; y el c) tiempo (en dias) transcurrido para que las yemas axilares formaran ejes caulinares con tamaño apto para su siembra horizontal.

Para cada especie de Erythrina investigada, se calculó la tasa de multiplicación potencial, con base en el siguiente procedimiento:

Se sumó el número total de días que tardaron los explantes para completar un ciclo de propagación. Se dividió el número de días de un año (365) entre el dato
anterior para obtener el número potencial de ciclos por año. Con estos datos se obtuvo la tasa de multiplicación potencial de acuerdo con la siguiente fórmula:
()$^{a}=$ tasa de multiplicación potencial
donde:
$a=$ número promedio de yemas axilares producidas en el cultivo horizontal; y
$\mathrm{b}=$ número de ciclos de propagación por año.
Los totales de supervivencia, contaminación y oxidación obtenidos en la fase de establecimiento se expresaron en porcentajes, al igual que la respuesta morfogénica del cultivo in vitro de ápices vegetativos.

Para el cultivo in vitro de nudos cotiledonares se utilizó un discño completamente al azar. Se hicieron análisis de variancia y comparaciones de medias mediante la metodología establecida por la prueba de Amplitud Múltiple de Duncan.

RESULTADOS Y DISCUSION

Según varios autores $(1,4,19)$, el establecimiento in vitro de especies arbóreas es difícil de lograr. La obtención de los explantes, a partir de plántulas provenientes de semillas germinadas asépticamente, resuelve algunos problemas, como por ejemplo la desinfección complicada del matcrial vegetal y la poca respuesta morfogénica en tejidos de árboles adultos. Bonga (3) indicó que cuanto más joven sea la planta, más sencilla será su micropropación.

Como se observa en el Cuadro 2, la supervivencia en esta fase, expresada en porcentaje, varió con la especie de Erythrina. Estos datos se basan en la observación de los cultivos que, luego de cuatro semanas de la inoculación, no se contaminaron u oxidaron.

Cuadro 2. Supervivencia, contaminación y oxidación (\%) obtenidas del total de explantes cultivados en la fase de establecimiento de la propagación in vitro de Erythrina spp.

Especic	Supervivencia $(\%)$	Oxidación $(\%)$	Contaminación $(\%)$
E poeppigiana	59	37	4
E. berteroana	84	9	7
E costaricensis	72	24	4
E. fusca	81	10	9

Se esperó que la contaminación fuese mínima por el origen de los explantes Sin embargo, se encontró 4% en E poeppigina y E costaricensis, 9% en E fusca y 7% en E. berteroana (Cuadro 2). Esto se debió principalmente a la presencia de microorganismos endofiticos, en especial bacterias. Al respecto, Sweet y Bolton (21) concluyeron que estos patógenos también están presentes en semillas y, por ende, en las plántulas que de ellas surgen.

Se encontró que la oxidación fue la causa más importante de la pérdida de propágulos. Cuando éstos se cortaron, aparecieron coloraciones oscuras en las zonas dañadas, lo que concuerda con lo propuesto por Bonga (2), quien afirmó que la oxidación es un impedimento para la iniciación de un cultivo aséptico

Este fenómeno ocurre por la acción de las enzimas de tipo polifenoloxidas y tirosinasas que se liberan o sintetizan cuando los tejidos sufren heridas. Actúan sobre los polifenoles y la lirosina, oxidándolos a quinonas que son fitotóxicas Estas sustancias, a su vez, pueden polimerizarse y afectar las proteínas. De esta forma se inhibe el crecimiento $(2,9)$.

Durante esta investigación se trató de controlar la oxidación con enjuagues de los explantes en una solución estéril de ácido ascórbico en combinación con ácido citrico, al agregar cisteina- HCl al medio de cultivo y hacer subcultivos frecuentes. Sin embargo, para E. peoppigiana y E costaricensis la oxidación alcanzó 37% y 24% respectivamente, to que redujo de manera considerable la supervivencia de estas dos especies en la fase de establecimiento. Estos resultados concuerdan con lo observado por varios autores $(5,14,17)$ al cultivar in vitro fragmentos de plántulas de Dalbergia sissoo y L leucocephala.

En relación con la respuesta morfogénica del cultivo de ápices vegetativos se observó una tendencia uniforme en la diferenciación de raices en los tratamientos que carecieron de BA . Cuando no se añadió ningún regulador de crecimiento al medio de cultivo, se formaron raices en los explantos de E berteroana (44\%), E costaricensis (80%) y E. fusca (63%). Esto significa que el nivel endógeno de auxinas para este género es alto, lo que concucrda con los resultados de otros autores (18), quienes constataron que tejidos jóvenes presentan frecuentemente contenidos auxínicos elevados que promucven, en el cultivo in vitro, la iniciación de raices.

Teóricamente concentraciones iguales de auxina y citocinina estimulan la formación de callo. Sin embargo, en esta investigación, la presencia de esta masa indiferenciada de células, especialmente en la base de los ejes caulinares, fue una respuesta generalizada en
todas las especies de Erythrina para los niveles y combinaciones de reguladores de crecimiento estudiados. Thomas y Mehta (22) informaron acerca de un comportamiento semejante en Ceratonia siliqua Se cree que esto pueda deberse al contacto directo de esta parte del explante con el medio y, por lo tanto, a una concentración mayor de las hormonas De esta forma las células de esta zona de tejido responden más intensamente a la acción de los reguladores de crecimiento contenidos en el medio nutritivo.

Una alternativa posible para producir plántulas hubiera sido la transferencia de los callos formados a un medio favorable para la diferenciación de yemas. Pero este procedimiento se descartó por el riesgo que significa para la estabilidad genética del material. Como lo indicó Kester (10), se debe evitar el uso del callo por la posible obtención de variantes (somaclonal).

El principal objetivo del cultivo asćptico de ápices vegetativos fue el de probar su utilidad para la multiplicación rápida in vitro. A pesar del gran numero de tratamientos probados, no se logró el crecimiento y desarrollo de yemas axilares tatentes o adventicias. Unicamente se regeneró un tallo a partir de un ápice vegetativo, es decir no se cumplió con el principal objetivo de esta metodologia: obtener un número adecuado de propágulos a partir de un solo explante. Dhawhan y Bhojwani (6) informaron sobre una situación similar en cultivos de Lencocephala.

Al emplear los nudos cotiledonares de las plantas se pretendió conseguir la brotación de las yomas cotiledonares. Sin cmbargo, esto ocurrió únicamente en los cultivos de E berteroana y E costaricensis

Puesto que se evaluaron muchas combinaciones de IBA más BA, se descartó la posibilidad de que no se incluyeran niveles adecuados de estos reguladores de crecimiento para permitir la diferenciación de estas yemas en E poeppigiana y E fusco. En éstas solamente se consiguió la formación de callo en la mayoria de los tratamientos probados.

De los análisis de variancia efectuados para los datos obtenidosen E berteroana y E costaricensis se deduce que el efecto del BA fue más significativo que el del IBA, en relación con el número de yemas cotiledonares diferenciadas. Se informó de un caso similar en L leucocephala cultivada in vitro (8).

En el caso de E berteroana, al considerar en el análisis estadistico sólo el IBA (Cuadro 3), se alcanzó el mayor número promedio de yemas cotiledonares desarrolladas cuando no se añadió esta auxina al medio de cultivo. Este númcro se redujo conforme aumentó

Cuadro 3. Número promedio de yemas cotiledonares desarrolladas en el cultivo in vitro de nudos cotiledonares de E. berteroana al considerar sólo las concentraciones de IBA (mg. 1^{-1}).

Concentración de IBA (mg.1 ${ }^{-1}$)	Promedio de yemas $\left(^{*}\right)$ (núm.)
0	
1	$1.0323(\mathrm{a})$
2	$0.9180(\mathrm{a})$
4	$0.8750(\mathrm{a})$

Nota:

* Diferencias entre promedios seguidos por una misma letra no difieren significativamente de acuerdo con la Prueba de Amplitud Múltiple de Duncan al 5% de probabilidad.
el nivel del IBA. Aunque estadísticamente no hubo diferencias significativas entre medias al obtenerse un coeficiente de variación muy alto, debido posiblemente a que los nudos cotiledonares usados prevenian de grupos aleatorizados de simientes, es interesante destacar la tendencia establecida, pues se sabe que las auxinas normalmente no estimulan la diferenciación de yemas (18).

En el Cuadro 4 aparecen los promedios de yemas cotiledonares desarrolladas en E berteroana, cuando enel análisis estadístico se consideraron únicamente las dosis de BA. En estas circunstancias las cifras más altas se obtuvieron con $2 \mathrm{mg} \cdot 1^{-1}$ y 4 mg " 1^{-1} de BA ..

Este mismo comportamiento se presentó y fue más evidente en E. costaricensis (Cuadros 5 y 6). Nótese

Cuadro 4. Número promedio de yemas cotiledonares desarrolladas en el cultivo in vitro de nudos cotiledonares de E. berteroana al considerar sólo las concentraciones de BA (mg. ${ }^{12}$) ${ }^{\text {n }}$

Concentración de BA (mg. $\left.\mathbf{l}^{-1}\right)$	Promedio de yemas (${ }^{(4)}$ (núm.)
4	
2	$1.1333(\mathrm{a})$
8	$1.0244(\mathrm{a})$
0	$0.8723(\mathrm{ab})$
1	$0.8043(\mathrm{ab})$
$0.6136(\mathrm{~b})$	

que para el IBA los promedios mayores ocurrieron con los niveles de $1 \mathrm{mg} \cdot 1^{-1}$ y $0 \mathrm{mg} \cdot 1^{-1}$, mientras que para el BA se dieron con los niveles de $8 \mathrm{mg} \cdot \mathrm{I}^{-1} \mathrm{y}$ $4 \mathrm{mg} \cdot \mathrm{l}^{-1}$.

Todos los trabajos consultados concuerdan con los resultados anteriores. En cultivos de nudos de Tamarindus indica se logró la diferenciación de yemas múlliples al usar $0.2 \mathrm{mg} \cdot 1^{-1}$ de cinctina más $0.5 \mathrm{mg} \cdot 1^{-1}$ de BA (11).

Cuadro 5. Número promedio de yemas cotiledonares desartolladas en el cultivo in vitro de nudos cotiledonares de E. costaricensis al considerar sólo las concentraciones de IBA (mg. 1^{-1}).

Concentración de IBA (mg.1 ${ }^{1+}$)	Promedio de yemas (*) (núm.)
0	$0.7458(\mathrm{a})$
4	$0.6610(\mathrm{a})$
2	$0.4211(\mathrm{~b})$

Nota:

* Diferencias entre promedios seguidos por una misma letra no difieren significativamente de acuerdo con la Prueba de Amplitud Múltiple de Duncan al 5% de probabilidad.

Cuadro 6. Número promedio de yemas cotiledonares desarrolladas en el cultivo in vitro de nudos cotiledonares de E. costaricensis al considerar sólo las concentraciones de BA (mg. $1^{1{ }^{1}}$).

Concentración de BA (mg.1 $\left.\mathbf{1}^{1}\right)$	Promedio de yemas ${ }^{\left({ }^{*}\right)}$ (núm.)
8	$0.9333(\mathrm{a})$
4	$0.8913(\mathrm{a})$
2	$0.4255(\mathrm{~b})$
1	$0.3261(\mathrm{~b})$
0	$0.2444(\mathrm{~b})$

Nota:

* Diferencias entre promedios seguidos por una misma letra no difieren significativamente de acuerdo con la Prueba de Amplitud Múltiple de Duncan al 5% de probabilidad.

Para E. berteroana no se presentó una interacción estadisticamente significativa entre el IBA y el BA. Esto indica que, para estas condiciones, los factores considerados (auxina-citocinina) actuaron independientemente. Conclusiones similares permitieron un ensayo de propagación in vitro de L leucocephala, en el cual se utilizaron NAA y BA (8).

Para E. costaricensis se presentó una interacción altamente significativa entre el IBA y el BA. Puede concluirse que el efecto del BA fue diferente para cada concentración de IBA empleada. El nivel óptimo del BA dependió, en este caso, del nivel de IBA utilizado.

El mayor número promedio de yemas cotiledonares diferenciadas de E berteroana se logró con concentraciones de BA que oscilaron entre 2 y 4 mg . 1^{-1}, sin que dependiera del IBA, ya que se obtuvo el mismo resultado en ausencia o en presencia de este regulador.

Para E. costaricensis, el mejor tratamiento para el desarrollo de yemas cotiledonares fue el que contenia $1 \mathrm{mg} \cdot 1^{-1}$ de IBA más $8 \mathrm{mg} \cdot 1^{-1}$ de BA Upadhyaya y Chandra (24) obtuvieron la mayor cantidad de yemas adventicias en A. lebbeck al usar $1 \mathrm{mg} \cdot 1^{-1}$ de IAA más 5 mg - 1^{-1} de cinctina en el medio de cultivo.

Sin embargo, al emplear el cultivo horizontal, con el propósito de estimular el crecimiento y desarrollo de las yemas axilares y adventicias, se pudo obtener un número adecuado de explantes para comenzar la fase de multiplicación (M). Los ejes caulinares usados para este propósito se obtuvieron de la fase E, formados a partir de un ápice vegetativo o de un nudo cotiledonar.

En el Cuadro 7 se presenta el número promedio de yemas axilares desarrolladas en el cultivo horizontal, cuando se añadió $1 \mathrm{mg} \cdot 1^{-1}$ de BA al medio de cultivo.

Cuadro 7. Número promedio de yemas desarrolladas en el cultivo horizontal de ejes caulinares de Erythrina spp.

Especie	Promedio de yemas (núm.)
E. poeppigiana	10.0
E. berteroana	7.3
E. costaricensis	5.9
E. fusca	5.7

Para estimar el número aproximado de ciclos de propagación por año se determinó el tiempo (en dias) que tardó en desarrollarse una yema axilar. También se contó el lapso (en días) que tardó una yema axilar en crecer hasta formar un eje caulinar, con la altura adecuada para repetir el procedimiento del cultivo horizontal (Cuadro 8). De la información presentada en el Cuadro 8 se deduce que un ciclo de propagación puede completarse en un tiempo máximo de dos meses.

Cuadro 8. Tiempo total (d) para completar un ciclo propagación clonal (subcultivo) in vitro de Erythrina spp.

EspecieTiempo promedio (d) para la diferenciación de yemas	Tiempo promedio (d) para el crecimiento de yemas hasta formar ejes caulinares adecuados	Tiempo total promedio (d)	
		37	67
E. poeppigiana	31	30	46
E. berteroana	16	30	46
E. costaricensis	23	30	43

Cuadro 9. Número aproximado de ciclos de propagación por año y tasa de multiplicación potencial para Erythrina spp.

Especie	Ciclos por año (núm.)	Tasa de multiplicación potencial (explantes por año) (núm.)
E. poeppigiana	5.4	$2.5 .10^{5}$
E berteroana	7.9	$6.3 .10^{6}$
E costaricensis	7.9	$1.3 .10^{6}$
E. fusca	8.5	$2.7 .10^{6}$

En el Cuadro 9 se anotan el número aproximado de ciclos de propagación por año y las tasas de multiplicación potencial alcanzadas para cada especie de Erythrina.

Paraque la propagación clonal in vitro sea ventajosa debe obtenerse un número adecuado de propágulos originados por un solo explante La tasa de multiplicación potencial permite evaluar la eficiencia de este tipo de reproducción asexual. De acuerdo con los resultados, este valor varió con la especic de ErythrinaD (Cuadro 9).

De lo anterior se deduce que, en relación con las demás especies investigadas, E' poeppigiana tuvo una respuesta diferente. Sin embargo, si se compara las tasas de multiplicación alcanzadas con otras en géneros taxonómicamente afines a Erythrina, se nota que representan una cifra elevada. Existen estimaciones (11) sobre la posibilidad de regenerar 10000 plantas de T.
indica por año. Trabajos hechos en D. latifolia permitieron concluir que es posible obtener 100000 cx plantes por año (12). Se debe enfatizar que las tasas calculadas representan números teóricos que no toman en cuenta algunos factores que pueden afectar el éxito del cultivo in vitro.

CONCLUSIONES

A pesar de la diversidad encontrada en las respuestas de las diferentes especies de Erythrina, se puede concluir que la micropropagación rápida es factible cn este género. Al intentar utilizar árboles maduros del campo como materia prima para los explantes, es de esperar que la fase de establecimiento sea bastante problemática debido a las altas tasas de oxidación y contaminación. Una vez obtenidos los cultivos asépticos, sea a partir de semilla o de partes vegetativas de plantas ya establecidas, el método de cultivo horizontal es el más adecuado para la obtención de un número grande de plantas

LITERATURA CITADA

1. BIONDI. S; THORPE TA. 1982. Clonal propagation of forest tree species. In International Symposiumon Tissue Culture of Economically Important Plants (1981, Singapore). Proccedings A.N. Rao (Ed) Singapore, Committee on Science and Technology in Developing Countries, Asian Network for Biological Sciences. p. 197-204.
2. BONGA, J.M. 1982. Tissue culture techniques. In Tissuc culture in forestry. JM. Bonga, D J. Durzan (Eds.). La Haya, Martinus Nijhoff/Dr W. Junk. p. 4-35
3. BONGA, J.M 1982 Vegetative propagation in relation to juvenility, maturity and rejuvenation. In Tissue culture in forestry J M. Bonga, D.J Durzan (Eds.) La Haya, Martinus Nijhoff/Dr W. Junk p. 387-412
4. BROWN, C.L ; SOMMER, HE 1982. Vegetative propagation of dicotyledonous trees In Tissue culure in forestry J M. Bonga, D.J Durzan (Eds) La Haya, Martinus Nijhoff/Dr W. Junk. p. 109-149.
5. DATTA, SK.; DATTA, K.; PRAMANIK, T. 1983. In vitro clonal multiplication of mature trees of Dalbergia sissoo Roxb. Plant Cell. Tissue and Organ Culture 2(1):15-20.
6. DHAWAN, V.; BHOJWANI, S.S 1985 In vitro vegelative propagation of Leucaena leucocephala (Lam) de Wit. Plant Cell Reports 4:315-318.
7. GOYAL, Y.; ARYA, HC 1981. Differentiation in cultures of Prosopis cineraria Linn. Current Science 50(10):468469.
8. GOYAL, Y.; BINGHAN, RL ; FEL KER, P. 1985. Propagation of the tropical tree Leucaena leucocephala K67, by in virro bud culture. Plant Cell. Tissue and Organ Culture 4(1):3-10.
9. HARMS, CT.; BAKIIR, I; OER TLII, J.J 1983. Clonal multuplication in vitro of red beet (Beta vulgaris) by adventitious shoot formation Plant Cell, Tissuc and Organ Culture 2(2):93-102
10. KESIER, D.E. 1982. The clone in horticulture HortScience 18(6):831-837.

11 MASCARENILAS,A.F;GUPTA, P.K ; KUL KARNI, V.M.; MEHTA, U.; IYER, R S ; KHUSPE, S S: JAGANNATHAN, V. 1982 Propagation of trees by tissue culture. In International Symposium on Tissue Culture of Economically Important Plants (1981, Singapore) Proceedings. A.N. Rao (Ed.) Singapore, Committee on Science and Technology in Developing Countries, Asian Network for Biological Sciences p. 175-179
12. MASCARENIAS, AF.: HAZARA, S.; POTDAR, U: KULKARNI, D.K.; GUPTA. P.K. 1982 Rapid clonal multiplication of mature forest trees through dissue culture In International Symposium on Tissue Culture of Economically Important Plants (1981, Singapore) Proccedings A N. Rao (Ed.). Singapore, Committee on Science and Technology in Developing Countries, Asian Network for Biological Sciences p 719-720

13 MURASHIGE, T; SKOOG, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15(3):473-497.
14. PEASLEY, E.L ; COLLINS, G.B. 1980 Development of an in vitro culture system for Leucaena. Leucaena Newsletter (Taiwan) 1:54
15. RAO. A.N. LEEE, S.K. 1982 Importance of tissuc culture in tree propagation. In International Congress of Plant, Tissue and Cell Culture (5., 1982. Tokyo) Proccedings. A. Fujiwara (Ed) Tokyo, Japancse Association for Plant Tissue Culture p. 715-718.

16 RAO, AN ; LEE, SK 1986 In vitro studies on trees of humid tropics. In International Congress of Plant Tissue and Cell Culture (6,1986 , Minncapolis, Minn) Abstracts Minneapolis, University of Minnesota, International Association for Plant Tissue Culture p. 14
17. RAVISHANKAR, G.A.; AMRIIA WALI; GREWAL, S. 1983 Plantlet formation through tissuc cultures of Leucaena leucocephala Leucaena Research Reports (Taiwan) 4:37.
18. REGULATING GROWTH and development: The plant hormones. 1976. In Raven, P.H., Evert, RF, Curlis, H (Eds). Biology of Plants 2 ed . New York, Worth. p. $483-496$
19. SKIRVIN, R M. 1981. Fruit crops. In Cloning Agricultural Plants via in vitro Techniques. B V Conger (Ed). Boca Raton, Florida, CRC p. 51-139
20. SONDIAL, MR.; SHARP, WR.; EVANS, DA. 1984. Applications for agriculure: The potential for the Third World ATAS Bulletin (EE UU) 1:14-20
21. SWEET, HC.; BOLTON, W.E. 1979. The surface decontamination of seeds to produce axenic seedlings. American Journal of Botany 66(6):692-698.
22. THOMAS, V ; MEHTA, A.R 1983. Effect of phloroglucinol on shoot growth and initiation of roots in carob tree cultures grown in vitro. In Symposium on Plant Cell Culture in Crop Improvement (1981, Calcuta, India) Proceedings. SK. Sen, KL. Giles (Eds). New York, Plenum p. 451-457.
23. TOMAR, UK.; GUPTA, S.C. 1986. Organogenesis and somatic embryogenesis inleguminous trees (Albizia spp). In International Congress of Plant Tissue and Cell Culture (6., 1986, Minneapolis, Minn) Abstracts. Minneapolis, University of Minnesota, International Association for Plant Tissue Culture p. 41

24 UPADHYAYA, S; CHANDRA, N. 1983. Shoot and plantlet formation in organ and callus cultures of Albizzia lebbek Benth. Annals of Botany 52(3):421-424.

Ranking Twenty-Two Tropical Browse Species from Guanacaste, Costa Rica ${ }^{1}$

N Lou Conklin*, RE.McDowell**, PI.VanSoest***

Abstract

Twenty-two species of tropical trees and shrubs were sampled, chemically analyzed and ranked according to mean values for crude protein (CP) and in vifro true digestibity (IVTD) of leaves. A simple statistical formula was used to combine the two criterion values, and rank the species. From this ranking and additional information the species were grouped according to their fodder potential. The first group includes Acacia farnesiana, Caesalpinia eriostachys, Cassia bicapsularis ("candelillo") and Myrospermumfrutescens with the highest folder potential based on chemical analysis, but have either physical or chemical factors inhibiting consumption. The second group, with more immediate fodder potential includes Gliricidia sepium, Pithecellobium saman, Tabebuia ochracea, Spondias purpurea, L.ysiloma divaricata, Cajanus cajan and Enterolobium cyclocarpum. The third group with species whose protein content generally ranks much higher than most range grasses, but lower compared to the above eleven species, includes Bauhinia ungulata, Cordia alliodora, Hemiangium excelsum ("guachero"), Piscidia carthagenensis, Lonchocarpus minimiflorus, Tamarindus indica,Ficus sp. ("higueron"), Gnazuma ulmifolia, Mangifera indica, Hymenaea courbaril and Andira inermis. Crude protein and IVTD values are also given for the fruits or pods of some of the above species and three additional ones: Acrocomia vinifera, Cassia grandis, and Crescentia alata.

INTRODUCTION

Browse or fodder trees are frequently included as components of agroforestry systems but more information is required on the nutritional value of most of them. Central America in rich in plant life and the source of two widely-used fodder trees,

[^20]
COMPENDIO

Veintidós especies de árboles y arbustos tropicales fueron muestreadas, analizadas químicamente y clasificadas según los valores promedios de proteina cruda (CP) y digestibilidad verdadera in vitro (IVTD) de las hojas. Se usó una fórmula estadística para combinar los dos valores criterios y clasificar las especies. Con base en esta clasificación y ofra información citada en la literatura consultada, las especies se agruparon de acuerdo con su potencialidad como arboles forrajeros. En el primer grupo se incluyen: Acacia farnesiana, Caesalpinia eriostachys, Cassia bicapsularis (candelillo) y Myrospermum frutescens. En el segundo grupo aparecen Gliricidia sepium, Pithecellobium saman, Tabebuia ochracea, Spondias purpurea, Lysiloma divaricata, Cajanus cajan y Enterolobium cyclocarpum. El tercer grupo está conformado por Bauhinia ungulata, Cordia alliodora, Hemiangium excelsum (guáchero), (Piscidia carthagenensis, Lonchocarpus minimiflorus, Tamarindus indica, Ficus sp. (higuerón), Guazuma ulmifolia, Mangifera indica, Hymenaea courbarily Andira inermis. Los valores de proteína cruda e IVTD también están dados para las frutas o vainas de algunas de las especies ya mencionadas y tres especies adicionales: Acronomia vinifera, Cassia grandis y Crescentia alata.

Leucaena and Gliricidia. Leucaena plantings around the tropical world have been suffering from insect and discase altack (13) Farmers need to be able to choose from a greater number of fodder tree species Small or subsistence farms in particular, need to protect themselves by planting a variety of species

This paper presents nutritional information on some of the less-utilized tree species from the same climatic zone as Leucaena, that may have fodder potential. Standard forage analysis techniques are used to evaluate potential browse (3). Some of the results are presented from a survey of 22 tree and shrub species growing on man-made savanna in Guanacaste Province, Costa Rica. Most of the species sampled are deciduous, including Gliricidia sepium, but with irrigation can be made evergreen artificially during the dry season. Nutritional values for fruits or pods of some trees are also included, these often being as valuable as the foliage, especially if the species is deciduous (15)

MATERIALS AND METHODS

Selection of the species for study was based on farmer recommendations and field observations of browsing range cattle at two sites. Sixteen frequentlybrowsed species were chosen for leaf sampling, with some preference given to leguminous trees. An additional six species that were extremely common but avoided by cattle were also included in the leaf sampling in an attempt to identify factors leading to their rejection. 'Three more species were chosen for evaluation only of their fruits; the leaves were not significantly browsed. The individual trees sampled were chosen at random according to standard plant ecology sampling methods (14) by placing line transects up hedgerows or selecting coordinates in forest quadrates on Hacienda La Pacifica, Cañas Leaves were harvested according to how the cattle harvested them; some trees with very large leaflets and their petioles were avoided by the cattle. These petioles were placed in the twig category, contrary to their botanical classification.

Of the 22 species sampled for their leaves, eight were sampled three times, at the beginning, middle and end of the rainy season; and eight were sampled twice, at the beginning and end of the rainy season. Single samplings were taken of six additional species when observations indicated the importance of these in the diet of the free-ranging animal Most of the single samples were collected half way through the rainy season.

Each seasonal sample of a species was a composite sample from ten trees. Twigs were cutat 1 cm diameter and all leaves were pulled off and placed in a plastic bag. The twigs were then cut up and placed in a second plastic bag. The two fractions were analyzed separately. This twig size was selected as the twigs can be chopped by a small stationary chopper without damaging the machine (3). The percentage of leaf was determined by establishing the leaf: twig ratio by weight.

The laboratory procedures performed on the samples were: Kjeldahl crude protein (CP) and in vitro true digestibility (IVTD) (7). The following equation was used to determine the final composite ranking:
$\frac{\text { total mean IVTD } \% \text { - species IVTD } \%+}{\text { standard deviation }}$
$\frac{\text { total mean } \mathrm{CP} \%-\text { species CP\% }}{\text { Standard devjation }}$

Total mean refers to the mean of all 22 species, and the standard deviation is of the total mean. The total means and standard deviations were calculated from
different trees of the same species. Since samples of each period were pooled per species, values for each tree were not considered. Each pooling included different trees. This formula is crude but considered adequate in this instance as the species being evaluated are wild, and the aim is to simply indicate species worthy of further and more controlled research. A t-test was used to compare the 16 species with early- and late-rainy-season collection periods and check the validity of combined values obtained from different periods. The IVTD or CP of the species is the mean value for each individual for each individual species. Crude protein and IVDT are two different characteristics of feed and are measured by different methods. This formula allows the combining of two parameters that cannot be logically averaged by simply adding the values and dividing by two.

Sequential cell wall extractions were performed to obtain an approximate tannin fraction using a neutraldetergent followed by acid-detergent (NAD) on one sub-sample, and then on acid-detergent followed by neutral-detergent (AND) on a second sub-sample, as described by Horvath (9). This value was calculated as NAD minus AND but the number is used only to indicate a range of tannin levels. This procedure needs further verification.

Palatability was assessed by observing cattle selectivity; if the catle browsed the especies frequently, it was considered palatable. It was identified as unpalatable if it was avoided or never seen to be browsed by the cattle. A qualitative ranking from zero to four was assigned each species.

RESULTS

The t-test showed IVTD not be significantly different ($\mathrm{p} \geq 0.05$) from early to late rainy scason. The first plant collection was made when the leaves were about one month old, while the late rainy season leaves were six to eight months old. In fact, nine of the species actually increased their digestibility with age, but most of the differences were within the two percentage units considered as an acceptable error for the methods used, so cannot be said to have significantly increased their digestibility. Crude protein, however, was significantly different ($p \geq 0.05$) with the average for the one-month-old leaves at 19.7% and the six to cight-monthold leaves at $16.8 \% \mathrm{CP}$, a very small but significant difference.

To test whether the "top eleven/bottom eleven" groupings were affected by this CP difference, the leaves were first ranked from most to least nutritious according to sampling period, and then by combining
all periods for one ranking. The same species fell into the same "top eleven/botom eleven" groupings regardless of the ranking method used, and the results are thus given from the combined ranking instead of by individual sample period It should be noted, however, that the orders of the species within the top group varied slightly depending on which ranking method was used. Nevertheless, since these are wild populations being evaluated, with the aim of prioritizing species most worthy of additional research, the combined rankings are adequate.

In vitro true digestibility is an estimate of total digestible nutrients (TDN). The mean value for IVTD for all species evaluated was 52.7% (Table 1). It was decided that for a tree leaf to be considered as potential maintenance fodder it must have a digesbility greater than 50% for sheep or 40% for catue (17).

Table 1. Average in vitro true digestibility (IVTD), crude protein (CP), and leaf percentages for the leaves of 22 tropical browse species, in Guanacaste, Costa Rica.

Chemical fraction		(\%)
IVTD	5	S
CP	18.3	15.1

For maintenance, CP must be above 7.8%. Browse is frequendy considered as a protein supplement because it is normally not high in total digestible nutrients. When ranking these species preference is therefore given to leaves with the highest CP values, that is, above the 18.3% mean obtained for this group.

The species data are presented in Tables 2 and 3, starting with those showing the highest potential nutritional value, based on laboratory analysis. Some of the leaf samples were single, composite samplings, as were all of the fruit samples, and therefore hàve no standard deviation. Values for four species (Acacia farnesiana, Spondias purpurea, Lonchocarpus minimiflorus, and Guazuma ulmifolia) from a previous study (13) are included for comparison with the results of this study.

Two thirds of the species in the top ranking group (Table 2) are in the lowest tannin level category. Interestingly, while most of the apparently more nutritious
species also rank high on the selectivity scale, three of them were never seen to be consumed, even though they were plentiful. The average percentage of leaf for the top ranking group is 59.1, while for the second group it is 55.5 (Table 3).

In Table 4, the fruit fraction consumed by catle for Acrocomia vinifera is the hull and for Crescentia alata is the pulp. Cassia grandis was not observed as eaten by livestock, even though it is readily available.

DISCUSSION

The following seven species represent the group with the most practical potential as cultivated browse. The numbers refer to each species' ranking from Tables 2 and 3 :
5. Gliricidia sepium (Jacq.) Steud., syn. G. maculata, family Leguminosac, subfamily Papilionoideae (or Fabaceac), common names: "madero negro" or "madre cacao". This species is currently being used in some tropical countries as catte fodder. As it is highly palatable, it is also the subject of a fair amount of research (16). These results show that it has an IVID above the cut-off point for both shecp and cattle and an above average crude protein. Its percentage leaf is the second highest of those species sampled here. It contains rotanone in the roots and variablc levels of an alkaloid in the leaves (5) but these do not appear to bother livestock. The anti-coagulant dicoumerol is formed when the leaves are fermented. This chemical is used as a raticide but no information is available on the effect of fermented leaves on ruminants (6).
6. Pithecellobium saman (Jacq.) Benth., syn. Samanea saman (Jacq.) (Merrill) or Pithecolobium saman, family Leguminosac, sub-family Mimosoidcac, common names: "genizaro", "cenizaro", or "raintree". It has an above average CP value but its IVTD is unacceptable for sheep, which may be due to the presence of alkaloids (12). Since the trees sampled for this project came from wild populations, they are likely to be highly variable genctically, so it may be possible to find individuals with higher levels of digestibility that could be used to breed more acceptable varieties of the species. The leaf is palatable and the tree produces a palatable and digestible fruit for catle, which has an unconfirmed reputation in Guanacaste for abortion-producing properties. Venezuelan literature indicates it can be used as feed without problems (4).
7. Tabebuia ochracea (Cham.) Standl., syn. T. neochrysantha A. Gentry or T. neochrysantha (Jacq.)

Table 2. In vitro true digestibility (IVTD), crude protein (CP), leaf percentages and tannin levels for the eleven higher-ranking species, in Guanacaste, Costa Rica.

Rank	Species	IVTD (\%) X	S	$\begin{gathered} \mathbf{C P} \\ (\%) \\ \overline{\mathbf{X}} \end{gathered}$	S	Leaf (\%) $\overline{\mathbf{X}}$	S	Tannin	Selection rank
1	Acacia farnesiana	65.1	0.3	25.5	0.9	n. $\mathrm{a}_{\text {. }}$		**	4
+	Acacia farnesiana	75.2		25.3					
2	Caesalpinia eriostachys	66.5		24.4		72.3		*	0
3	Cassia bicapsularis	71.4		21.0		61.7		-	0
	whole pods	47.8		9.0					
4	Myrospermum frutescens	79.8	3.7	19.1	2.4	54.9	8.8	*	0
5	Gliricidia sepium	60.9	103	20.7	10	73.7	3.0	**	4
6	Pithecellobium saman	47.3	1.5	23.8	0.3	67.0	9.3	*	4
	whole pods	72.2		162					
	pod without seeds	71.0		14.2					
	seeds	88.9		37.3					
7	Tabebuia ochracea	52.2	8.6	22.2	6.0	61.4	11.4	**	4
8	Spondias purpurea	68.8	1.6	16.5	05	71.5	7.5	*	4
$+$	Spondias purpurea	'79.6		163					
	fruit pulp	95.6		32					
9	Lysiloma divaricata	67.0	4.8	16.8	2.4	430	7.5	*	3
10	Cajanus cajan	49.0		20.5		235		***	3
	whole pods	83.9		14.1					
11	Enterolobium cyclocarpum	39.7	4.5	22.8	7.9	62.0	1.6	***	3
	whole pods	79.0		162					
	pod without seeds	74.7		10.6					
	seeds	90.2		24.4					

n. $\mathbf{a} .=$ not available

* $=$ NAD-AND $<10 ;^{* *}=$ NAD-AND $10-15 ;^{* * *}=$ NAD-AND >15
$t=$ McCammon-Feldman, 1980
Selection ranking: $0=$ not selected, $1=$ occasionally, $2=$ frequently, $3=$ very frequently, $4=$ always selected when present.

Nichol, family Bignoniaceae, common name: "contéz amarillo" or "corteza". It is the first non-legume to appear in this ranking; the IVTD level is acceptable and that for CP is high for a non-legume; it is fairly low in tannin content and is palatable. The leaves, however, are highly pubescent, causing some skin irritation in people collecting samples, but livestock appeared not to be affected.

Tannins are polyphenolic compounds frequently found in trees and chemically related to lignin. As with lignin, they have a depressing effect on digestibility (1 , 2). Tannins, in particular, affect the availability of protein, but while the effect is considerable it is not consistent and much research remains to be undertaken on this relationship.
8. Spondias purpurea L., family Anacardiaceae, common names: "jocote" or "cirucla". It is the second non-lcgume in this ranking; it is also palatable to catte, has a high IV'TD value but slightly below average CP; and its percentage leaf is quite high. This species produces a fruit commonly consumed by humans as well as livestock. The Anacardiacea family includes mango, poison ivy, and poison oak. Some people have strong allergic reactions to certain or all members of this family but catle seem to be unaffected.
9. Lysiloma divaricata (Jacq.), formerly L. seemannii Britt \& Rose, family Leguminosac, subfamily Mimosoideac, common name: "quebracho". This species is chemically similar to Spondias but its percentage leaf is below average; cattle browse it, but its poor leaf to stem ratio would require modification

Table 3. In vitro true digestibility (IVTD), crude protein (CP), leaf percentages and tannin levels for the eleven lower-ranking species, in Guanacaste, Costa Rica.

		$\begin{aligned} & \text { IVTD } \\ & (\%) \end{aligned}$		$\begin{gathered} \mathrm{CP} \\ (\%) \end{gathered}$		Leaf (\%)		Tannin	Selection rank
Rank	Species	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{X}}$	S		
12	Bauhinia ungulata	48.2	4.5	19.5	3.8	50.1	7.4	**	3
13	Cordia alliodora	457	1.0	19.6	0.9	48.0	10.5	***	3
14	Hemiangium excelsum	66.8		12.5		n.a		***	2
15	Piscidia carthagenensis	43.0	3.2	19.5	2.0	68.1	5.6	*	3
16	Lonchocarpus minimiflorus	333	2.9	20.1	3.0	53.2	5.1	***	1
$+$	Lonchocarpus minimiflorus	60.1		18.4					
17	Tamarindus indica	50.9	0.8	14.6	12	45.8	1.3	***	2
	whole pods	59.0		5.9					
	pods without seeds	58.6		4.2					
	seeds	71.4		14.7					
18	Ficus sp	49.4	1.8	13.3	1.1	604	28	*	2
19	Guazuma ulmifolia	48.1	3.3	12.4	2.1	56.8	9.0	*	4
+	Guazuma ulmifolia			72.6		13.7			
	whole fruit	65.2		5.7					
20	Mangifera indica	58.0	32	8.6	0.6	73.9	23	**	3
	fruit pulp	95.4		1.8					
21	Hymenaea courbaril	33.4		13.6		46.1		**	0
	whole pods	44.5		3.7					
22	Andira inermis	14.8		15.5		52.8		**	1

> n. a $=$ not available
> $*=$ NAD-AND $<10 ; * *=$ NAD-AND $10-15 ; * * *=$ NAD-AND >15
> $+=$ MoCammon-Feldman, 1980
> Selection ranking: $0=$ not selected, $1=$ occasionally, $2=$ frequently, $3=$ very frequently, $4=$ always selected when present.

Table 4. In vitro true digestibility (IVTD) and crude protein (CP), fruits from three species sampled only for their fruits, in Guanacaste, Costa Rica.

	IVTD $(\%)$	CP Species
Acrocomia vinifera		
whole fruit	44.7	4.0
nut without hull	17.5	4.1
hull	64.7	3.3
Cassia grandis		
\quad whole pod		46.4
Crescentia alata	60.6	5.8
whole fruit	89.0	12.2

through selection to create a more productive variety. "Quebracho" is a commercial name frequently used to indicate a number of tree species high in tannins, which
are extracted and used in leather work. This particular species, however, has a below average tannin content.
10. Cajanus cajan (L.) Millsp., family Leguminosae, sub-family Papilionoideac, common names: "pigeon pea", "gandul" or "guandul". This a domesticated species included for reference purposes, and this particular variety does not rank well. It was being grown for fodder on the same ranch where the rest of the trees were found; its IVTD level is a little low for sheep; its CP is above average but its percentage leaf is the lowest of the species sampled; it is reasonably palatable; and its pod is quite digestible. In many countries the seeds are used for human consumption.
11. Enterolobium cyclocarpum (Jacq.) Griseb., family Leguminosae, sub-family Mimosoideae, common name: "guanacaste". This species is palatable to catle but its IVTD value is a little below that required; its tannin level is above average, which probably explains the low IVTD; other secondary plant compounds may also influence digestibility. This species is renowned as a feed source due to its fruit crop, which is palatable to cattle, as well as being quite digestible.

The following four species are those that rank chemically as having the highest potential nutritional value, but they have other problems requiring additional research:

1. Acacia farnesiana (L.) Willd., family Leguminosae, sub-family Mimosoideae, common names: "aromo" or "espino blanco". The leaves of this species rank highest; it has the highest CP level and its IVTD is fairly high in spite of a high tannin level; it is however, a thorny, weedy shrub, which makes it unrecommendable for cultivation. This species is browsed by cattle and constitutes a feed resource on the range but should not be introduced as it is almost impossible to eradicate

The next three species are interesting as they rank high chemically but are not browsed by catule. The reason appears to be a strong odor, probably terpenes in the lipid fraction (Conklin, unpub data). If this odor problem can be solved, these browses could have good potential
2. Caesalpinia eriostachys Benth., family Leguminosae, sub-family Caesalpinioideac, common name: "saino". This is large shrub or treelet that commonly grows in natural monoculture.
3. Cassia bicapsularis L. (tentative identification) (syn. C. indecora H.B K.) family Leguminosae, subfamily Caesalpinioideae, common name: "candelillo". This species' odor is similar to that of Ceasalpinia; its digestibility and CP are fairly high and it is also low in tannins; it produces a fruit that livestock consume but its nutritional value does not appear high.
4. Myrospermum frutescens Jacq., family Leguminosae, sub-family Papilionoidac (Fabaceae), common name: "arco". This plant has the highest IVTD levels and leaf percentage of any of the tested species. It has a similar odor to the previous two, but chemically it would appear to be a good fodder, if the cattle would eat it.

If the aroma of an essential oil is the problem with these three species, perhaps the leaves would be consumed dry. It was observed that the cattle were somewhat reluctant to eat fresh peanut plants, which have a very similar but more mild aroma, whereas dried peanut plants were consumed readily.

The remainder of the sampled species do no show as much promise as exploitable species (Table 3) but they should not be discarded. Most of them provide valuable fodder under range conditions and having a mix of trees available to the animals during the dry season is important. Some of the species that are not
browsed but are evergreen, provide valuable shade. The numbers refer to each species ranking from Tables 2 and 3 .

Trees that are acceptable for rangeland browsing are:
12. Bauhinia ungulata L., family Leguminosae, sub-family Caesalpinioideae, common names: "casco de venado" or "pata de cabra". This species is voluntarily browsed and palatable in spite of a very strong terpenoid smell, similar to that of pine trees
14. Hemiangiumexcelsum, family Hippocrateaceae, common name: "guachero". It is the first evergreen shrub in this ranking and is non-leguminous; its digestibility is acceptable for sheep or catlle, in spite of its tannin level, being the highest of any species measured; cattle browsed this species during the dry scason.
15. Piscidia carthagenensis Jacq., family Leguminosae, sub-family Papilionoideac (Fabaccae), common name: "pellejo de toro" or "siete cueros". It is palatable to catle but may not be nutritious enough to justify further research.
19. Guazuma ulmifolia Lam., more correctly identificd as G tomentosa H.B.K., family Sterculiaceae, common name: "guácimo". It is a non-leguminous tree that is traditionally considered very palatable to cattle for the leaves and fruit, but both are of low nutritional value; although McCammon-Feldman (13), studying goats, obtained an IVTD 24.5 percentage units higher than those obtained in this study. Animals can increase the digestibility of a plant through selectivity.

Trees more suited for uses other than browse are:
13. Cordia alliodora (R. \& P:) Cham, family Boraginaceac, common name: "laurel". It was browsed by the catte but is probably more important as a lumber tree than for fodder.
17. Tamarindus indica L., family Leguminosae, sub-family Cacsalpinioideae, common name: "tamarindo". It is commercially important for its fruit production for human consumption, though in India its leaves are used as fodder.
20. Mangifera indica L., family Anacardiaceac, common name: "mango". It is frequently planted for shade, being evergreen and its fruit is important for human consumption.

The following trees are evergreen and useful as shade:
18. Ficus sp ., family Moraceae, common names: "higueron" or "chilemate". It is a non-leguminous, evergreen tree, and browsed by catle.
21. Hymenaea courbaril L., family Lcguminosae, sub-family Caesalpinioideae, common name: "guapinol". It is an evergreen legume with leaves that appear plastic. This species is not browsed by catle. Its pod has a very thick husk, which makes it inaccessible to ruminants, though rodents can subsist on the inside pulp (10).
22. Andira inermis, (Swartz.) H.B.K., family Leguminosae, sub-family Papilionoideae (Fabaceac), common names: "carne asada" or "almendro de monte". This is another evergreen legume with low digestibility, which is probably due to an antimicrobial compound. The leaves are high in an alkaloid that makes humans and monkeys sick and which is fatal in large doses (5).
16. Lonchocarpus minimiflorus Donn-Smith, sometimes mistakenly referred to as L orotinus Pittier, family Leguminosac, sub-family Papilionoideac (Fabaceae), common name: "chapemo negro", Mc-Cammon-Feldman (13) obtained an IVTD 26.8 percentage units higher than that obtained in this study. It is a extremely common, small, fast-growing, deciduous tree.

It is important to note that the values obtained by McCammon-Feldman (13) give CP values about equal to those obtained here but IVTD values 10.1 to 26.8% higher. There are three possible reasons for this: 1) In the McCammon-Feldman study goat rumen fluid, on a browse diet, was used as the inoculum; whereas in this study the inoculum source was a Holstein cow fed a timothy grass diet; and some studies have shown that the inoculum source can affect the IVTD obtained (8). 2) The McCammon-Feldman study sampled the trees to mimic the selectivity of individual leaves used by the goats when browsing. The sampling undertaken in this study assumed the leaves would be fed in troughs and there would be less opportunity for selectivity. 3) The geographical location may have had some effect on the nutritional value of the tree leaves. The McCammonFeldman study was undertaken in a slightly drier environment.

Of the following three trecs, two produce a fruit of good nutritional value and could aid the nutritional status of livestock on the range.

Acrocomia vivifera Ocrsı., family Palmac, common name "coyol". Catle ruminate only the hull or husk, spiting out or passing the nut, which is caten by pigs. Results show that the catle are consuming the more
nutritious part of the fruit, though it is only an energy source, its CP level being too low even for maintenance.

Cassia grandis L F, family Leguminosae, subfamily Cacsalpinioideac, common name: "carao" or "sandal". It has been extensively planted as an ornamental in Guanacaste. The large pods are conspicuous but untouched by catte, possibly because of the thick, woody pod.

Crescentia alata H. B.K. family Bignoniaceae,common name: "jicaro", or "calabash". In Costa Rica this pulp is not traditionally fed to catte, though it is palatable to horses (11) and in Nicaragua it is cracked open and fed to catle. Its nutritional valuc is quite good but it has a strong, fetid odor when ripe.

Fruit can be important on rangelands where mature trees are growing, and as part of different management systems that involve fodder tree leaves. Two possible management schemes are involved. One maintains secondary regrowth species at a height where cattle can directly browse the trees or small enough for the trees to be cut with a machete and chopped. The other system involves rangeland management where trees grow to maturity, and when the trees mature, the fruit crop becomes more important than the leaf crop.

The standard deviations given in the tables are from samples, thus reflecting differences among sampling periods, in this case mostly seasonal and age differences, rather than differences among individual trees. Individual variation among trees of the same species is much greater $(5,3)$, therefore the genetic variability needed to select and develop more nutritious varictics from a given wild species is present.

One aspect that may have affected the ranking is that of tree age, rather that scason or sampling period. The Caesalpinia, Myrospermum, and Lonchocarpus are invader species and frequently the first individual encountered near the randomly-selected point was a sapling. Enterolobium and Pithecellobium were mostly mature trees, because the seedlings and saplings are so palatable they could not escape destruction by the catthe. Gliricidia was a $50: 50$ mix of adults and saplings because it was protected from the catte. Including the percentage leaf in the ranking formula may also have changed the order. Additional factors involved in fodder tree choices are evergreen habit, tolerance to defoliation, sprouting capacity and biomass production. We recommend that all of the species in the high ranking group receive further study as well as a few from the lower group, such as Bauhinia ungulata, Guazuma tomentosa, Tamarindus indica, and Piscidia carthagenensis. Farmers interviewed also recommended additional species that could not be included in this study.

Fig 1. Twenty-two species of tropical trees and shrubs.
Nota: Drawings of the tree and shrub specics sampled.
Drawings are not to scale. Some of the leaves are drawn five to ten times larger than the natural size The designations of twig and "leaf" are not necessarily botanically correct, but indicate how the species were analyzed in this study and the cows' treatment of them when browsing. Some of the species have leaflets that are so large they are consumed one at a time, whereas some of the petioles are so woody, they are treated as iwig. In the case of other species, the whole compound leaf is small enough for consumption in a single bite.

Fig. 1. (Cont.)

The values for the leaves are presented here, but in some cases value for twigs should also be considered in making practical management decisions. Twigs with their respective leaves can be chopped and fed to cattle in troughs, but to provide balanced rations it would be necessary to know how much the inclusion of twigs dilutes the nutritional value of the leaves.

This type of species survey gives initial screening information, but so few feeding trials have been carried out on different browses that it is still difficult to interpret chemical data Recent studies in Ethiopia indicate that there are great species differences among browses regarding types of tannins present and the extent to which they reduce protein digestibility (19). Future research must focus on feeding trials and tannin chemistry of individual browse species. Once digestibility problems are better understood, superior varieties of browse can be selected.

CONCLUSIONS

A formal hypothesis was not offered at the beginning of this study because of its survey format. However, if one were to be suggested, it would be to test whether or not any of the trees and shrubs native to Guanacaste, Costa Rica could be used as cattle fodder. Gliricidia is being used in many tropical countries for that purpose. The results of this study indicate that several other species have browse or fodder potential.

Three high ranking species: Caesalpinia eriostachys, Cassia bicapsularis, and Myrospermum frutescens need further chemical tests to determine the basis for their rejection by catlle

Within the group of seven species with the most potential as fodder trees, Pithecellobium saman, Tabebuia ochracea, Spondias purpurea, Lysiloma divaricata, and Enterolobium cyclocarpum merit immediate attention in experimental plantings to quantify productivity and for livestock feeding trials.

The remainder of the species evaluated in this survey provide valuable protein and/or shade on the range, even though they did not rank so highly. A range animal needs all of the resources possible at its disposal, especially during the dry season. Forested areas along permanent waterways can supplement the diet with additional protein from trees and shrubs.

The fruits and pods of several of the trees native to Guanacaste would be interesting to investigate. Very little is know about fruit production levels from these wild tree populations.

LITERATLRE CITED

1 BUCKLEY, KE; DEVLIN, T.J; MARQUARDT, R.R; 1983. Factors affecting in vitro rumen digestion of faba bean cultivars (Vicia faba L.) Canadian Journal of Animal Science (Can.) 63:89-98
2. BURNS, JC; COPE, W A.; WILDONGER, KJ. 1976 Suppression of standard forage in vitro dry matter disappearance by acetone, methanol and aqueous extracts from crownvetch leaflets. Crop Science (EE UU) 16:225229.
3. CONKLIN, NL 1987. Ihe potential nutritional value to catle of some tropical browse species from Guanacaste, Costa Rica Ph D. Thesis Ithaca, New York, Cornell University
4. FRENCH, M.H.; CUAPARRO, L.M 1963 Composición quimica de las frutas y semillas de algunos árboles y arbustos. Agronomia Iropical (Ven.) 13:3-21
5. GLANDER, KE 1977. Poison in a monkey's Garden of Eden. Natural History (USA) 86:34-41.
6. GLOVER, N. 1984. Gliricidia - its names tell its story. Nitrogen Fixing Tree Highlights Nitrogen Fixing Tree Association, Waimanalo, Hawaii, (USA).
7. GOERING, HK ; PJ VAN SOEST 1970 Forage fiber analysis. Agricultural Handbook No 379. ARS, USDA., Washington, DC, EE UU
8. GRANI, RJ; VAN SOEST, PJ; MCDOWEL, RE. 1974. Influence of rumen fluid source and fermentation time on in vitro true dry matter digestibility. Journal of Dairy Science (USA) 57:1201-1205.
9. HORVARTH, PJ. 1981. The nutritional and ecological significance of Acer-tannis and related polyphenols. MS Thesis. Ithaca, New York, EE UU, Cornell University.
10. JANZEN, D.H 1982. Wild plant acceptability to a captive Costa Rican Baird's tapir Brenesis (C. R) 19/20:99-128
11. JANZEN, DH: MARIIN, PS 1982 Neotropical anachronisms: The fruit the gomphotheres ate Science (EE UU) 215:19-27.

12 LEONARD, B E. SHERRATT, HS A 1967. The investigation of tropical medicinal plants: Pharmacological propertics of some alkaloids from Pithecolobium soman and Strychnos toxifera. Tropical Science 9:122-135

13 McCAMMON-FELDMAN, B. 1980. A critical analysis of tropical savanna forage consumption and utilization by goats. Ph D dissertation, University of Illinois, UrbanaChampaign, IL
14. NFTA (NITROGEN FIXING TREE ASSOCIATION). 1987. Proceedings of a workstiop on the biological and genetic control strategics for the Leucaena psyllid. Nitrogen Fixing Irec Association, EE UU.
15. OOSTING, HJ. 1948. The Study of Plant Communities. WH Freeman and Co., San Francisco, EE UU.
16. SKERMAN, PJ. 1977. Tropical Forage Legumes Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy.

17 SUMBERG, J E 1986 Gliricidia sepium (Jacq.) Steud ; A Selected Bibliography. International Livestock Center for Africa, P O Box 5689, Addis Ababa, Ethiopia.

18 VAN SOEST, PJ. 1982 Nutritional Ecology of the Ruminant. O \& B Books, Inc, Corvallis, Oregon, EE UU
19. WOODWARD, A. 1988. Nitrogen metabolism and feeding behavior of browsing domestic animals in Ehiopia. Ph.D. thesis Ithaca, New York, EE.UU., Cornell University

[^0]: 1 Recebido para pablicacano 11 de julho de 1989
 Parte de tese de doutorado do primeiro autor Esenla Superior de Agricultura "Laiz de Queiroz" Aniversidade de Sano Paulo (ESAI Q/USP), 1984

 * Eng Agr., Dr , Fac. Agronomia, UHRGS, Pornonlegre. RS Bra; Bolsista do CNPq.
 ** Eng Agr , MS.. EMPASC, Forianópolis, SC, Bra
 *** Eng. Agr. Dr ESAl Q/USP. Bolsista do CNPq, Ving Arg Dr ESAL Q/USP, Piracicaba, SP. Bra
 **** Eng. Agr Dr, Insi. Agronômico/SANESP. Campinas. SP. Bra; Bolsista do CNPq

[^1]: ** - Significativo ao nível de 1% de probabilidade ($\mathrm{P} \leq 0.01$)

[^2]: ELEMER BORNEMISZA UNIVERSIDAD DE COSTARICA

[^3]: 1 Recibido para publicación el 8 de febrero de 1990.
 Los autores agradecen ala Agencia de Extensión Rural del Instituto Nacional de Tecnologia Agropecuaria (INTA), Río Grande, Arg; y a Carola de León. por su trabajo en laboratorio.

 * Instituto Nacional de Iecnologia Agropecuaria (INTA), Bariloche, Arg

[^4]: 1 Recibido para publicación el 4 de enero de 1989. Partedelatesis presentadapor el primerautor antes de optar por el titulo de Ingeniero Ngrónomo. El estudio se llevó a cabo con la ayuda financiera de la Academia Nacional de Ciencias (NAS/BOSTID), Gua

 * Estudiante tutorial en la División de Ciencias Agricolas y de Alimentos del Instituto de Nutrición de Centroamérica y Panamá (INCAP)
 ** Investigador a cargo de la administración de la Pinca Iixperimental del INCAP
 *** Jefe de la División de Ciencias Agricolas y de Alimentos del INCAP

[^5]: 1 Recibido para publicación el 9 de julio de 1991

 * Estación I:xperimental de Citricos, Jagiley Grande, Matanzas, Cuba

[^6]: 1 Recibido para publicación el 22 de enero de 1990
 Financiado por el Fondo de Ciencia y Tecnologia (IONDECYT) 913-88 y por la Dirección de Investigación y Desarrollo RS-88-29, Universidad Austral de Chile

 * Universidad Nustral de Chile. Valdivia, Chile.

[^7]: 1 Recibido para publicación el 2 de noviembre de 1989. Trabajo rcalizado con subsidios PIDs 3028300 y $390721 / 85$ del Consejo de Investigaciones de la Universidad Nacional de Cuyo. Los autores agradecen a C.B. Passera, por la medición de los potenciales osmóticos de los medios de cultivo, y a L. Martínez, receptora de becas de iniciación y perfeccionamiento del Consejo Nacional de Inves tigaciones Cientificas y Tenológicas (CONICET), Arg.

 * Laboratorio de Fisiología Vegetal de la Facultad de Ciencias Agrarias, Universidad Nacional de Cayo (UNC), 5505 Chacras de Coria, Mendoza, Arg.
 ** Departamenode Ciencias Naturales, Universidad Nacional de Río Cuarto, 5800 -Rio Cuarto, Córdoba, Arg

[^8]: 1 Recebido para publicação em 18 de maio 1990 Os autores agradecem to suporte financeiro do Centro Nacional de Pesquisa (CNPq) durante a execucão deste trabalho e ao Dr Sérgio Miana de laria pela revisão do manuscrito.

 * Pesquisador II, INPA/MCT, Manaus, Bra
 ** Pesquisador III, Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA)/CNPBS, km 47, Seropédica, Rio de Janciro, Bra

[^9]: 1 Recibido para publicación el 8 de febrero de 1990.
 Proyecto financiado por el Conscjo Nacional de Ciencia y Tecnologia PVT/AI/NAL/86/3623. Méx

 * Unidad de Investigación en Granos y Semilhas, Universidad Nacional Autónormade México (UNAM)-Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP), Apartado Postal No. 20, Pabellón de Arteaga, Aguascaliente, Méx.
 ** Facultad de Quimica, UNAM, Méx

[^10]: Notas: En estas condiciones de almacenamiento no se detectaron hongos de almacén en ninguno de los muestreos.

 * Promedio de seis mediciones, dos por repetición
 - No se determinó

[^11]: $1 \quad$ Recibido para publicación el 17 de marzo de 1989. Financiado parcialmente por la Dirección de Investigación y Desarrollo de la Universidad Austral de Chile (Proyecto S-88-22)

 * Instituto de Botánica, Universidad Austral de Chile, Valdivia, Chile.
 ** Pontificia Universidad Católica de Chile, Sede de Talca, Chile.

[^12]: 1 Recibido para publicación el 22 de mayo de 1990
 Parte de la tesis presentada en la Facultad de Ciencias Naturales y Museo de La Plata, Universidad Nacional de la Plata, para optar al titulo de Doctor en Ciencias Naturales con Orientación a la Ecologia
 Se agradece al Ing Agr. A. von de Pahlen y al Dr J. Crisci su dirección y asesoramiento en el proyecto de tesis doctoral; al personal de la Estación Experimental Regional Agropecuaria, Instituto Nacional de Tecnología Agropecuaria (IN IA), de Pergarnino, el apoyo en los viajes de carmpana y el análisis de las muestras de suelo; al $\operatorname{Dr} \mathrm{JL}$. Frangi, el uso de las facilidades del laboratorio de ecologia: al Ing Agr M Arturi, en el análisis de los resultados; al Ministerio de Asuntos Agrarios (MAA), Provincia de Buenos Aires, las facilidades en la Estación Experimental de Gorina; al Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) y a la Comisión de Investigaciones Cientificas (CIC), Provincia de Buenos Aires, por las becas otorgadas; y A.V.H Calvetti, la confección de las figuras.

 * Laboratorio de Sistemática y Biologia Evolutiva, Museo de La Plata, La Plata, Arg.

[^13]: 1 Recibido para publicación el 24 de agosto de 1990
 Los autores agradecen la colaboración de Eddie Satazar en la recolección de datos

 * Programa de Mejoramiento de Cultivos Tropicales, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turriaba, C.R

[^14]: 1 Recibido para publicación el 22 de abril de 1992. Los autores expresan su agradecimiento a la Red Regional de Generación y Transferencia de Tecnologia en Cacao (PROCACAO) por su apoyo económico; a los señores Luis Vega, Migucl Cerdas, Carlos Castillo, por su colaboración en la toma de datos respectivos; y a Lilliam Tortós, por su trabajo mecanográfico.

 * Programa de Mejoramiento Culivos Tropicales, Centro Agronómico Tropical de Investigaciôn y Enseñanza (CATIE), Turrialba, C.R.

[^15]: 1 Recibido para publicación el 22 de abril de 1992
 Trabajo auspiciado por ha Red Regional de Generación y Iransferencia de Tecnología en Cacao (PROCACAO). San José. CR

 * Investigador Asociado, Programa de Cacao, Fundación Hondarena de Investigación Agricola (IIIIA). San Pedro Sula, Hond
 ** Líder del Programade Cacao, MIIA, San PedroSula. Hond

[^16]: 1 Recebido para publicaçio em 16 de janciro de 1990 Agradecimentos aos Drs Luiz Ferreita da Silva, Paulo de Tarso Alvim, Raul René Vallee Antônio Avilio Franco, pela ajuda na revisäo e sugestöes apresentadas na claboração do presente trabalho.

 * Centro de Pesquisas de Cacau CEPEC/CEPLAC, Itabuna, Bahia, Brasil.

[^17]: ns - näo significativo.

 * - significativo a nível de 5%.
 ** - significativo a nível de 1%.

[^18]: 1 (Precipitação abaixo da eritrina) - (Precipitaçảo incidente)
 2 (Throughfall + stemflow) - (Precipitaçăo abaixo da critrina)

[^19]: 1 Recibido para publicación el 20 de naarzo de 1990
 ** Apartado postal 1655-1000 San José C.R
 ** Laboratorio Cultivo de Tejidos, Cento Agronómico Tropical de Investigación y Enseñanza (CATIE) 7170-Turrialba, CR

[^20]: 1 Recibido para publicación el 16 de mayo de 1989 The authors would like to thank the United States Agency for International Development (USAID) for making funds available for this project, Michael Pitzrick and Dr. Daniel Janzen for taxonomic assistance; and Mr. and Mrs Hagnauer at Hacienda La Pacifica for logistical support

 * Peabody Muscum, Harvard University, Cambridge, MA 02138.
 ** P.O. Box 7621, North Carolina State University, Raleigh, NC, 27695-7621.
 *** Morrison Hall, Cornell University, ythaca, NY 14853.

